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A generalization of the Susceptible-Infectious model is made to include a time-dependent transmission rate, which leads to a close analytical
expression in terms of a logistic function. The solution can be applied to any continuous function chosen to describe the evolution of the
transmission rate with time. Taking inspiration from real data of the Covid-19, for the case of cumulative confirmed positives and deaths,
we propose an exponentially decaying transmission rate with two free parameters, one for its initial amplitude and another one for its
decaying rate. The resultant time-dependent SI model, which under extra conditions recovers the standard Gompertz functional form, is
then compared with data from selected countries and its parameters fit using Bayesian inference. We make predictions about the asymptotic
number of confirmed positives and deaths and discuss the possible evolution of the disease in each country in terms of our parametrization
of the transmission rate.
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1. Introduction

The epidemics of Covid-19 has prompted a lot of researchers
from different fields to use their diverse expertise to under-
stand the nature of the Sars-Cov-2 virus and its spreading
worldwide. In particular, out of the medical sciences, the epi-
demics have revealed a rich ground where physicists, math-
ematicians, and statisticians are eager to apply their knowl-
edge and contribute to its amelioration and containment at
the local and global stages.

From the formal point of view, there has been much re-
search in the so-called epidemic models and their mathemat-
ical properties, see for instance [1,2], being the compartmen-
tal models the most widely used and studied. In general,
the models consider the classification of a given population
in some parts: Susceptible (S), Infective (I), Recovered (R),
among others, and are then dubbed in terms of which of them
they consider for the dynamics of the disease: SIR, SEIR,
etcetera. There is historical evidence that such models are
in good agreement with the dynamics of past epidemics [1],
and such past successes have triggered its use in the present
crisis, see for instance, [3-11].

However, there is an inherent difficulty in studying the
Covid-19 epidemics in real-time: that data collection is not
perfect and, in most cases, is certainly incomplete and not
very useful to fully characterize the evolution of the epi-
demics [12,13]. One then must question whether the use of
very complex models is convenient, given the scarcity and
flaws of the data series. Actually, it seems that simple mod-
els are sufficient to understand the epidemics [14,15].

Given the above considerations, here we study the sim-
plest of compartmental models and use them for the descrip-
tion of the current epidemics in different countries. The
model only accounts for two parts of the population: Sus-
ceptibles and Infectives, and is known as the SI model. The
infectives in the model are not supposed to recover, and then
its number is an ever-increasing function of time, which is
what one sees in the daily reports of cumulative infectives re-
leased by health authorities worldwide. In this respect, the SI
model seems to be a convenient one to follow the evolution
of the real data at hand.

However, the original SI model has one free parameter,
the transmission rate, which is assumed to be a constant pa-
rameter, but this seems to be an oversimplification that is not
in agreement with real data. This has inspired the use of time-
dependent transmission rates, which expand the capabilities
of the compartmental models to encompass hidden complex-
ities of the data compilations. Here we take this point of view
and consider a time-dependent transmission rate in terms of
an exponentially decreasing function, as it was done first in
[16], and also in Ref. [17] (see also [18,19] for other exam-
ples). Additionally, we also take into account the data series
of cumulative deaths, using simple assumptions without ex-
tending the SI model, which is thought to be at least as reli-
able as those of cumulative infectives, and probably a better
representation of the epidemic’s course [14].

A summary of the paper is as follows. In Sec. 2, we
present the mathematical description of the standard SI
model, which we call the time-independent version, and give
a brief account of its main properties. We then explain its
generalization to accommodate a time-dependent transmis-
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sion rate and find the analytical solution in terms of a logistic
function for the general case. It is argued that, because of
the time-dependence of the transmission rate, the total pop-
ulation number can be freely chosen, and there is a simpler,
approximated solution of the time-dependent SI system in the
limit of a large population number in the form of a Gompertz
function [20,21]. Using real data, we look for evidence of
a time-dependent transmission rate in terms of its definition
within the SI system, and then we propose an exponential-
like parametrization of the transmission rate.

In Sec. 3, we use the time-dependent models of Sec. 2
and use them to make a fitting of their free parameters to
data from some chosen countries. The fit is made using the
Bayesian inference, and the results are giving an interpreta-
tion in terms of characteristic quantities and times that are
intrinsic to our parametrized transmission rate. Finally, the
main conclusions of our study and future perspectives are
summarized in Sec. 4.

2. Mathematical background

Here we present the main mathematical expressions for the
time-dependent epidemic model, based on the known com-
partmental model SI.

2.1. Time-independent SI

The SI model is represented by the following set of equations,

Ṡ = −βS
I

N
, İ = βS

I

N
, (1)

Here,S(I) is the number of susceptible (infectious) people,
the total population isN = S +I, β is the infection rate (i.e.,
the probability per unit time that an individual contracts the
disease), and a dot means derivative for time.i

Because of the conservation equation, the SI system is
truly one-dimensional and represented by the equation,

İ = β (1− I/N) I . (2)

If β is a constant parameter, the solution of Eq. (2) is the
sigmoid, also known as the logistic function [22],

I =
N

1 + eβ(t0−t)
, (3)

wheret0 is an integration constant.
From the second derivative of Eq. (3) (the first derivative

of Eq. (2)),
Ï = βİ (1− 2I/N) . (4)

Then, there is a maximum of the first derivative att = t0,
which also corresponds to an inflection point of the logistic
function (Ï = 0) at whichI = N/2. As for the logistic func-
tion itself, notice that the initial and asymptotic values of the
logistic function (3) are, respectively,

Ii =
N

1 + eβt0
, I∞ = N . (5)

In other words, the saturation value of the infectious people
is the whole of the available population. IfN is a large num-
ber, and for the sameIi, the only change is the position of the
inflection pointt0, which shifts to larger values.

2.2. Time-dependent SI system

Let us now consider the case of a time-dependent infection
rate, that is,β = β(t). Notice that we do not need to change
the nature of the original SI system (1), and then we can use
again Eq. (2) to find a solution to a time-dependent SI system.
It can be readily shown that the solution can be written as a
generalized logistic function [21,23] (see also [24]),

I(t) =
N

1 + eu0−u
, with u(t) =

0∫

t

β(x) dx . (6a)

whereu0 is an integration constant. Notice that Eq. (6a) is
again the sigmoid function but only now in terms of a new
variableu. The initial and asymptotic values of the infected
people are given by

Ii =
N

1 + eu0
, I∞ =

N

1 + eu0−u∞
. (6b)

Here, u∞ = u(t → ∞), which may or may not be a fi-
nite value, and this depends on the chosen functionβ, see
Eq. (6a).

Notice that the second derivative of Eq. (2) for a time-
dependent transmission rate is

Ï = İ

[
β̇

β
+ β (1− 2I/N)

]
. (6c)

Hence, the true inflection poinẗI = 0 does not correspond
to I = N/2 anymore as it was in the time-independent case.
However, it can be shown that the time-independent SI solu-
tion (3) is a particular case of the time-dependent one (6a). In
the caseβ = const., one readily obtains thatu(t) = βt, and
then Eq. (3) is recovered if alsou0 = βt0.

The exact solution (6a) opens up the possibility to con-
sider the evolution of a disease in which the transmission rate
is changing, whether by natural means or by human inter-
vention. This is a more realistic approach, and it has the ad-
vantage that we can continue dealing with the accumulated
numbers reported by the health systems worldwide.

2.3. The largeN limit

In the time-independent SI system, the constant of integra-
tion is fixed by the initial conditions and the total population
number, namelyeβt0 = N/Ii − 1, and then the asymptotic
value of the infectives is the total population, see Eqs. (5).
However, in the time-dependent case, the asymptotic value of
infectives also depends on the asymptotic valueu∞, which
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means that not all the population will get infected, that is,
I∞ < N .

The ratio between the total and the initial number of in-
fectives can be written as

I∞
Ii

=
1 + eu0

1 + Ceu0−u∞
. (7)

Here,u∞ is an independent constant, and then one can ob-
tain the same ratio by adjusting accordingly the values of
u0 andu∞. In this sense, there is a new degeneracy in the
time-dependent system as the total number of infectives is
not uniquely determined by the total population numberN .
Explicitly, the degeneracy reads

eu∞ =
(I∞/Ii)eu0

1 + eu0 − (I∞/Ii)
. (8)

If we keep the ratio(I∞/Ii) fixed, we obtain that

lim
u0→∞

eu∞ =
I∞
Ii

. (9)

The final ratio of infectives, in this limit, can be calculated
directly from the asymptotic value of the variableu. Given
thateu0 = N/Ii − 1, we call this the largeN limit.

Actually, one can do the same exercise in the general ex-
pression of infectives. If we write Eq. (6a) (see also Eq. (6b))
in the form,

I(t) =
1 + eu0

eu + eu0
Iie

u , (10)

we find that for large enough values ofu0, i.e., N → ∞, the
function of infectives can be approximated as

I(t) ' Iie
u = Ii exp




t∫

0

β(x) dx


 . (11a)

The evolution of the disease is simply driven by the trans-
mission rate, and then the asymptotic limit is obtained if the
integral on the rhs of (11a) converges fort → ∞. Actually,
the ratio between the asymptotic and initial values of infec-
tives is

I∞
Ii

' eu∞ = exp



∞∫

0

β(x) dx


 , (11b)

which is in turn the same result as in Eq. (9) above.
The expression (11a) gives a simplified evolution of the

disease. For instance, the first derivative is justİ = βI,
whereas the second derivative isÏ = (β̇ + β2)I, and then
the inflection pointt0 in the evolution curve of infectives is
given by the solution of the equation(β̇ + β2)(t0) = 0.

There is a small warning here about the parametrization
of β. If we assume that the transmission rate is given by
β = β(t, k`), wherek` are in general constant parameters,
one must be aware that their values will depend onN , and
then the values obtained from Eq. (11a) are not the same as
those from Eq. (10). They will, in both cases, deliver the
same values ofIi andI∞, but the evolution profileI(t) will
have some differences in the two cases.

2.4. Time-dependentβ from real data

One important question is whether real data suggest a com-
plex evolution of the Covid-19 disease, for which the simple
time-independent SI system would be insufficient to describe
it. To get an answer directly from the data available, we make
use here of an analytical result that can be derived from the
general case (6a).

First, we write down the following expression to define
the time-dependent functionΓ(t),

Γ(t) ≡ İ

I(1− I/I∞)
=

β(t)
1− eu−u∞

, (12a)

which is valid for any form ofβ and is directly derived from
Eqs. (6); it is also valid for the largeN approximation (11a).
In the time-independent case, for whichI∞ = N , we readily
obtainΓ(t) = β = const. But in the general case, we find at
t = 0 that

Γ(0) =
β(0)

1− e−u∞
. (12b)

Another characteristic value is found at late times, asu →
u∞. In this case, we use the approximation1 − eu−u∞ '
u− u∞, and then from Eq. (6a), we obtain that

lim
t→∞

Γ(t) = − lim
t→∞


 1

β(t)

t∫

∞
β(x)dx



−1

, (12c)

if such limit exists.
Thus, the functionΓ(t) can help us to decide whether to

use the time-independent or the time-dependent SI system,
as the expression (12a) can be easily calculated from data in
countries that already show an asymptotic value of infectives.
In Fig. 1, we show data from Mexico,ii which is one of the
countries that comply with the preceding condition, as seen
on the left panel for the number of positives normalized to
the latest reported value (the first day in the time series is that
of the first registered death). Shown also is the evolution of
reported deaths, which is too normalized to the value of the
latest reported value.

On the right panel of Fig. 1, we see the daily new cases
(with the same mentioned normalization) divided by different
combinations of accumulated numbers. In the plotsP , (D)
refers to confirmed positives (deaths). Notice that the combi-
nations in the plot represent the function (12a), and then data
seems to indicate thatΓ(t) is a decreasing function that ap-
proaches a constant value at late times. In contrast, when we
use the expressioṅI/I, the ratio goes to zero. Our interpre-
tation is that data suggest a time-dependent transmission rate
β, particularly one that decays with time. Although we only
show the case of Mexico, we have found the same trend in
all cases in which data already shows an asymptotic value of
accumulated positives (e.g., Germany, France, and others).
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FIGURE 1. a) Data from Mexico showing the evolution of accumulated confirmed positives and deaths, the time series starts at the date
of the first registered death (from March 22 until October 5). The values in the plot are normalized with their respective last data point.
It can be noticed that both quantities seem to have reached an asymptotic final value. b) The estimated evolution of functionΓ(t), see
Eq. (12a), according to data of new daily cases for both confirmed positives and deaths. Shown are three different combinations of each data
compilation, whereP∞ andD∞ are the last data points in the corresponding time series. The trends of the three cases suggest a decrease
in the transmission rateβ with time. The orange-shaded horizontal region (with vertical range0.05− 0.07) is just shown for reference. See
Sec.2.4. and the text for more details

It is clearly seen thatβ is, in general, a decaying function
as time proceeds, which in our opinion is a manifestation of
governmental intervention to slow the spread of the disease.
Although there is not a unique function, given the profile sug-
gested in Fig. 1, we will consider an exponentially decaying
function as an approximation to the evolution ofβ. That is,
we write it explicitly as

β(t) = k0e
−k1t , (13a)

wherek0, k1 are constant parameters. The corresponding
time variable in Eq. (6a) is

u(t) =
k0

k1

(
1− e−k1t

)
, (13b)

and then for this case, we see thatu∞ = k0/k1.
In limit k1t ¿ 1, we obtain thatu(t) ' k0t, which is the

expected behavior in the time-independent case. Then,k0 de-
termines the initial growth of the epidemics, whereask1 gives
the decay time of the transmission rate, with a half-life time
given byt1/2 = ln 2/k1.

Likewise, the asymptotic value of the infectives isI∞ =
Iie

k0/k1 , see Eqs. (9) and (11b), and then the ratio between
the asymptotic and initial values will depend on the ratio
k0/k1. Here we see the importance ofk1: the smaller its
value, the larger it takes for the epidemics to fade away and
the larger the asymptotic value of total infectives.

As for the time-dependent functionΓ(t) defined in
Eq. (12a), after using Eqs. (13) we find that

Γ(0) =
k0

1− e−k0/k1
, lim

t→∞
Γ(t) = k1 . (14)

Notice that Eq. (14) is also in agreement with the expectation
from data in Fig. 1: there are well definite values ofΓ(t) at
early and late times at late times, where the value at late times

will give us an indication of the decay time of the transmis-
sion rateβ.

We mentioned before that it is impossible to have an
analytical expression for the inflection time of the sigmoid
function (6a) for a generalβ(t). However, one can instead
write an expression for the time at which the infected popu-
lation I(t50) is one-half (50%) of the asymptotic value,i.e.,
I(t50) = I∞/2. After some straightforward algebra using
Eqs. (6), we find in general for the generalized time variable
that

u50 = u0 − ln
(
1 + 2eu0−u∞

)
. (15a)

Hence, from the particular parametrization (13a), we finally
obtain

t50 =
1
k1

ln
(

k0/k1

k0/k1 − u50

)
. (15b)

We will uset50 as a point of reference in the time series of
the different data in our analysis below, similar to the inflec-
tion point of the standard sigmoid function. Another useful
point is that at which the number of infectives is90% of the
asymptotical value,I(t90) = 0.9I∞, as it can be considered
as a reference for the upcoming end of the infection period.
Following the same calculations that led to Eqs. (15), we find

u90 = u0 − ln
[
1/9 + (10/9)eu0−u∞

]
, (16a)

and its corresponding time, again for the particular
parametrization (13a), is

t90 =
1
k1

ln
(

k0/k1

k0/k1 − u90

)
. (16b)

3. Statistical analysis and results

Our main assumption is that the time series of both confirmed
positives and deaths have a common origin from the total
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number of infected peopleI(t). Formally speaking, we are
assuming that

P (t) = rP I(t) , D(t) = rDI(t− tD) , (17)

whererP is the fraction of infected people that are tested and
confirmed as positive, whereasrD is the fraction of infected
people that is confirmed positive and eventually pass away.
Notice that we consider thatD(t) evolves with a time delay
tD for I(t) (and also toP (t)). Such delay is difficult to mea-
sure reliably, and here, we will report the values suggested by
the data itself.

In the following sections, we do the fitting to data using
two different models. The first one, which we call model
A, considers the generalized logistic function (6a) and the
parametrization (13a) of the transmission rate. The second
one, which we dub model B, uses the largeN approxima-
tion represented by Eq. (11a) and the same parametrization
of the transmission rate. As discussed previously in Sec. 2.4,
data seems to discard the time-independent SI system, but for
completeness, we also report its fitting to data in Appendix C.

3.1. Model A and fitting to data

We will consider the following parametrization of the logis-
tic function of the confirmed positive people, in cumulative
numbers,

P (t) = Pi
1 + eu0

1 + eu0−u(t)
, (18a)

Following the discussion at the beginning of this section, we
will also consider the reports of accumulated deaths, which
we assume to follow a similar logistic function as those of
the confirmed positive, except for a different amplitude and
inflection point,

D(t) = Di
1 + eû0

1 + eû0−u(t−tD)
, (18b)

Our model then has seven free parameters:P0, D0, tD, u0,
û0, k0 andk1, and then one does not hope for tight constraints
on them given the scarcity of data about Covid-19 infections
in general. Additionally, one must remember that data is not
generated in a systematic way as in a laboratory experiment,
and there may be many sources of error in the data manage-
ment and processing of new cases.

We will assume that the data provided follows the trend of
the real number of infected people and deaths and that both of
these numbers will eventually reach a saturation value soon
as has happened in past diseases. Moreover, as we do not
know the systematic errors in the processing of the data, we
will assume some level of intrinsic error by using a Poisson
distribution. To ease the fitting of data from different coun-
tries, we normalize the data so that the first point in the time
series is of the order of unity. Given this, we consider flat pri-
ors in the form:0 < Pi < 10, 0 < Di < 10, 0 < tD < 100,
0 < u0, û0 < 30, and0 < k0, k1 < 3.

To fit the data, we will use theemcee code [25], a python
code, to random sample a probability distribution that has

FIGURE 2. Triangle plot of the fitting to data from Mexico (see
also Fig. 1) of the parametersPi, Di, tD, , k0, k1, u0, andû0 of
model A described in Sec. 3.1. In general, all parameters are well
constrained by the combination of accumulated confirmed positives
and deaths. See the text for more details.

been extensively used for a variety of applications. See Ap-
pendix D for a wider explanation of how the likelihood for
this model was prepared (as well as for the others presented
in this work). For the analysis, a set of 100 chains with 30000
steps in each one were run. The results are shown in Fig. 2 for
the free parameters of our model. A common feature of all
the countries we considered, not just the one shown in Fig. 2,
is that the values ofPi, Di, t0, k0, k1, u0, andû0, are all well
constrained by the data, which is consistent with our assump-
tion that both confirmed positives and deaths follow the same
trend of evolution.

We have applied our model to the data of 9 other coun-
tries, which at the moment of writing are the countries with
the highest number in cumulative positives and deaths in
terms of their population size, and the fitting results are sum-
marized in Table I. As said before,P∞ andD∞ are the ex-
pected final numbers for the cumulative positives and deaths
in each case, even for countries that have not yet reached an
asymptotic value.

The delay time between positives and deaths,tD, is for all
cases lower than 20 days, which is consistent with the general
fact that all deaths were first confirmed as positive, and then
tD will represent the delay time between a positive test and
the occurrence of death.

Next are the parameters of the transmission rateβ, where
we note a strong similarity in the values of the different coun-
tries. First, we recall thatβ(0) = k0, and then this parameter
is the value of the transmission rate at the start of the time
series. Likewise, parameterk1 is the decay rate of the trans-
mission rate. The last two columns in Table I show the values

Rev. Mex. Fis.67050706
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TABLE I. Fitted values of parameters in model A, see Eqs. (18), as obtained from the data of different countries. The confidence regions for
the parameters in the case of Mexico are shown in Fig. 2.

Country P∞ D∞ tD k0 k1 (1/days) u0 û0

Mexico 980, 256±17,593
16,645 97, 084±487

484 3.78±1.02
0.98 0.14±0.00

0.00 0.017±0.000
0.000 27.35±12.52

13.50 9.18±0.31
0.30

Peru 1, 075, 559±13,086
12,868 51, 066±537

524 12.00±0.58
0.58 0.10±0.00

0.00 0.015±0.000
0.000 26.19±13.67

14.75 26.19±13.66
14.83

Belgium 77, 073±1,464
3,321 9, 802±23

22 9.82±0.27
8.00 0.30±0.10

0.01 0.046±0.004
0.009 6.47±0.93

0.29 4.78±2.16
0.06

Bolivia 187, 445±7,699
6,992 15, 807±1,547

1,323 0.06±0.42
0.06 0.09±0.01

0.01 0.009±0.001
0.001 7.13±0.24

0.21 8.27±0.38
0.30

Brazil 6, 968, 037±50,851
51,706 166, 676±356

362 0.00±0.01
0.00 0.13±0.00

0.00 0.016±0.000
0.000 28.77±11.12

12.35 8.03±0.03
0.02

Chile 442, 318±7,888
14,407 12, 488±98

87 19.47±4.32
18.54 0.09±0.01

0.00 0.006±0.000
0.000 6.19±0.56

0.13 5.87±1.71
0.37

Ecuador 138, 598±1,108
1,101 10, 568±61

62 0.01±0.07
0.01 0.11±0.00

0.00 0.019±0.000
0.000 8.46±0.39

0.27 26.70±13.17
14.24

United States 6, 559, 124±9,639
9,778 182, 774±141

140 0.00±0.00
0.00 0.19±0.00

0.00 0.022±0.000
0.000 29.97±9.93

10.72 7.88±0.00
0.00

United Kingdom 329, 828±2,345
2,401 41, 328±49

49 10.74±0.12
1.54 0.32±0.02

0.00 0.044±0.001
0.000 25.12±14.74

15.13 6.37±0.52
0.02

TABLE II. Fitted values of extra parameters in the case of model A, for the same countries as in Table I. Shown are the total population
numberN , the half-life timet1/2 of the transmission rateβ, see Eq. (13b), the crossing times of half the asymptotic values of cumulative
positives and deaths,t50 andtD 50, respectively, see Eqs. (15), in number of days after the start of the time series.

Country N t1/2 t50 tD 50

Mexico 199, 748, 406, 667, 825±54,555,581,054,363,484,160
199,748,131,793,760 40.30±0.64

0.60 143.81±1.60
1.52 134.48±0.44

0.45

Peru 454, 369, 877, 704, 612±391,684,701,709,530,300,416
454,369,701,437,638 45.68±0.38

0.37 145.80±1.06
1.04 157.80±0.98

0.96

Belgium 150, 462±61,584
73,199 15.09±3.65

1.19 38.43±1.51
8.32 35.40±0.15

0.15

Bolivia 196, 415±14,886
11,032 81.28±8.64

7.83 138.06±3.24
2.92 181.65±8.53

7.61

Brazil 5, 743, 375, 136, 031, 503±388,424,216,445,922,902,016
5,743,350,307,608,080 44.13±0.17

0.18 157.58±0.60
0.62 124.14±0.20

0.20

Chile 442, 424±7,961
14,470 115.51±8.39

7.65 92.42±1.30
2.89 105.67±0.40

0.38

Ecuador 2, 172, 244±1,031,514
519,254 37.38±0.15

0.15 111.76±0.79
0.79 114.32±0.53

0.54

United States 11, 573, 101, 571, 769, 328±237,514,150,381,025,689,600
11,572,844,606,558,488 31.53±0.03

0.03 115.00±0.13
0.13 81.67±0.07

0.07

United Kingdom 18, 562, 540, 734, 729±47,014,334,860,169,912,320
18,562,537,349,892 15.79±0.14

0.36 53.53±0.53
0.55 46.80±0.09

0.09

of the integration constantsu0 andû0, which are directly re-
lated to the total population numberN .

Other quantities of interest, which are derived from the
basic parameters in Table I, are also shown in Table II. The
first one is the total population numberN , which within
model A is understood to be the total population in suscepti-
ble form for the spreading of the disease. We can see that this
number is less than the total population in the case of coun-
tries that seem to have the epidemics under control, but in
some others, it can be much larger than the whole world pop-
ulation. This only signals the lack of convergence of model
A for the parametersu0 andû0, whose fitted values are close
to the upper limit in their priors.

More meaningful is the half-lifetime of the transmission
rate represented byt1/2, which is directly calculated from pa-
rameterk1. The lowest value corresponds to Belgium, with
the disease decreasing by half every 15.09 days, whereas the
highest corresponds to Chile, for which the disease decreases
by half every 115.51 days. It is interesting to note the rela-
tion betweent1/2 and the measures taken to control the epi-
demics, as the lower values are for countries with the strictest
lockdown measurements.

Almost as meaningful ast1/2 are the values of the half-
crossing timest50 andtD 50, calculated from Eq. (15b). The
lowest values correspond to Belgium, for which the half-
crossing occurred just 38 and 35 days after the report of the
first deaths. The largest values are for Brazil, resulting in 157
and 124 days, respectively.

In the top and middle panels of Fig. 3, we show the com-
parison of data with the estimated evolution curves from our
fitting, where the latter are represented by 500 instances of
the model using a sample of values around those of maximum
likelihood. In general we see a better a very good agreement
with the data, which suggests that Eqs. (18) represent well
the evolution of real data. For reference in the plots, we also
show the times at half-crossing, around which the number of
confirmed positives and deaths were half the asymptotic val-
uesP∞ andD∞, respectively.

Also, in the bottom panel of Fig. 3, we show the time evo-
lution of the transmission rateβ(t) and its comparison with
data, represented here by the new daily cases of both con-
firmed positives and deaths. We see a very good agreement
with the combination of data that, in principle, represents the
transmission rate. Likewise, there is good agreement with the
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FIGURE 3. The resultant evolution curves of accumulated con-
firmed positives a) and deaths b) in the case of Mexico, according
to the values in the triangle plot in Fig. 2. Shown in the figures are
the obtained asymptotic valuesP∞ andD∞, see Eq. (7) and Ta-
ble I, in the top blue-shaded horizontal regions. The vertical blue-
shaded regions mark the time of half-crossing in each case; the
region forI∞/2 is also shown for reference. c) The resultant evo-
lution of the transmission rateβ according to the parametrization
in Eq. (13a) and its comparison with data, see Fig. 1 and Tables I
and II. Shown are also the obtained values of the parametersk0 and
k1 and the corresponding half-life time of the diseaset1/2. The
horizontal red-shaded region represents the obtained value ofk1,
see Eq. (12b). See the text for more details.

FIGURE 4. The derivativesṖ andḊ for positives a) and deaths
b), respectively, obtained from the data of new daily cases and the
analytical expression (2) using the parameters fitted to the data, see
Fig. 2. Even though the new daily cases were not used for the
fitting, we see a consistent agreement with the results. The blue-
shaded vertical regions mark the crossing of half the asymptotic
values in each case as in Fig. 3. See the text for more details.

combination that represents the parameterk1, which in the
plot is represented by the horizontal red-shaded region.

As an extra comparison with data, we show in Fig. 4 the
derivative of both confirmed positives and deaths as obtained
from the fitting to data and using the analytical formula (2)
for each case. It must be recalled that the trend of new cases
was not used for the fitting to data, and then the mentioned
comparison is useful as an extra validation of the fitting, even
if it does not appear to be as good as for the cumulative cases
in Fig. 3. Additionally, the results show that the derivative of
the model can follow the daily evolution of the disease and
not just the global trend.

As the last feature, we show in Fig. 4 the time of half-
crossing with a vertical blue-shaded region, which indicates
that the maximum of new daily cases is reached some days
before and then the presence of such maximum seems to be a
necessary condition for the inflection of the cumulative cases.

3.2. Model B and fitting to data

As explained before, for model B, we will consider the fol-
lowing parametrisation of confirmed positives and deaths, in
cumulative numbers,
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P (t) = Pi eu , D(t) = Di eu(t−tD) , (19)

where the variableu has the same form as in Eq. (13b). For
this parametrization, we obtain directly thatṖ /P = β and
Ḋ/D = βek1tD , and also obtain the same limit results as in
Eqs. (14). Explicitly, the functional form of model B (19) is

F (t) = Fi exp
[
k0

k1

(
1− e−k1t

)]
, (20)

which is no other but the Gompertz function [20,21,26]. In
this way, one can see that there is a direct connection between
the SI model and the Gompertz function, mediated by an ex-
ponentially decaying transmission rate and what we called
the large-N limit.

As said before, for this simplified model, see Sec. 2.3
above, one can find analytical expressions for different quan-
tities of interest, which are actually the same one obtains
from the Gompertz function (20) [21]. The first ones are
the asymptotic values att → ∞, which are given byP∞ =
Pie

k0/k1 andD∞ = Die
k0/k1, for confirmed positives and

deaths, respectively.
Another analytical result is the time for the inflection of

the curve, which we denote byt0 following the nomenclature
of the time-independent SI system. The expression is

t0 =
1
k1

ln
(

k0

k1

)
(+tD) , (21a)

where we have included the time shifttD of the function
D(t). Likewise, the numbers of confirmed positives and
deaths at the inflection time are

P0 = Pie
k0/k1−1 , D0 = Die

k0/k1−1 , (21b)

which is the same functional form for both of them. One can
easily see thatP0 = P∞/e andD0 = D∞/e.

The inflection point also corresponds to a maximum in
the derivative of Eqs. (19), and then we find

Ṗ0 = k1Pie
k0/k1−1 , Ḋ0 = k1Die

k0/k1−1 . (21c)

FIGURE 5. Triangle plot of the fitting to data from Mexico of
the parametersP0, D0, tD, k0, andk1 of model B described in
Sec. 3.2. In general, and similarly to model A in Fig. 2, all param-
eters are well constrained by the combination of cumulative con-
firmed positives and deaths. See the text for more details.

This time the model has five free parameters:Pi, Di, tD,
k0 andk1, and as in model A the last two of them are com-
mon to both confirmed positives and deaths. We will again
assume some level of intrinsic error by using a Poisson distri-
bution and the same normalization of the data so that the first
point is of order of an unity. Given this, we consider flat pri-
ors in the form:0 < Pi < 10, 0 < Di < 10, 0 < tD < 100
and0 < k0, k1 < 3.

We again took theemcee algorithm, see Appendix D,
using 100 chains with 20,000 steps in each one. The results
are shown in Fig. 5 for the free parameters of our model. As
happened before in model A, the values ofP0, D0, t0, k0,
andk1 are well constrained by the data, and their values are
similar and of the same order of magnitude as those of model
A. This is seen from a quick comparison of the common pa-
rameters in Figs. 2 and 5.

TABLE III. Fitted values of parameters in model B, see Eqs. (19), as obtained from the data of different countries. The confidence regions
for the parameters in the case of Mexico are shown in Fig. 5.

Country P∞ D∞ tD k0 k1 (1/days)

Mexico 885, 589±6,084
6,075 96, 848±486

485 0.02±0.10
0.02 0.16±0.00

0.00 0.019±0.000
0.000

Peru 1, 074, 659±13,147
12,693 51, 009±530

526 11.98±0.58
0.58 0.10±0.00

0.00 0.015±0.000
0.000

Belgium 73, 582±1,300
1,264 9, 748±22

21 3.45±0.72
2.39 0.55±0.12

0.03 0.074±0.001
0.001

Bolivia 279, 451±9,928
9,223 16, 866±674

633 15.14±1.13
1.13 0.11±0.00

0.00 0.014±0.000
0.000

Brazil 4, 907, 718±15,697
15,750 169, 413±387

390 0.00±0.00
0.00 0.15±0.00

0.00 0.019±0.000
0.000

Chile 497, 634±56,953
16,172 14, 470±89

1,571 14.83±0.81
14.61 0.20±0.28

0.01 0.025±0.007
0.000

Ecuador 140, 948±830
857 10, 502±58

58 0.05±0.23
0.05 0.11±0.00

0.00 0.019±0.000
0.000

United States 5, 186, 207±5,080
5,084 192, 021±141

142 0.00±0.00
0.00 0.23±0.00

0.00 0.028±0.000
0.000

United Kingdom 312, 737±2,051
2,307 41, 127±50

49 0.95±1.21
0.36 0.66±0.02

0.06 0.060±0.000
0.000
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FIGURE 6. The resultant evolution curves of cumulative confirmed
positives a) and deaths b) for model B in the case of Mexico, ac-
cording to the values in the triangle plot in Fig. 5. Shown in
the figures are the obtained asymptotic valuesP∞ andD∞, see
Eq. (7) and Table IV, in the top blue-shaded horizontal regions in
each plot. The vertical blue-shaded regions mark the time inflec-
tion in each case; the region forP (t0) is also shown for reference.
c) The resultant evolution of the transmission rateβ according to
the parametrization in Eq. (13a) and its comparison with data, see
Fig. 1 and Tables III and IV. Shown are also the obtained values of
the parametersk0 andk1 and the corresponding half-life time of
the diseaset1/2. The horizontal red-shaded region represents the
obtained value ofk1 see Eq. (12b). See the text for more details.

The fitting values of the parameters of model B for the
same countries as in model A, are shown in Table III. Firstly,
we notice again that the asymptotic valuesP∞ andD∞ are
quite similar to those obtained for model A . This indicates

FIGURE 7. The derivativesṖ andḊ for positives a) and deaths
b), respectively, obtained from the data of new daily cases and the
analytical expression of model B, see Eq. (19), with the parame-
ters fitted to the data, see Fig. 5. Even though the new daily cases
were not used for the fitting, we see a consistent agreement with
the results. The blue-shaded vertical regions mark the inflection
time in each case, as in Fig. 6, whereas the blue-shaded horizontal
regions mark the maximum values of each case. See the text for
more details.

that model B, although simpler than model A, is also a good
model to follow the evolution of the cumulative cases. Sec-
ondly, the similarity in the results extends to the other com-
mon parameters between the models, as is the case oftD, k0,
andk1, which again supports the validity of model B to fit
the data under simpler assumptions.

The same happens when one compares the fitting results
of the half-life timet1/2 with those in Table II; they are very
similar to each other for the respective countries. The simi-
larity extends for the case of the inflection timest0 andtD0,
which are lower than the half-crossing times of model A. This
is as expected, given that in model A, the half-crossing should
happen after the inflection of the resultant evolution curve.
As in Table II, we find that the lowest characteristic times
correspond to Belgium, whereas the highest correspond to
Bolivia.

We repeated the comparisons between the data and model
B in the same form as in Fig. 3. The new results are shown
in Fig. 6. As anticipated in Sec. 2.4, model B is also good at
following the trend of the data and the only changes are in
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TABLE IV. Fitted values of extra parameters in the case of model
B, for the same countries as in Table I. Shown are the half-life time
t1/2 of the transmission rateβ, see Eq. (13b), and the inflection
times of cumulative positives and deaths,t0 andtD0, respectively,
see Eqs. (21a).

Country t1/2 t0 tD0

Mexico 36.95±0.19
0.19 115.03±0.35

0.36 115.06±0.35
0.35

Peru 45.63±0.37
0.36 121.59±0.89

0.87 133.56±0.79
0.78

Belgium 9.40±0.09
0.10 27.38±2.40

0.71 30.83±0.12
0.13

Bolivia 50.31±1.08
1.03 147.92±2.54

2.40 163.06±2.73
2.61

Brazil 36.12±0.09
0.09 107.45±0.16

0.17 107.45±0.16
0.16

Chile 28.18±0.22
6.55 86.18±10.85

1.75 100.99±0.38
6.52

Ecuador 37.30±0.16
0.17 93.90±0.44

0.46 93.96±0.42
0.42

United States 25.04±0.02
0.02 76.14±0.05

0.05 76.14±0.05
0.05

United Kingdom 11.59±0.08
0.05 40.24±0.38

1.16 41.19±0.07
0.07

values of the fitted parameters, which also result in changes of
the final quantitiesP∞ andD∞, although the obtained values
are consistent one to each other in their order of magnitude
in the two models.

Finally, in Fig. 7, we show the comparison of the deriva-
tives of model B for both the confirmed positives and deaths
with their corresponding data. We also see a good agree-
ment in both the time profile and the location and height of
the maximum points in the two plots. This time model B is
more easily manageable, and we show the maximum daily
new cases as expected from the theoretical expectations. No-
tice that the time at the location of the maximum is the same
as that of the inflection timet0 in the evolution of the cumu-
lative cases, see Fig. 6.

4. Final comments

We have presented a generalization of the well-known SI sys-
tem to include the possibility of a time-dependent transmis-
sion rate and used a particular exponential-like parametriza-
tion of it to fit and describe the evolution of real data for the
epidemics of Covid-19.

Although the use of time-dependent transmission rates is
not new in the literature of epidemic models, this is the first
time that such an approach have been applied to the SI sys-
tem, for which there exists an analytical form of the general
solution. The latter is the standard logistic function, but now
with a generalized time variable that results from the direct
integration of the transmission rate. These features simplify
the handling of the model and ease its comparison with data.

For the functional form of the time-dependent transmis-
sion rate, we chose a decaying exponential with two free pa-
rameters, the first one for the initial value of the transmission
rate and the second one for its decay rate. In this form, our
generalized model has enough complexity to fit the data re-
liably, whereas at the same time provides meaningful quan-

tities to describe the evolution of cumulative positives and
deaths.

One of those meaningful quantities is the decay rate, and
the related one is the half-life time of the transmission rate. It
was clear from our results that the half-life time is shorter for
countries that have taken the strictest measures of public con-
tainment. Other countries seem to have an almost three times
larger half-life time, which means that it will take longer for
them to tame the epidemics. Even though in medical terms
one may wish to have slow epidemics to avoid saturation of
hospital services, this also means that containment measures
will have to take place for longer too, which may result in a
general public being tired of the governmental intervention.

Our model also suggests an interesting correlation be-
tween the initial value of the transmission rate and its de-
cay rate: countries that experienced faster dissemination at
the beginning are the ones that report a larger decay rate, as
is the case of Belgium and the United Kingdom. Likewise,
countries with a slow initial spreading seem to be the ones
with also a lower decay rate. These last countries were not
hit as badly as others at the start of their epidemics, but all
so far indicates, according to our models, that they will have
some of the highest death tolls in the world.

A surprising result was the connection of the SI system
with the Gompertz function. As explained in the text, such
connection requires some assumptions in between, mainly
that the transmission rate is time-dependent with an expo-
nential form, and that we consider a largely susceptible pop-
ulation. Although the Gompertz function is quite useful for
a plethora of growth phenomena, ours is the first study that
shows a derivation of it from an infectious model.

One final note on the fittings we obtained for the models.
The Bayesian inference is an appropriate method to fit data
if one faces a unique realization of the natural phenomenon
under study, which is the case of the present epidemics of
Covid-19, as the data reported by each country is not at all
the result of repeated experiments under controlled condi-
tions. In this respect, the Bayesian analysis allows us to do
a sampling of values of the free parameters around the point
of maximum likelihood. This does not mean that one finds
the best and only fitting to data, but the best possible fit given
the proposed model. This helps to explain the well-defined
confidence regions in the triangle plots of the fitted parame-
ters, even though the resultant curves may not even look good
by eye when compared to data (see, for instance, model C in
Appendix C).

The numbers reported here are not definitive, and they
may change considerably if the epidemics follow a different
evolution soon. However, we believe that our models may
help characterize the present evolution of the disease and can
be considered to decide about further public measures to han-
dle the epidemics.
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Appendix

A. Parametric form of the SI system

For completeness, we also show here an alternative deriva-
tion of the solution of the SI system in a parametric form.
Considering a change of time-variable by the relationdτ =
(I/N)dt, the solution is

S(τ) = Sie
−βτ , I(τ) = N − S(τ) , (A.1a)

where the explicit relation betweent andτ is

t =

0∫

τ

dτ

1− S(τ)/N
. (A.1b)

The above solution can also be generalized in the case of
a time-dependent transmission rateβ = β(τ), and the only
change is the solution for the susceptibles,

S(τ) = Si exp


−

0∫

τ

β(x)dx


 . (A.2)

The solutions for the number of infectivesI(τ) and the re-
lation between the time variablest andτ is the same as in
Eqs. (A.1).

B. Time-dependent SI model

Here we present an alternative method to solve the time-
dependent SI system (B.1). If we take a general function
ξ(t) = βS/N , then İ = ξI and the number of infected is
given by

I(t) = Ii exp




0∫

t

ξ(x) dx


 , (B.1a)

whereas that of susceptibles, from the direct integration of
the equationṠ = −ξ(t)I(t), is

S(t) = Si + Ii − I(t) . (B.1b)

Equation (B.1b) clearly shows the consistency of the solu-
tion as from it one recovers the constraint equationS + I =
Si + Ii = N .

For the case in whichβ = const., the evolution equa-
tion for the susceptibles becomes a constraint equation for
the functional form ofξ(t), namely,

ξ(t) = β


1− Ii

N
exp




0∫

t

ξ(x) dx





 . (B.2)

The exact solution of Eq. (B.2) exists and can be obtained
from the exact solution of the SI system, see Eq. (2). Hence,
we find from ξ(t) = İ/I, or from a direct substitution in
Eq. (B.2), that

ξ(t) = β
[
1 + eβ(t−t0)

]−1

. (B.3)

Notice thatξ(t → −∞) = −β andξ(t → ∞) = 0, and
in this senseξ(t) can be considered a kind of time-dependent
transmission rate, in which the time dependence is clearly in-
herited from the evolution of the factorS(t)/N . Actually, the
solutions obtained from Eqs. (B.1) are

S(t)
N

=
[
1 + eβ(t−t0)

]−1

,

I(t) =
Ii

(
1 + eβt0

)

1 + e−β(t−t0)
, (B.4)

and then one can also see, after a quick comparison with
Eq. (3), thatN = Ii(1 + eβt0).

The inflection pointt∗ in the evolution of infectives is
found from the condition̈I(t∗) = 0, which explicitly reads

(
ξ̇ + ξ2

)
t∗

= 0 . (B.5)

We can see that a necessary condition to satisfy the preceding
equation isξ̇ < 0, ie, thatξ is a decaying function of time.

Another property of the general solution (B.1a) is thatN ,
the total population number, is a free parameter. This is quite
convenient, as it means that

lim
N→∞

I(t)
N

= 0 , (B.6)

except for the caseβ = const., for which

lim
N→∞

I(t)
N

=
[
1 + eβ(t0−t)

]−1

. (B.7)

The reason behind these results is the mechanism that puts an
end to the epidemics. In the caseβ = const. the epidemics
end because of the exhaustion of the susceptible population,
whereas in any other time-dependent case, it ends because
the transmission rate decays. In the first case, we then need
to know the total population beforehand, whereas in the sec-
ond one that number is irrelevant as long asI(t) < N .

Moreover, we can calculate the equivalent time-
dependent transmission rate as

ξ(t) = β(t)S(t)/N = β(t)(1− I(t)/N) , (B.8)

and thenξ(t) → β(t) in the limit N → ∞. Thus, the solu-
tion of the infected population in the same limit can simply
be written as

I(t) = Ii exp




0∫

t

β(x) dx


 , (B.9)

which is the same functional form as model B in Sec. 3.2; see
also Eq. (11b).
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FIGURE 8. a) Triangle plot of the fitting to data from Mexico of the parametersP0, D0, tP tD, andk0 of model C. All parameters are
well constrained by the combination of accumulated confirmed positives and deaths. The resultant evolution curves of cumulative confirmed
positives b) and deaths c), according to model C with the values of its parameters as shown in the triangle plot. Shown in the figures are the
obtained asymptotic valuesP∞ andD∞ in the top blue-shaded horizontal regions. The vertical blue-shaded regions mark the inflection time
in each case,tP andtD, respectively; the region forP (tP ), andD(tD) are also shown for reference. d) The resultant transmission rateβ
and its comparison with data. The horizontal red-shaded region represents the obtained value ofk0. e) The derivativeṡP andḊ for positives
f) and deaths g), respectively, were obtained from the data of new daily cases and the analytical expression (2) using the parameters fitted in
the triangle plot. The blue-shaded vertical regions mark the inflection time in each case, as in Fig. 8. See the text for more details.

C. Fitting to data with the time-independent SI
system

For completeness, we show in this appendix the fitting to data
using the time-independent logistic function (3). We use the

data from Mexico for easy comparison with the results of
models A and B in the main text. The explicit functions for
cumulative positives and deaths are

P (t) = P0
1 + ek0tP

1 + ek0(tP−t)
,
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D(t) = D0
1 + ek0tD

1 + ek0(tD−t)
. (C.1)

Figure 8 is a compilation of all results related to model
C. The triangle plot (top left panel) shows the confidence re-
gions for the free parameters in the model, namelyP0, D0, t0,
andtD0. All parameters are well constrained, and their confi-
dence regions are well defined too. However, when model C
itself is compared directly with data, in the top right and mid-
dle left panels of Fig. 8, we see that the agreement is not good
enough, as in both cases of cumulative positives and deaths,
the asymptotic values are lower than the value of the last data
point.

Likewise, in comparison with new daily cases, in the mid-
dle right panel of Fig. 8, we see that the fit is not good either,
which confirms again that a constant transmission rate is not
appropriate for the complexity of the data.

Finally, in the bottom panels of Fig. 8, we also compare
the derivative of model C for a direct comparison with new
daily cases. Here we see a clear offset of the predicted max-
imum with respect to that of the data, which leads us to con-
clude, with all results together, that the simple logistic func-
tion (3) is not appropriate to describe the evolution of real
data from the epidemics of Covid-19.

D. Montecarlo Analysis

To fit models A, B, and C, described in Secs.3.1., 3.2. and
Appendix, we used the Affine Invariant Markov chain Monte
Carlo (MCMC) Ensemble sampler code:emcee [25,27], to
explore the parameter space of the aforementioned models
and estimate their values together with their corresponding
uncertainties (for other sampler codes in the cosmology and
astrophysical literature see [28]).

In general, an MCMC algorithm allows to randomly sam-
ple probability distributions. For instance, such distribution
could correspond to a likelihoodL(D|~θ), which is the con-
ditional probability of having the dataD given a model with
a vector of free parameters~θ. Another instance would be
the posterior distributionP (~θ|D), which is the conditional
probability of having a preferred vector of free parameters~θ,
assuming a parametric modelM , given the dataD.

The two preceding distributions are related by Bayes the-
orem through the prior distribution, itself a probability distri-
bution, of the parameters in the modelπ(~θ), and then

P (~θ|D) =
L(D|~θ)π(~θ)

P (D)
, (D.1)

where we have also added the probability of the dataP (D).
All the probability functions have to be normalized to unity as
a function of the parameters in the model,e.g.

∫
π(~θ)dnθ =

1, wheren is the dimension of the parameter space~θ.
In this sense, the also called marginal likelihoodP (D)

is just the normalization factor of the posteriorP (~θ|D):

∫ L(D|~θ)π(~θ)dnθ = P (D). In practice, being the quan-
tity P (D) and overall constant factor, to sample the pos-
terior P (~θ|D) one typically only works with the quantity
L(D|~θ)π(~θ).

Hence, the MCMC algorithm is used to find the maxi-
mum of the posterior, and in turn, the maximum likelihood

estimatorŝ~θ, together with the confidence regions around the
maximum to estimate the uncertainty in the free parameters
in the model. As explained in Ref. [28] foremcee, many
walkersmove through the parameter space with trial moves,
where the latter is calculated on the positions of each of the
other walkers to take into account information about the un-
derlying distribution. The algorithm is then run until the
mean position of the walkers makes only small oscillations
around the mean parameters.

Although one may think that Bayesian statistics, as ex-
plained above, simply leads to the best fitting model (so-
called goodness-of-fit), the inclusion of priors helps to avoid
the danger of overfitting, that is, to avoid having more pa-
rameters than strictly needed to describe the data (for more
details see for instance [29-31] and references therein).

For our purposes, the dataD corresponds to either the
number of confirmed positive cases or the number of deaths,
and modelM is one of those described in each of the men-
tioned sections. Given the nature of the data,i.e. indepen-
dent counts of confirmed cases of Covid-19, we use a Poisson
likelihood distribution, instead of the common and the simple
assumption of a Gaussian one, in the form,

L(D|~θ) =
∏

i

e−λiλdi
i

di!
, (D.2)

where the product is over the number of daysi, or days bins,
in the time series,di is the number of cases observed each
day, andλi = λi(~θ) is the corresponding model prediction.

As part of the procedure, we consider the two samples,
positive and death counts, as independent, which is a sim-
ple approximation as the data sets must necessarily be cor-
related. The only way in which we incorporate such corre-
lation is through the parametertD, the delay time between
positives and deaths. Finally, the total likelihood is simply
the product of the likelihoods for positive and death cases:
L(D|~θ) = L(Positive|~θ) × L(Death|~θ), where~θ is the full
vector of free parameters in the model.

We have assumed flat priors for all the parameters, which
in our case are uninformative enough, and with ranges that
allow us to explore the parameter space. To ease the explo-
ration of the parameter space, the initial point in the MCMC
chains is chosen to correspond with the maximum of the pos-
terior found by a simple maximization routine.

As mentioned before, we usedemcee for the MCMC
sampling, for which the the length of the chain of20, 000
(30, 000 in some cases) steps and 100 independent walkers.
Those numbers were chosen after testing different setups to
ensure convergence and a good sampling of the posterior.

Finally, we checked that the length of the chain was
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longer was than the auto-correlation time. The code was run
using multithreading to allow us to use multiple processors
and increase the calculation speed. AJupyternotebook with
a sample code to run similar analyses as those presented in
this work can be found in [32].
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i. It is possible to define new normalized variables in the form
Ŝ = βS/N andÎ = βI/N , and then Eqs. (1) are simply writ-

ten as ˙̂
S = −ŜÎ and ˙̂

I = ŜÎ. The constraint equation also
becomesŜ + Î = β, and then the transmission rate only ap-
pears for the initial conditions.

ii. All data considered in this work have been taken
from: https://ourworldindata.org/
coronavirus-source-data
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