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A generalization of the Susceptible-Infectious model is made to include a time-dependent transmission rate, which leads to a close analytica
expression in terms of a logistic function. The solution can be applied to any continuous function chosen to describe the evolution of the

transmission rate with time. Taking inspiration from real data of the Covid-19, for the case of cumulative confirmed positives and deaths,

we propose an exponentially decaying transmission rate with two free parameters, one for its initial amplitude and another one for its

decaying rate. The resultant time-dependent SI model, which under extra conditions recovers the standard Gompertz functional form, is
then compared with data from selected countries and its parameters fit using Bayesian inference. We make predictions about the asymptoti
number of confirmed positives and deaths and discuss the possible evolution of the disease in each country in terms of our parametrizatiol
of the transmission rate.
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1. Introduction Given the above considerations, here we study the sim-
plest of compartmental models and use them for the descrip-

. . . tion of the current epidemics in different countries. The
The epidemics of Covid-19 has prompted a lot of researcherﬁ10de| only accounts for two parts of the population: Sus-

from different fields to use their diverse expertise to under-Ceptibles and Infectives, and is known as the SI model. The

stand the nature of the Sars-Cov-2 virus and its Spread'nﬁlfectives in the model are not supposed to recover, and then

worldwide. In particular, out of the medical sciences, the ePiits number is an ever-increasing function of time, which is

demics have revealed a rich ground where physicists, matr\‘/Vhat one sees in the daily reports of cumulative infectives re-

ematicians, and statisticians are eager to apply their I(no"vll'eased by health authorities worldwide. In this respect, the Sl

edge and contribute to its amelioration and containment 6\]hodel seems to be a convenient one to follow the evolution
the local and global stages. of the real data at hand.

From the formal point of view, there has been much re-  However, the original SI model has one free parameter,
search in the so-called epidemic models and their mathemaﬂ']e transmission rate, which is assumed to be a constant pa-
ical properties, see for instance [1,2], being the compartmenzmeter, but this seems to be an oversimplification that is not
tal models the most widely used and studied. In generalin agreement with real data. This has inspired the use of time-
the models consider the classification of a given populatiojependent transmission rates, which expand the capabilities
in some parts: Susceptible (S), Infective (I), Recovered (R)of the compartmental models to encompass hidden complex-
among others, and are then dubbed in terms of which of themjlies of the data compilations. Here we take this point of view
they consider for the dynamics of the disease: SIR, SEIRand consider a time-dependent transmission rate in terms of
etcetera. There is historical evidence that such models akgh exponentia"y decreasing function’ as it was done first in
in good agreement with the dynamics of past epidemics [1]{16], and also in Ref. [17] (see also [18,19] for other exam-
and such past successes have triggered its use in the presgs). Additionally, we also take into account the data series
crisis, see for instance, [3-11]. of cumulative deaths, using simple assumptions without ex-

However, there is an inherent difficulty in studying the tending the SI model, which_is thqught to be at least as reli-
Covid-19 epidemics in real-time: that data collection is notaPle as those of cumulative infectives, and probably a better
perfect and, in most cases, is certainly incomplete and nd€épPresentation of the epidemic’s course [14].
very useful to fully characterize the evolution of the epi- A summary of the paper is as follows. In Sec. 2, we
demics [12,13]. One then must question whether the use giresent the mathematical description of the standard Sl
very complex models is convenient, given the scarcity andnodel, which we call the time-independent version, and give
flaws of the data series. Actually, it seems that simple moda brief account of its main properties. We then explain its
els are sufficient to understand the epidemics [14,15]. generalization to accommodate a time-dependent transmis-
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sion rate and find the analytical solution in terms of a logisticin other words, the saturation value of the infectious people
function for the general case. It is argued that, because a$ the whole of the available population.Nf is a large num-
the time-dependence of the transmission rate, the total pofiper, and for the samg, the only change is the position of the
ulation number can be freely chosen, and there is a simpleimflection pointt,, which shifts to larger values.

approximated solution of the time-dependent S| system in the

limit (_)f alarge popula_ltion number in the form of a _Gompertz 2.2. Time-dependent Sl system

function [20,21]. Using real data, we look for evidence of

a time-dependent transmission rate in terms of its deflnltlorl_et us now consider the case of a time_dependent infection
within the SI system, and then we propose an exponentiakate, that is/3 = (). Notice that we do not need to change
like parametrization of the transmission rate. the nature of the original Sl systef)( and then we can use

In Sec. 3, we use the time-dependent models of Sec. gain Eq.[2) to find a solution to a time-dependent SI system.
and use them to make a fitting of their free parameters tq can be readily shown that the solution can be written as a

data from some chosen countries. The fit is made using thgeneralized logistic function [21,23] (see also [24]),
Bayesian inference, and the results are giving an interpreta-

tion in terms of characteristic quantities and times that are N 0

intrinsic to our parametrized transmission rate. Finally, the [(#)= ———— with wu(t) = /ﬁ(qj) de. (6a)
main conclusions of our study and future perspectives are 1+ ewom /

summarized in Sec. 4.

whereuy is an integration constant. Notice that EGg)(is
again the sigmoid function but only now in terms of a new
variableu. The initial and asymptotic values of the infected

Here we present the main mathematical expressions for tHR€OPIe are given by
time-dependent epidemic model, based on the known com-
N N
partmental model SI. L= ——, o =—.
14 ewo 1 4 evo—uoo

2. Mathematical background

(6b)
2.1. Time-independent Sl Here,us, = u(t — oo), which may or may not be a fi-

The SI model is represented by the following set of equationsr"te value, and this depends on the chosen funcfipsee

Eq. (69).
. I : I Notice that the second derivative of E2@) for a time-
= — E— I = e l v
s ﬁSN’ ﬁSN’ @) dependent transmission rate is
Here,S(I) is the number of susceptible (infectious) people, .
the total population iV = S+ 1, 3 is the infection rateife., i=1I P +8(1—-2I/N)| . (6¢)
the probability per unit time that an individual contracts the B

disease), and a dot means derivative for time.
Because of the conservation equation, the S| system islence, the true inflection poidt = 0 does not correspond
truly one-dimensional and represented by the equation,  to I = N/2 anymore as it was in the time-independent case.
. However, it can be shown that the time-independent Sl solu-
I'=p(1—1I/N)I. (2)  tion (3)is a particular case of the time-dependent @a. (In
the case3 = const., one readily obtains that(t) = 5t, and
then Eq.B) is recovered if alsag = Sto.
The exact solution@g) opens up the possibility to con-
_ N 3) sider the evolution of a disease in which the transmission rate
1+ eBlto—t)’ is changing, whether by natural means or by human inter-
wheret, is an integration constant. vention. This is a more realistic approach, and it has the ad-

From the second derivative of E@)((the first derivative vantage that we can continue dealing with the accumulated
of Eq. ) ' numbers reported by the health systems worldwide.

I=pI(1—-2I/N). (4)
Then, there is a maximum of the first derivativetat ¢,

which also corresponds to an inflection point of the logistic|, the time-independent S| system, the constant of integra-

function (I = 0) at whichl = N/2. As for the logistic func-  jon, is fixed by the initial conditions and the total population
tion itself, notice that the initial and asymptotic values of thenumber, namelySt = N/I;, — 1, and then the asymptotic

If B is a constant parameter, the solution of E2). i the
sigmoid, also known as the logistic function [22],

1

2.3. The largeN limit

logistic function [8) are, respectively, value of the infectives is the total population, see E&§. (
N However, in the time-dependent case, the asymptotic value of
L= fe=N. (5)  infectives also depends on the asymptotic vatug which
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means that not all the population will get infected, that is,2.4. Time-dependen{s from real data
I < N.
The ratio between the total and the initial number of in-One important question is whether real data suggest a com-

fectives can be written as plex evolution of the Covid-19 disease, for which the simple
I 1 4 eto time-independent S| system would be insufficient to describe
T T 11 Cow—ux (7) it. To get an answer directly from the data available, we make

i 2

. ind q dth buse here of an analytical result that can be derived from the
Here, uo, is an independent constant, and then one can ob; oo casébh).

tain the same ratio by adjusting accordingly the values 0]9 First, we write down the following expression to define
ug andus.. In this sense, there is a new degeneracy in thefhe time’-dependent functidit)

time-dependent system as the total number of infectives is '
not uniquely determined by the total population number i 8(t)

Explicitly, the degeneracy reads It) = 0= 1/1) i pEpre—— (12a)
— I/, — U loo

Uoo __ (IOO/Il)euo (8)
© T +evo — (I /1;) " which is valid for any form of3 and is directly derived from
; N g . Egs. ©); it is also valid for the largeV approximation|L1g).
Ifwe keep the ratid /o /1;) fixed, we obtain that In the time-independent case, for whith = N, we readily
lim et — I ' 9) obtainI'(t) = 8 = const. But in the general case, we find at
ug—00 I; t = 0 that
The final ratio of infectives, in this limit, can be calculated T(0) = plO) (12b)
directly from the asymptotic value of the variahle Given 1 —e e

thate* = N/I; —1, we call this the Iargé:\f "T“'t- Another characteristic value is found at late timeg; as
Actually, one can do the same exercise in the general ex-

. . . . . In thi , th imatib UTloo ~
pression of infectives. If we write Ec6é) (see also Eqlah)) Zoi u n alr?dctisei f\:\(l)emu;?] E(a)e @F;pégi(;mr: ar;% c

in the form, Lo oo
I(t) =~ v, (10) . -1
ev + eko ] ) 1
we find that for large enough valuesaf, i.e, N — oo, the Jim T'(2) = — lim. 30 /5($)d$ ;- (120)
function of infectives can be approximated as 0

, / if such limit exists.
I(t) = Lie" = I exp /5(‘”) dz| . (11a) Thus, the functior’(¢) can help us to decide whether to
0 use the time-independent or the time-dependent Sl system,
The evolution of the disease is simply driven by the transas the expressioii2g) can be easily calculated from data in
mission rate, and then the asymptotic limit is obtained if thecountries that already show an asymptotic value of infectives.
integra| on the rhs Of].{_lED converges for — oo. Actua”y' In Flg 1, we show data from MeXid@,WhiCh is one of the
the ratio between the asymptotic and initial values of infec-countries that comply with the preceding condition, as seen

tives is on the left panel for the number of positives normalized to
I, i the latest reported value (the first day in the time series is that
T = "> = exp /5(96) dz| , (11b)  of the first registered death). Shown also is the evolution of
¢ 0 reported deaths, which is too normalized to the value of the
which is in turn the same result as in EB) &bove. latest reported value.
The expressionl(le gives a simplified evolution of the On the right panel of Fig. 1, we see the daily new cases

disease. For instance, the first derivative is jlist 31, (with the same mentioned normalization) divided by different
whereas the second derivativelis= (B + (%)I, and then  combinations of accumulated numbers. In the piBigD)
the inflection pointty in the evolution curve of infectives is refers to confirmed positives (deaths). Notice that the combi-
given by the solution of the equatiojfi + 3%)(to) = 0. nations in the plot represent the functidi2§), and then data
There is a small warning here about the parametrizatioseems to indicate that(¢) is a decreasing function that ap-
of 5. If we assume that the transmission rate is given byproaches a constant value at late times. In contrast, when we
B = B(t, k¢), wherek, are in general constant parameters,use the expressiofy I, the ratio goes to zero. Our interpre-
one must be aware that their values will depend\onand  tation is that data suggest a time-dependent transmission rate
then the values obtained from EA.1§) are not the same as (3, particularly one that decays with time. Although we only
those from Eq.[20). They will, in both cases, deliver the show the case of Mexico, we have found the same trend in
same values of; and I, but the evolution profild (¢) will all cases in which data already shows an asymptotic value of
have some differences in the two cases. accumulated positive® (g, Germany, France, and others).
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Mexico Mexico

L
P.= 761,665 P
D.= 79,088

Mar22 - Oct05

__P
P(1-P/P.)
D

D

D
D(1-DID.)

+— Confirmed positive P/P..
Confirmed dead D/D..

FIGURE 1. a) Data from Mexico showing the evolution of accumulated confirmed positives and deaths, the time series starts at the date
of the first registered death (from March 22 until October 5). The values in the plot are normalized with their respective last data point.
It can be noticed that both quantities seem to have reached an asymptotic final value. b) The estimated evolution of {unctiea

Eq. (129, according to data of new daily cases for both confirmed positives and deaths. Shown are three different combinations of each data
compilation, whereP,, and D, are the last data points in the corresponding time series. The trends of the three cases suggest a decrease
in the transmission raté with time. The orange-shaded horizontal region (with vertical rang®& — 0.07) is just shown for reference. See
Sec/2.4/ and the text for more details

Itis clearly seen thaf is, in general, a decaying function will give us an indication of the decay time of the transmis-
as time proceeds, which in our opinion is a manifestation ofion rateg.
governmental intervention to slow the spread of the disease. We mentioned before that it is impossible to have an
Although there is not a unique function, given the profile sug-analytical expression for the inflection time of the sigmoid
gested in Fig. 1, we will consider an exponentially decayingfunction 6¢) for a general3(¢). However, one can instead
function as an approximation to the evolution®f That is,  write an expression for the time at which the infected popu-

we write it explicitly as lation I(t50) is one-half §0%) of the asymptotic valud,e.,
i I(ts0) = I/2. After some straightforward algebra using
B(t) = koe ™1, (13a)  Egs. ), we find in general for the generalized time variable
that
where kg, k1 are constant parameters. The corresponding uso = ug — In (1 + 2eu0—uoc) _ (15a)

time variable in Eq.&g) is
" Hence, from the particular parametrizatidiB§), we finally

_Ro o -kt obtain
U(t) = kl (1 e ) 3 (13b) 1 < ko/kl )

t50 =—In|{—~>"——
ky ko/k1 — uso
We will usets, as a point of reference in the time series of

expected behavior in the time-independent case. Thette- the diffgrent data in our ana_lysis.below, ;imilar to the inflec-
termines the initial growth of the epidemics, whergagives ~ ion point of the standard sigmoid function. Another useful
the decay time of the transmission rate, with a half-life timeP0int is that at which the number of infectivesois’ of the
given byt 5 = In2/k;. asymptotical value/ (tg0) = 0.91, as it can be considered
Likewise, the asymptotic value of the infectivedlis = as a rgference for the upcoming end of the |nfect|0n_per|od.
I;eko/k1  see Eqs/d) and L1E), and then the ratio between Following the same calculations that led to E4%)( we find

the asymptotic and initial values will depend on the ratio

(15b)

and then for this case, we see that = ko /k1.
Inlimit k1t < 1, we obtain that.(¢) ~ kot, which is the

ko/ki. Here we see the importance bf: the smaller its ugo = ug — In [1/9 + (10/9)e"0 =] , (16a)
value, the larger it takes for the epidemics to fade away and 4 s corresponding time, again for the particular
the larger the asymptotic value of total infectives. parametrization3g), is
As for the time-dependent functioii(¢) defined in o
Eq. (129, after using Eqs/1(3) we find that ; 1 1 < ko/k1 ) (16b)
=—In{+—7F77-—].
k Tk ko/k1 — ugo
r(0) 0 lim T(t) = ki . (14)

T l—e Rk e L .
3. Statistical analysis and results
Notice that Eq.14) is also in agreement with the expectation
from data in Fig. 1: there are well definite valuesldf) at ~ Our main assumption is that the time series of both confirmed

early and late times at late times, where the value at late timgzositives and deaths have a common origin from the total

Rev. Mex. Fis67 050706
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number of infected peopl&(t). Formally speaking, we are e
assuming that

P(t) :TPI(t), D(t):TDI(t—tD>7 (17)

N\

. . . : Y 4 Mexico
wherer p is the fraction of infected people that are tested and ./~

confirmed as positive, whereasg is the fraction of infected
people that is confirmed positive and eventually pass away. * -
Notice that we consider thd®(t) evolves with a time delay

tp for I(t) (and also taP(t)). Such delay is difficult to mea- -/ \

sure reliably, and here, we will report the values suggested by -7/
the data itself. )

In the following sections, we do the fitting to data using
two different models. The first one, which we call model
A, considers the generalized logistic functid®e) and the ;
parametrization134 of the transmission rate. The second | | |
one, which we dub model B, uses the layeapproxima- o]
tion represented by Eqllg and the same parametrization - -
of the transmission rate. As discussed previously in Sec. 2.4, - '
data seems to discard the time-independent S| system, but fo

completeness, we also report its fitting to data in Appendix C. , » ,
FIGURE 2. Triangle plot of the fitting to data from Mexico (see

- Iso Fig. 1) of the parameteR, D;, tp, , ko, k1, uo, anddg of
.1. Model A and fittin a
3 odel A and fitting to data model A described in Sec. 3.1. In general, all parameters are well
We will consider the following parametrization of the logis- constrained by the combination of accumulated confirmed positives
tic function of the confirmed positive people, in cumulative 2"d deaths. See the text for more details.
numbers,

(;
=7,/ \
C_ -4y 4
-

/
v
N\

i

1 4 euo been extensively used for a variety of applications. See Ap-
P(t) =P 1+ evo—u(t) ’ (18a) pendix D for a wider explanation of how the likelihood for
Following the discussion at the beginning of this section, weiS model was prepared (as well as for the others presented
will also consider the reports of accumulated deaths, whicti this work). For the analysis, a set of 100 chains with 30000
we assume to follow a similar logistic function as those ofSteps in each one were run. The results are shown in Fig. 2 for
the confirmed positive, except for a different amplitude andih€ free parameters of our model. A common feature of all

inflection point, f[he countries we considered, not just the orje shown in Fig. 2,
, is that the values oP;, D;, to, ko, k1, ug, andig, are all well

14 etio . S . . i

D(#) =D +e (18b) constrained by the data, which is consistent with our assump

1+ efo—ult—tp)’ tion that both confirmed positives and deaths follow the same

Our model then has seven free parametéts: Dy, tp, uo, trend of evolutlon:

fly, ko andk;, and then one does not hope for tight constraints e have applied our model to the data of 9 other coun-

on them given the scarcity of data about Covid-19 infectiondi€s, which at the moment of writing are the countries with

in general. Additionally, one must remember that data is noth€ highest number in cumulative positives and deaths in

generated in a systematic way as in a laboratory experimen‘l‘?rms of their population size, and the fitting results are sum-

and there may be many sources of error in the data managglarized in Table I. As said beforé’.. and D, are the ex-

ment and processing of new cases. pected final numbers for the c_umulanve positives and deaths
We will assume that the data provided follows the trend ofin €ach case, even for countries that have not yet reached an

the real number of infected people and deaths and that both &8ymptotic value.

these numbers will eventually reach a saturation value soon The delay time between positives and deatpsjs for all

as has happened in past diseases. Moreover, as we do f&ses lower than 20 days, which is consistent with the general

know the systematic errors in the processing of the data, wiact that all deaths were first confirmed as positive, and then

will assume some level of intrinsic error by using a Poissorip Will represent the delay time between a positive test and

distribution. To ease the fitting of data from different coun-the occurrence of death.

tries, we normalize the data so that the first point in the time  Next are the parameters of the transmission fatghere

series is of the order of unity. Given this, we consider flat pri-we note a strong similarity in the values of the different coun-

ors inthe form:0 < P; < 10,0 < D; < 10,0 < tp < 100, tries. First, we recall tha8(0) = ko, and then this parameter

0 < ug, tg < 30, and0 < kg, k1 < 3. is the value of the transmission rate at the start of the time
To fit the data, we will use themcee code [25], a python  series. Likewise, parametér is the decay rate of the trans-

code, to random sample a probability distribution that hasmission rate. The last two columns in Table | show the values

Rev. Mex. Fis67 050706
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TABLE |. Fitted values of parameters in model A, see Egs. (18), as obtained from the data of different countries. The confidence regions for
the parameters in the case of Mexico are shown in Fig. 2.

Country P Do tp ko k1 (1/days) Uug Uo
Mexico 980, 2561 54s 97,084+337 3784592 0144989 0.017+£9999  27.35+1282  9.18+93)
Peru 1,075,559+ 5 06s  51,066:£33]  12.0040:3%  0.10+£3:00  0.01540:005  26.19+£1$57  26.19+1535
Belgium 77,07345 501 9,802433 9.824337  0.30+£5:0)  0.046+5:0%  6.47+5:33 4784238
Bolivia 187,445+0 000 15,807+1555  0.06£382  0.09£0:01  0.009£0:001  7.13+£031 8.27+0:38
Brazil 6,968,037+:150s  166,676+355  0.00+£005  0.13+£305  0.016+£3:000 28.77+1533  8.03+003
Chile 442,318+, 12,488+3% 19474152, 0.0948:0%  0.006+£8:009  6.19+5:35 5.87+5:5%
Ecuador 138,598+ 107 10, 568453 0.01£337 0114383  0.019+33993  8.46+337  26.70+1311

United States 6,559, 12449227 182, 7744155 0.00+£380  0.19+505  0.022+5:000  29.97+37%,  7.88+0:00
United Kingdom 329, 8284337 41,328+33 10.74+922 0324892 0.044+39%  25.12+1474  6.37+952

TABLE Il. Fitted values of extra parameters in the case of model A, for the same countries as in Table I. Shown are the total population
numberN, the half-life timet, ,, of the transmission ratg, see Eq. (13b), the crossing times of half the asymptotic values of cumulative
positives and deaths;o andtp 50, respectively, see Eqgs. (15), in number of days after the start of the time series.

Country N t1)2 50 ID 50
Mexico 199, 748, 406, 667, 8254755735 151 vos ven 0 40.30+5:83 143.8141-59 134.4845-42
Peru 454,369, 877,704, 612432, 580 701 aaran 0 45.68+£9-32 145.80+1-9% 157.80+9:98
Belgium 150, 46253 750 15.09+3-95 38.434453 35.40+0:13
Bolivia 196, 415411555 81.28+5:84 138.06+35-23 181.65+5:23
Brazil 5,743, 375,136,031, 5031003500 57 con g0 ° 44134317 157.5840:53 124.1445:30
Chile 442, 424+7751 115.5148-32 92.4241-39 105.6745-32
Ecuador 2,172, 24445501 37.38+9:12 111.76£979 114.324923
United States 11,573,101, 571,769, 32871 373545 boe 2om des " 31.53+9:93 115.00+£913 81.67+9:97
United Kingdom 18,562, 540, 734, 720111 045 230500 s0s 2320 15.7943-14 53.53+9-28 46.80+359
of the integration constants, andg, which are directly re- Almost as meaningful as ,, are the values of the half-
lated to the total population numbaf. crossing times$so andtp 50, calculated from Eq/15k). The

» . i . lowest values correspond to Belgium, for which the half-
Other quantities of interest, which are derived from thecrossing occurred just 38 and 35 days after the report of the

basic parameters in Table I, are also shown in Table II. Thgist geaths. The largest values are for Brazil, resulting in 157
first one is the total population numbé¥, which within 5,4 124 days, respectively.

model A is understood to be the total population in suscepti-

ble form for the spreading of the disease. We can see that this In the top and middle panels of Fig. 3, we show the com-

number is less than the total population in the case of courparison of data with the estimated evolution curves from our

tries that seem to have the epidemics under control, but ifitting, where the latter are represented by 500 instances of

some others, it can be much larger than the whole world popthe model using a sample of values around those of maximum

ulation. This only signals the lack of convergence of modellikelihood. In general we see a better a very good agreement

A for the parameters, andig, whose fitted values are close with the data, which suggests that EqE8)(represent well

to the upper limit in their priors. the evolution of real data. For reference in the plots, we also
show the times at half-crossing, around which the number of

More meaningful is the half-lifetime of the transmission ¢qnfirmed positives and deaths were half the asymptotic val-
rate represented lty », which is directly calculated from pa- |,og P, andD.., respectively.

rameterk;. The lowest value corresponds to Belgium, with

the disease decreasing by half every 15.09 days, whereas the Also, in the bottom panel of Fig. 3, we show the time evo-
highest corresponds to Chile, for which the disease decreaskgion of the transmission raté(¢) and its comparison with

by half every 115.51 days. It is interesting to note the rela-data, represented here by the new daily cases of both con-
tion betweert, , and the measures taken to control the epi-firmed positives and deaths. We see a very good agreement
demics, as the lower values are for countries with the strictestith the combination of data that, in principle, represents the
lockdown measurements. transmission rate. Likewise, there is good agreement with the
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Mexico

—— New cases/day
5

Mexico

P. = 980,256 *17293(963, 610 — 997, 849)
761,665 (77.70%, Oct05)

‘‘‘‘‘‘‘ to = 143.8 (Aug12/20) =1€, (Aug11/20 - Aug14/20)

P (x 203)

a)+

Date

Mexico

=~ New cases/day

Mexico

D.. = 97,084 +4§}(96,600 — 97,571) + &R
79,088 (81.5%, Oct05)
44444 tpo = 134.5 (Aug03/20) £§4s (Aug03/20 - Aug03/20) P

D(x2)

Deaths (x 2)

FIGURE 4. The derivatives? and D for positives a) and deaths
b), respectively, obtained from the data of new daily cases and the
analytical expressior2f using the parameters fitted to the data, see
Fig. 2. Even though the new daily cases were not used for the

Date

Mexico

ko = 0.14 %999 P _
° o - —pmy = B(0) . . .
=00 B e . fitting, we see a consistent agreement with the results. The blue-
T e = shaded vertical regions mark the crossing of half the asymptotic
D — . . . .
o=omp = Blt) values in each case as in Fig. 3. See the text for more details.
— D =k
D(1-D/D..)

koe™kt

combination that represents the paraméterwhich in the
plot is represented by the horizontal red-shaded region.

As an extra comparison with data, we show in Fig. 4 the
derivative of both confirmed positives and deaths as obtained
from the fitting to data and using the analytical formu@x (
for each case. It must be recalled that the trend of new cases
oy was not used for the fitting to data, and then the mentioned

comparison is useful as an extra validation of the fitting, even
FIGURE 3. The resultant evolution curves of accumulated con- if it does not appear to be as good as for the cumulative cases
firmed positives a) and deaths b) in the case of Mexico, accordingin Fig. 3. Additionally, the results show that the derivative of

to the values in the triangle plot in Fig. 2. Shown in the figures are the model can follow the daily evolution of the disease and
the obtained asymptotic valué3, and D, see Eq.l) and Ta- not just the global trend.

ble I, in the _top blue-shadec_i horizontal regions. 1_'he vertical b!ue- As the last feature, we show in Fig. 4 the time of half-
shaded regions mark the time of half-crossing in each case; the

) : crossing with a vertical blue-shaded region, which indicates
region for/., /2 is also shown for reference. c) The resultant evo- . . .
lution of the transmission rat@ according to the parametrization that the maximum of new daily cases is r(_aached some days
in Eq. (133 and its comparison with data, see Fig. 1 and Tables | P€fore and then the presence of such maximum seems to be a
and 1. Shown are also the obtained values of the paramiegensd necessary condition for the inflection of the cumulative cases.
k1 and the corresponding half-life time of the diseagg. The
horizontal red-shaded region represents the obtained valie, of 3.2, Model B and fitting to data
see Eq.l12L). See the text for more details.

B(t)=

As explained before, for model B, we will consider the fol-
lowing parametrisation of confirmed positives and deaths, in
cumulative numbers,
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8 L. ARTURO URENA-L OPEZ AND ALMA X. GONZALEZ-MORALES

P(t) = Pje*, D(t) = D;e"(ttp) (19)

where the variable has the same form as in EA3L). For
this parametrization, we obtain directly thBy P = (3 and
D/D = Bek1tr | and also obtain the same limit results as in
Egs. @4). Explicitly, the functional form of model B19) is

Mexico

F(t) = F;exp [Z? (1- e_klt)] ) (20)

which is no other but the Gompertz function [20,21,26]. In |
this way, one can see that there is a direct connection betweel -
the SI model and the Gompertz function, mediated by an ex-
ponentially decaying transmission rate and what we called
the largeA limit. )
As said before, for this simplified model, see Sec. 2.3 .
above, one can find analytical expressions for different quan- - -
tities of interest, which are actually the same one obtains
from the Gompertz function2Q) [21]. The first ones are
the asymptotic values at— oo, which are given byP,, =

. o FIGURE 5. Triangle plot of the fitting to data from Mexico of
ko/k1 — ). ko/kl
Pie o/ and Do = Dje °/k1, for confirmed positives and the parameter$, Do, tp, ko, andk; of model B described in

deaths, reSPGCtiVe_W- _ . . _ Sec. 3.2. In general, and similarly to model A in Fig. 2, all param-
Another analytical result is the time for the inflection of eters are well constrained by the combination of cumulative con-
the curve, which we denote Ity following the nomenclature firmed positives and deaths. See the text for more details.

of the time-independent S| system. The expression is This time the model has five free paramete?s: D;, tp,

1 ko ko andk;, and as in model A the last two of them are com-
fo =1~ In (lﬁ) (+tp), mon to both confirmed positives and deaths. We will again

assume some level of intrinsic error by using a Poisson distri-
where we have included the time shif, of the function bution and the same normalization of the data so that the first
D(t). Likewise, the numbers of confirmed positives andpoint is of order of an unity. Given this, we consider flat pri-
deaths at the inflection time are orsinthe form:0 < P, < 10,0 < D; < 10,0 < tp < 100
and0 < ko, k1 < 3.

We again took theemcee algorithm, see Appendix D,
using 100 chains with 20,000 steps in each one. The results
which is the same functional form for both of them. One canare shown in Fig. 5 for the free parameters of our model. As
easily see thaP) = P, /e andDy = D /e. happened before in model A, the valuesRt Dy, to, ko,

The inflection point also corresponds to a maximum inandk; are well constrained by the data, and their values are
the derivative of Eqsi1(9), and then we find similar and of the same order of magnitude as those of model
A. This is seen from a quick comparison of the common pa-
rameters in Figs. 2 and 5.

(21a)

Py = Pelo/ki=1 Dy = D,eko/ki—1 (21b)

PO = klpieko/lﬁfl y Do = leiekO/klil . (21C)

TABLE |ll. Fitted values of parameters in model B, see Egs. (19), as obtained from the data of different countries. The confidence regions
for the parameters in the case of Mexico are shown in Fig. 5.

Country P Do tp ko k1 (1/days)
Mexico 885, 5390 055 96, 848436 0.02+3:89 0.16+3:99 0.019-9-990
Peru 1,074, 659415 50 51,009+259 11.98+9:28 0.10+9:99 0.01543-999
Belgium 73, 5824150 9, 748432 3.454972 0.554032 0.074+5-391
Bolivia 279,45149'523 16, 8664854 15.144113 0.1143:38 0.014+3:5%3
Brazil 4,907, 71812520 169,413+357 0.00+9:98 0.15+9:99 0.01945:%9
Chile 497, 634+55923 14, 47045%, 14.83+98%, 0.20+5:2% 0.025-9-997
Ecuador 140, 9484330 10, 502438 0.05+922 0.11+3:98 0.01945:8%9

United States
United Kingdom

5,186, 2074205
312,737+ 507

192,021+142
41,127439

0.00+3-33
0.95+5:28

0.23+9-89
0.66+9:52

0.028+3:3%
0.06045-5%9
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Mexico Mexico

—— New cases/day
o
& max = 6,111 £3 |

P. = 885,589 & 394(879,514 — 891,673)
761,665 (86.01%, Oct05)
to = 115.0 (Jul15/20) +332 (Jul14/20 - Jul15/20)

Confirmed positive (x 203)
P (x 203)

Date

Mexico

Mexico

D ) ' +— New cases/day
D.. = 96,848 +186(96, 363 — 97, 334) D | max = 668 +1 .
79,088 (81.7%, OCt05)
nnnnn too = 115.1 (Jul15/20) £332 (Jul14/20 - Jul15/20)

Deaths (x 2)

D(x2)

Date
Mexico b) N

ko = 0.16 £383 . g =B(t)
b

ky = 0.019 %3988
tip = 36.953 £3187

FIGURE 7. The derivativesP and D for positives a) and deaths

b), respectively, obtained from the data of new daily cases and the

5 =B analytical expression of model B, see E&9) with the parame-

1 L E— ters fitted to the data, see Fig. 5. Even though the new daily cases

: were not used for the fitting, we see a consistent agreement with
\ the results. The blue-shaded vertical regions mark the inflection

|
’

—ky

P(1-PIP.)

= ket

B(t)

time in each case, as in Fig. 6, whereas the blue-shaded horizontal
regions mark the maximum values of each case. See the text for
more details.

] that model B, although simpler than model A, is also a good
0 il model to follow the evolution of the cumulative cases. Sec-
ondly, the similarity in the results extends to the other com-
FIGURE 6. The resultant evolution curves of cumulative confirmed Mon parameters between the models, as is the cass 6f,
positives a) and deaths b) for model B in the case of Mexico, ac-and k1, which again supports the validity of model B to fit
cording to the values in the triangle plot in Fig. 5. Shown in the data under simpler assumptions.
the figures are the obtained asymptotic valiigs and D, see The same happens when one compares the fitting results
Eq. (7) and Table IV, in the top blue-shaded horizontal regions in of the half-life timet1/2 with those in Table II; they are very
each plot. The vertical blue-shaded regions mark the time inflec-gimij|ar to each other for the respective countries. The simi-
tion in each case; the region fét(to) is also shown for reference. larity extends for the case of the inflection timgsandt po,

c) The resultant _evo_lutlon of the transmission rﬁtac_cord'ng ' \vhich are lower than the half-crossing times of model A. This
the parametrization in Eq18¢) and its comparison with data, see

Fig. 1 and Tables IIl and IV. Shown are also the obtained values of S @S expected, gl\{en th"’?‘ inmodel A, the haIf-crossmg should

the parameterg, andk; and the corresponding half-life time of hap_pen after the Inflectlon of the resultant evolu_tlo_n c_urve.

the disease, ». The horizontal red-shaded region represents theAS in Table II, we find that the lowest characteristic times

obtained value of; see Eq.12). See the text for more details. Corlre.spond to Belgium, whereas the highest correspond to
Bolivia.

The fitting values of the parameters of model B for the  We repeated the comparisons between the data and model
same countries as in model A, are shown in Table Ill. Firstly,B in the same form as in Fig. 3. The new results are shown
we notice again that the asymptotic valués and D, are  in Fig. 6. As anticipated in Sec. 2.4, model B is also good at
quite similar to those obtained for model A . This indicates following the trend of the data and the only changes are in
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10 L. ARTURO URENA-LOPEZ AND ALMA X. GONZALEZ-MORALES

tities to describe the evolution of cumulative positives and

TABLE IV. Fitted values of extra parameters in the case of model deaths.
B, for the same countries as in Table I. Shown are the half-life time

t1 2 of the transmission ratg, see Eq. (13b), and the inflection One of those meaningful quantities is the decay rate, and
times of cumulative positives and deathsandtpo, respectively,  the related one is the half-life time of the transmission rate. It
see Egs. (21a). was clear from our results that the half-life time is shorter for
c countries that have taken the strictest measures of public con-
ountry t1/2 to tpo . . .
- AT oo o tainment. Other countries seem to have an almost three times
Mexico 36.95%019  115.0340356  115.060755 larger half-life time, which means that it will take longer for
Peru 45.63+036  121.59£0%7  133.56%0:78 them to tame the epidemics. Even though in medical terms
Belgium 9.40+59%  27.38+%3%  30.83+912 one may wish to have slow epidemics to avoid saturation of
Bolivia 50.314108  147.92423%  163.064+273 hospital services, this also means that containment measures
Brazil 36124009 107454018 107.4540:16 will have to take placg for longer too, which may result ina
_ 0.92 L0.85 0.38 general public being tired of the governmental intervention.
Chile 2818i655 8618:|:175 10099j:652
Ecuador 37.30+518  93.90+84%  93.96+] 312 Our model also suggests an interesting correlation be-
United States ~ 25.0443:5%2  76.144+592  76.14+3:38 tween the initial value of the transmission rate and its de-
United Kingdom 11.5940:9%  40.244938  41.1940:01 cay rate: countries that experienced faster dissemination at

the beginning are the ones that report a larger decay rate, as
is the case of Belgium and the United Kingdom. Likewise,
values of the fitted parameters, which also result in changes @ountries with a slow initial spreading seem to be the ones
the final quantities’.c and D, although the obtained values with also a lower decay rate. These last countries were not
are consistent one to each other in their order of magnitudgit as badly as others at the start of their epidemics, but all
in the two models. so far indicates, according to our models, that they will have
Finally, in Fig. 7, we show the comparison of the deriva- some of the highest death tolls in the world.
tives of model B for both the confirmed positives and deaths

with their corresponding data. We also see a good agree- A surprising result was the connection of the SI system
ment in both the time profile and the location and height ofwith the Gompertz function. As explained in the text, such
the maximum points in the two plots. This time model B is connection requires some assumptions in between, mainly
more easily manageable, and we show the maximum dailthat the transmission rate is time-dependent with an expo-
new cases as expected from the theoretical expectations. Noential form, and that we consider a largely susceptible pop-
tice that the time at the location of the maximum is the samaulation. Although the Gompertz function is quite useful for
as that of the inflection timg, in the evolution of the cumu- a plethora of growth phenomena, ours is the first study that
lative cases, see Fig. 6. shows a derivation of it from an infectious model.

One final note on the fittings we obtained for the models.
4. Final comments The Bayesian inference is an appropriate method to fit data
if one faces a unique realization of the natural phenomenon
We have presented a generalization of the well-known Sl sy§;nder study, which is the case of the present epidemics of
tem to include the possibility of a time-dependent transmiscgyid-19, as the data reported by each country is not at all
sion rate and used a particular exponential-like parametrizane result of repeated experiments under controlled condi-
tion of it to fit and describe the evolution of real data for thetjgns. In this respect, the Bayesian analysis allows us to do
epidemics of Covid-19. a sampling of values of the free parameters around the point
Although the use of time-dependent transmission rates igf maximum likelihood. This does not mean that one finds
not new in the literature of epidemic models, this is the firstihe pest and only fitting to data, but the best possible fit given
time that such an approach have been applied to the SI syghe proposed model. This helps to explain the well-defined
tem, for which there exists an analytical form of the generakonfidence regions in the triangle plots of the fitted parame-
solution. The latter is the standard logistic function, but nowters even though the resultant curves may not even look good

with a generalized time variable that results from the direcby eye when Compared to data (See’ for instance' model C in
integration of the transmission rate. These features simplifzppendix C).

the handling of the model and ease its comparison with data.

For the functional form of the time-dependent transmis-  The numbers reported here are not definitive, and they
sion rate, we chose a decaying exponential with two free pamay change considerably if the epidemics follow a different
rameters, the first one for the initial value of the transmissiorevolution soon. However, we believe that our models may
rate and the second one for its decay rate. In this form, oulnelp characterize the present evolution of the disease and can
generalized model has enough complexity to fit the data rebe considered to decide about further public measures to han-
liably, whereas at the same time provides meaningful quandle the epidemics.
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Appendix Notice thaté (t — —oo) = —f andé(t — oo) = 0, and
) in this sens& (¢) can be considered a kind of time-dependent
A. Parametric form of the Sl system transmission rate, in which the time dependence is clearly in-

_ _herited from the evolution of the factéi(¢) /N. Actually, the
For completeness, we also show here an alternative derivay| tions obtained from EqB(1) are

tion of the solution of the Sl system in a parametric form.
Considering a change of time-variable by the relation—

S(t -1
(I/N)dt, the solution is % = {1 + eﬁ(t‘t“)}
S(t) =8, P, I(r)=N—S(7), A.la I, (14 eBto
e S iy = L) (8.4)
where the explicit relation betweérandr is t+e
9 dr and then one can also see, after a quick comparison with
- (r)/ The inflection pointt, in the evolution of infectives is

The above solution can also be generalized in the case &pund from the conditior (¢..) = 0, which explicitly reads
a time-dependent transmission rate= 5(7), and the only

change is the solution for the susceptibles, (5 + 52) =0. (B.5)
te
0
S(t) = S;exp |- /ﬁ(m)dm i (A.2) We can see that a necessary condition to satisfy the preceding
J equation i < 0, ie, that¢ is a decaying function of time.

Another property of the general solutidB.Lg) is thatNV,
the total population number, is a free parameter. This is quite
convenient, as it means that

The solutions for the number of infectivdér) and the re-
lation between the time variablésand r is the same as in
Egs. A.1).

e
B. Time-dependent SI model A =0, (B.6)

Here we present an alternative method to solve the timeexcept for the casé = const., for which
dependent Sl systenB(1). If we take a general function

£(t) = BS/N, thenI = ¢I and the number of infected is . I() oety] !
given by Jm =L@ @)
0
I(t) = I exp /ﬁ(w) de| , (B.1a)  The reason behind these results is the mechanism that puts an
} end to the epidemics. In the cas8e= const. the epidemics

whereas that of susceptibles, from the direct integration ofnd because of the exhaustion of the susceptible population,

the equatiorﬁ = —£()I(t),is whereas in any other time-dependent case, it ends because

the transmission rate decays. In the first case, we then need
S(t)=8i+1Li—1(t). (B.1b)  to know the total population beforehand, whereas in the sec-

Equation [B.1k) clearly shows the consistency of the solu- ond one that number is irrelevant as long/é5 < N. _

tion as from it one recovers the constraint equation I = Moreover, we can calculate the equivalent time-

S, +I,=N. dependent transmission rate as

For the case in whicl# = const., the evolution equa-
tion for the susceptibles becomes a constraint equation for &)y =p@)S(t)/N =pt)(1—-1(t)/N), (B.8)

the functional form of(¢), namely,
0 and ther¢(¢) — (¢) in the limit N — oo. Thus, the solu-
€6 =8 |1- Qexp /g(x) d . (B.2) tion of the infected population in the same limit can simply
N be written as
t

The exact solution of EqIB.2) exists and can be obtained 0
from the exact solution of the Sl system, see 2). Hence, I(t) = I exp /ﬂ(w) de| , (B.9)
we find from¢&(t) = I/1, or from a direct substitution in p
Eg. B.2), that
1 which is the same functional form as model B in Sec. 3.2; see
() =4 {1 + eﬁ“’t“)} : (B.3)  also Eq.IL1H).
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P. = 695,010 +2:133(689, 838 — 700, 194)
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FIGURE 8. a) Triangle plot of the fitting to data from Mexico of the parametBss Do, tp tp, andko of model C. All parameters are

well constrained by the combination of accumulated confirmed positives and deaths. The resultant evolution curves of cumulative confirmed
positives b) and deaths c), according to model C with the values of its parameters as shown in the triangle plot. Shown in the figures are the
obtained asymptotic valudi,, and D, in the top blue-shaded horizontal regions. The vertical blue-shaded regions mark the inflection time

in each case,p andtp, respectively; the region faP(¢p), andD(¢p) are also shown for reference. d) The resultant transmissiorrate

and its comparison with data. The horizontal red-shaded region represents the obtainedk@leg Bhe derivatived® and D for positives

f) and deaths g), respectively, were obtained from the data of new daily cases and the analytical ex@)assiog the parameters fitted in

the triangle plot. The blue-shaded vertical regions mark the inflection time in each case, as in Fig. 8. See the text for more details.

C. Fitting to data with the time-independent Sl
system

data from Mexico for easy comparison with the results of
models A and B in the main text. The explicit functions for
cumulative positives and deaths are

1 + ekotp
1 + ek}o(tp*t) ’

For completeness, we show in this appendix the fitting to data

) = o . P(t) = Py
using the time-independent logistic functi@).(\We use the
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[ L(D|#)7()d"9 = P(D). In practice, being the quan-
tity P(D) and overall constant factor, to sample the pos-
g ———————. (C.1) terior P(@\D) one typically only works with the quantity
L4 efolto=) £(D|0)(6).

Figure 8 is a compilation of all results related to model  Hence, the MCMC algorithm is used to find the maxi-
C. The triangle plot (top left panel) shows the confidence remum of the posterior, and in turn, the maximum likelihood
gions for the free parameters in the model, nant&lyDo, to,  estimatord, together with the confidence regions around the
andtpo. All parameters are well constrained, and their confi-maximum to estimate the uncertainty in the free parameters
dence regions are well defined too. However, when model Gh the model. As explained in Ref. [28] f@mcee, many
itself is compared directly with data, in the top right and mid-walkersmove through the parameter space with trial moves,
dle left panels of Fig. 8, we see that the agreement is not goo@here the latter is calculated on the positions of each of the
enough, as in both cases of cumulative positives and deathgther walkers to take into account information about the un-
the asymptotic values are lower than the value of the last dat@erlying distribution. The algorithm is then run until the
point. mean position of the walkers makes only small oscillations

Likewise, in comparison with new daily cases, in the mid-around the mean parameters.
dle right panel of Fig. 8, we see that the fit is not good either,  Although one may think that Bayesian statistics, as ex-
which confirms again that a constant transmission rate is nqjlained above, simply leads to the best fitting model (so-
appropriate for the complexity of the data. called goodness-of-fit), the inclusion of priors helps to avoid

Finally, in the bottom panels of Fig. 8, we also comparethe danger of overfitting, that is, to avoid having more pa-
the derivative of model C for a direct comparison with newrameters than strictly needed to describe the data (for more
daily cases. Here we see a clear offset of the predicted maxtetails see for instance [29-31] and references therein).
imum with respect to that of the data, which leads us to con-  For our purposes, the dafa corresponds to either the
clude, with all results together, that the simple logistic func-number of confirmed positive cases or the number of deaths,
tion (3) is not appropriate to describe the evolution of realand model) is one of those described in each of the men-

1 kotp
D(t) = Dy — ¢

data from the epidemics of Covid-19. tioned sections. Given the nature of the da®, indepen-
dent counts of confirmed cases of Covid-19, we use a Poisson
D. Montecarlo Analysis likelihood distribution, instead of the common and the simple

assumption of a Gaussian one, in the form,
To fit models A, B, and C, described in Se8sl}, [3.2] and Caond,
Appendix, we used the Affine Invariant Markov chain Monte E(D|§) e N :
Carlo (MCMC) Ensemble sampler codemcee [25,27], to d;!
explore the parameter space of the aforementioned models ) )
and estimate their values together with their corresponding/nere the product is over the number of daysr days bins,
uncertainties (for other sampler codes in the cosmology ant the time series; is the number of cases observed each
astrophysical literature see [28]). day, and\; = \;(6) is the correspondmg model prediction.

In general, an MCMC algorithm allows to randomly sam- ~ AS part of the procedure, we consider the two samples,
ple probability distributions. For instance, such distributionPOSitive and death counts, as independent, which is a sim-
could correspond to a likelihood(D|d), which is the con- ple approximation as the daFa sets must necessarily be cor-
ditional probability of having the dat® given a model with ~ related. The only way in which we Incorporate such corre-
a vector of free parametefs Another instance would be lation is through the parametep, the delay time between
the posterior distributiorP (4| D), which is the conditional ~POSitives and deaths. Finally, the total likelihood is simply
probability of having a preferred vector of free parameﬁérs the product of the likelihoods for positive and death cases:

(D.2)

%

assuming a parametric mode, given the dataD. L(D|0) = L(Positive|d) x _[,(Death|9), whered is the full
The two preceding distributions are related by Bayes theVector of free parameters in the model. .
orem through the prior distribution, itself a probability distri- Ve have assumed flat priors for all the parameters, which
bution, of the parameters in the mod@gg‘), and then in our case are uninformative enough, and with ranges that
allow us to explore the parameter space. To ease the explo-
_ L(D|§)w(§) ration of the parameter space, the initial point in the MCMC
P(0|D) = W J (D-1)  chainsis chosen to correspond with the maximum of the pos-
terior found by a simple maximization routine.
where we have also added the probability of the dat®). As mentioned before, we useancee for the MCMC
All the probability functions have to be normalized to unity as sampling, for which the the length of the chain 2if, 000
a function of the parameters in the modely [ 7(6)d"0 = (30,000 in some cases) steps and 100 independent walkers.
1, wheren is the dimension of the parameter spé_lbe Those numbers were chosen after testing different setups to
In this sense, the also called marginal likelihaBdD)  ensure convergence and a good sampling of the posterior.
is just the normalization factor of the posterit(4|D): Finally, we checked that the length of the chain was
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