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We investigate modulation analysis and optical solitons of perturbed nonlineavdiuer equation (PNLSE). The PNLSE has terms of

cubic nonlinearity and self-steepening and spatio-temporal dispersion (STD). Proposed model has been studied by [14, 15] without self-
steepening term. The presence of the STD can help to compensate the low GVD to the model. Bright and dark solitary waves, trigonometric,
periodic and singular optical solitons are obtained by some expansion methods including exponential and sinh-Gordon. Obtained results will
hold a significant place in the field of nonlinear optical fibers, where solitons are used to codify data.
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1. Introduction the self-steepening coefficient.

Section 2 concern the traveling-wave solution to trans-
Research on exact solutions of nonlinear systems has reachgffm the PNLSE into to integrable form of nonlinear ordi-
cruising speed these days. The best known solitons solutiorhcary differential equation. In Secs. 3 and 4, we apply two
have found their applications in several research areas im'“%tegration schemes to look optical solitons and we estab-
ing optical fibers, plasm, biology, and quantum physics, jusfish also the existence criteria of the obtained results. In
to name a few. Thus, optical solitons did not remain anonysec. 5 we discussed the modulation instability of of the ob-
mous for a long time because of their direct implications inggined results. The last part of the paper is devoted to con-
trans-continental and trans-oceanic data transport [1-10]. Wjusion. To determine optical solitons to Eq. (1), we will use

is important to remember that thanks to the advent of 0psinh-Gordon and exp(®(¢))-expansion techniques with the
tical solitons, the field of communication has experiencedyayeling-wave hypothesis.

an expansion through high speed data transfer, and guaran-

teed protection. Thereafter, many theoretical and experiment.1. Traveling waves solution

tal results have been followed with the mathematical tools

to handle them. In this way, exact optical solitons result-It is used the following transformation to (1) to build soliton
ing from the nonlinear Schdinger equations with different solution

nonlinearities have been reported [10-13]. Some of the an-

alytical methods that facilit:fted the[ succe]ss of these results V(z,t) = ¢(§) explif(z,t)], E=x—vt, (2

are expansion methods including modifiegh(—v(¢)) func-  \hereg represents the shape of the soliton and depends on

tion, (G'/G), trial-error, auxiliary equation, rational func- the Kerr non-linearity. However the phagér, ¢) is given by
tion, Riccati-Bernoulli sub-ODE , the sine-Gordon expan-

sion,exp(—¢(&))-expansion, see [2—23]. O(x,t) = —kx + wt + 69, 3)
The present work, aims to unearth exact optical solitons i ) L ,
to PNLSFI)E [14,15]: P Inserting (2) and used (3) into (1) it is obtained the speed of
T the soliton from the imaginary part
Py + a1g + a2tes + aslto* — iB([Y*Y), =0, (1) 9% —
NG ) R @

¥(x,t) is complex wave profilet represents temporal vari- 1—ak

able andz is spatial variable.a; is the STD,as the coef-  with the constrains relation on the self-steepening parame-
ficient of group velocity dispersion (GVD), whiles is the  ters.

cubic nonlinearity which will be combined with the disper-

sion terms in order to build optical solitons. Howevgris f=0. ®)
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Here, we omit the SPM term to preserve the obtained brigh2.  Sinh-Gordon expansion method

and dark optical solitons against deformation of the wave-

form, sensitivity deterioration of the receiver and the trans+ollowing expression is adopted as in [19-21], the detail of
mission limits distance cause by the latter in dispersion opthe method can be obtained in [19]. By principle of balance
tic fibers. Recently, it has been demonstrated numericalljrom (6) betweenpec and¢®, N = 1.

that a waveform distortion is caused by the SPM in nonlinear

Schibdinger equation in the transmission fiber [15, 18]. (&) = dp(w(€)) = Ay

(—w + arkw + azk®)p + Ajp sinhw(€) + By coshw(§), (15)

(2k —w) .
+ <‘12 +ay | dee +a3p’ =0,  (6) andA,, A, andB, are parameters to be determined.

1
1—a1k
To build some special Jacobian elliptic function solution,

_ 92 2
wheregee = 9%¢/0¢”. we used the following expression

Now, multiplying Eq. (6) byy¢ and integrating once gives

(ag@ﬁ—w) + a2> 82 sinh[w(&)] = es (¢ m), (16)
e , coshlw(©)] = ns(&im). )
— (w— a1kw — azK?) ¢* + ?3¢4 =0, (7

) ] ) ] ) m represents modulus of Jacobian functions [19-21].
Then, after separating variables and integrating with zerq, substituting Eq. (15) along with others derivatives into
constant it is obtained Eq. (6) and taking into consideration (16a-16b), it is recov-

ot — / d¢ (8) ered after some computations:
P\/w — arkw — agk? — L2’
13 .
Consequently, e cosh”’(w(¢)):
A
= ——7"—— 9
¢z, 1) cosh[B(x — vt)]’ © 202w
i i 3a3A231 + a333 — i i
in which 1 Yol —ak
_ a3 402k B
A=\ % (10) + 2058y + AL g, (18)
1—a1k
B4 2k —w 11 9
B TS D e cosh(w(©)):
and the corresponding chirp-free bright soliton
A 2 2
)= — = 3a3AoBi + 3asAgA] =0, (19)
@) = SR BE =) SR0TL T TR0
x expli(—kxz + wt + 6p)], (12) o sinh(w(€)) cosh? (w(€)):
Then, the constraint relation from the obtained Eq. (10) and
Eq. (11) implies
g. (11) imp p 202w Ay -
(1—a1k)(26 — w) > 0, (13) s e
and 4a2KkA
+ 3a34, B + 1“1“ L o, (20)
az >0, (14) -k
We note that, in the absence of self-pentification=€ 0), e cosh(w(§)):
the asymmetry in the form of a pulse is also absent, which
implicitly recognizes the formation of shock waves. Here
this absence could also affect the pulse width of the solitons 4a2k By 9 awBic
obtained. However, the presence of GVD and cubic nonlin-  @15wB1 + azBie = — ar Sa3 A1 By — - arr
earity reinforces the search for optical solitons which will be )
at least robust against the formation of shocks. In addition, — wBy — 2a3B; + 201w B, + 3a3A2B,
we also point out that the ODE (7) can be directly integrated, l—ak
but to obtain specific optical solutions, we choose to do so 2a3kBic )
through two integration techniques. +a2r" By =0, (21)

1—a1k
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e sinh(w(§)) cosh(w(§)):

6a3A0A1B1 = 0, (22)

e Constant:

GQKQAO — 3(1314014% + a1kwAg + agAg —wApy =0, (23)
e sinh(w(¢)):

2a3kA1c  alwA; ddwAic 2aikA;

—wAl—agA‘I’—i-al/@wAl—F +3a3A(2JA1—a2A1—|—agAlc+a2f{2A1 =0, (24)

l—a1x  1—a1k 1—a1x 1—a1k

With help ofMaple 14 , we solve Egs. (17-23), and it is recovered the following solution families

e Family 1:

A0:07A1 :O;BlzBla

—k2a3B1% + 2a3B? — casB? — 443K 4 a1k%a3B? — 2a3B%a1k + ajcas Bk

W= 2(2a1k — 1) )
e Family 2:
Ap=0,41 = A;,B; =0,
Y —K2a3A? — a3 A? — cazA? — 4a3K3 + ayk3azA? + azAa K + alca3A%/<;' (26)
2(2a1k - 1)
e Family 3:
Ag=0, A =By, B;=B,
o —2k%a3B? + a3B? — 2cazB? — 2a%k® — a3Biak + 2a1k%a3B? + 2@10&33%%}. 27)
201k — 1
e Family 4:
Ag=0, Ay =-B;, B;=Bi,
Y —2k%a3B? + a3 B} 2caz B} — 2a2k3 — agB?a1k + 2a1k3a3 BE + 2alca3312/£. (28)
21k — 1
2.1. Jacobian elliptic function solutions
From family 1, it is obtained the following Jacobian elliptic function solutions
Y11, t) = Bins(§,m) x exp (i[—rz + wt + 6p)). (29)
From family 2, we recovered
Y1a(z,t) = Ares(€,m) x exp (i[—kz + wt + Og]). (30)
From family 3, it is gained the combined Jacobian elliptic function solutions
Y3(z,t) = By {cs(€,m) 4+ ns(§,m)} exp (i[—kz + wt + 6p)). (31)
Then, from family 4 it is acquired the combined Jacobian elliptic function solutions
Yra(w,t) = By {—cs(&,m) + ns(&,m)}exp (i[—rx + wt + 6p)). (32)
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2.2. Trigonometric and singular solutions

From family 1, whenn — 1,it is obtained

15(x,t) = By coth <x - al(2ﬁ_w)t> exp (i[—rz + wt + 6o)). (33)

1—a1k
Then from family 2, whenn — 1, it is recovered singular optical solutions

16z, t) = Aq csch (z - al(2ﬁw)t> exp (i[—kz + wt + Og]). (34)

1—a1k

To family 3 and 4, the combined optical solutions is obtained, when> 1.

Y17(x, t) = By <csch [x — a1(2/£—w)t] + coth |:.’L‘ — Wt}) exp (i[—kz + wt + Op]). (35)
1—a1k 1—a1k
and
1g(z,t) = By < csch {:17 - (111(2_#;6“:)15} + coth {z - mﬂ) exp (i[—kz + wt + Og]). (36)

2.3. Periodic and singular solutions

Whenm — 0, it is recovered periodic and singular solutions to (1) From family 1, it is obtained

19(z,t) = By csc (m — Wt) exp (i[—rz + wt + 6o)). (37)
—aik
From family 2, we recovered
oo (z,t) = Aj cot <x - Wt) exp (i[—kz + wt + Og]). (38)
— alk
From family 3, it is gained the combined solutions
Yo1(x,t) = By (cot {x — Wt} + csc {a: — Wt}) exp (i[—kz + wt + Og]). (39)
1—a1k 1—a1k
Then, from family 4 it is acquired the combined optical solutions
Yoo (x,t) = By (— cot [a: — a1{2/1—w}t} + csc [m — Wt]) exp (i[—/@x + wt + 00]). (40)
1—a1k 1—a1k
3. exp(—P(¢))-expansion method
Let
N .
G(x,t) =D Ai(exp(—®(€)))’, (41)
=0
in which A, are unknown parameters, whilg¢) satisfies [22, 23] the ODE:
D' (&) = exp(—2(£)) + pexp(®(§)) + A, (42)
Using homogeneous principle of balance betwggnand¢? in (6), it is obtainedV = 1. Hence,
¢($, t) = AO + Al(eXp(*(I)(f))), (43)

Substituting Egs. (41) and (42) into (6) leads to a polynomiatip(—®(¢))). By MAPLEsoftware and letting coefficients of
(exp(—®(€))) to 0:

° Setl:A(]:Ao,Al :Al,li:i,w: 2

ai ay
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e Set 2:

A 2a13k2 — 242K + 2aza1 K — az A =9 2a13K2 — 243k + 2aza1k — as
0 az (2a%K2 — X2 + 4a2p — 4ark +2)’ b as (20262 — a?X? +4a2p — 4a1k +2) )’

2a9k% — a2 + dagp — 2a0Kk3a1 + as a1k — daspa K — 2a%m\2 + 8@%/@'”
w = , K=K.
2a3Kk2 — afA? + da?p — dark + 2

From set 1, it is obtained five families of solutions:
(1.1) If A2 — 4p > 0, andu # 0, it is acquired

2A
L exp (z [—mx—!—t—l—@o]) , (44)
—/—4p+A2 tanh [é\/8u+2)\2 { (x‘mthrfoH —A a“

(1.2) If A2 — 44 < 0, andp # 0, it is obtained

Po11(z, t)=[ Ao+

2411

exp <z |:—IiI + —t+ 90]> , (45)
4y — A% tan [é —8u + 2X2 {‘[.T— Wt]h-i-fo}] - A “

(1.3) If A2 — 4 < 0, andp0 and X # 0, it is gained

o1 2(z,t)= | Ao+

241\
Yo 3(x,t) = | Ao+ :
cosh [A { (x — wrew) t}D + fo}] + sinh [)\ { ([a: - "'11@*;1—:%]) + &JH ~1
. 2
X exp (z {—m: + a—lt + 94) , (46)
(1.4) 1f A2 — 4y = 0, andp # 0 and )\ # 0, it is gained
240X [{ — 4=t} 1 g | 2
o1 a(z,t) = | Ao+ 5 exp (z {m: + —t+ 00}> , (47)
2 [{o - a2=y] 4 g] 42 a
(1.5) If \2 — 44 = 0, andy = 0 and\ = 0, we have
A 2
1/}21,5(.%, t) = AO + . (2ﬁjw) exp <Z |:KZI + —t+ 90:|> y (48)
{33 - ﬁ_ﬁt} +& “

From set 2, it is obtained five general solutions as follows
(2.1) If A2 — 44 > 0, andp # 0, it is acquired

2a13Kk2 — 202K + 2a9a1 K — a9
)=\ L
Var6(@:?) \/a3 (2a2K2 — a?N? + dafp — dark + 2)

2411
—/~4 T 2% tanh [m{{x_ mt%@}] Y

(2.2) If A2 — 44 < 0, andp # 0, it is obtained

+ exp (i [-kx +wt + 6]),  (49)

Rev. Mex. k5.67 040705
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2a1%k2? — 242K + 2aza1k — ag
t)=1 A
Yau7(,t) \/ag (2a3K2 — a2 X2 + 4aiu — 4da1k + 2)

2A1p
40— N2 tan [%M—Su +2)2 { ‘[x - "11(221:)1&})—# go}] —

(2.3) If A2 — 44 < 0, andp0 and\ # 0, it is gained

+

exp (i[—rz + wt + 6p)), (50)

2a13Kk2 — 202K + 2a9a1 K — a9
t)=|A 1
Vers(e, 1) \/ag (2a2K2 — a2 + 4ap — dark + 2)

241

e B ET (DR

(2.4) 1f A2 — 4y = 0, andp # 0 and )\ # 0, it is gained

+

exp (i[fmc + wt + 90]), (51)

2 1(2 )
Vot o 1) /\\/ 2a13K% — 202K + 2aza1K — as n 2417 Ha: - 21: t} + 50}
21,9 = 2 2 2
az [2a7Kk% — afA\? +4dajp —4a1k +2] 9y [{x _ all(Q'Z :)t} + fo] +2
x exp (i[—kz + wt + b)), (52)

(2.5) If A2 — 4y = 0, andy = 0 and\ = 0, we have

2(113/{2 72CL /<;+2a2a1/<;fa2 A1
Ya1,10(2, 1) = A\/ +
as (2a3K2 — a2X? + 4a3p — dayk + 2) — all(EZ:':))t} 1 &
x exp (i[—kz + wt + b)), (53)

Where¢ is a constant of integration.

4. Modulation analysis

This section of the paper will address the modulation analysis of the unstable solutions. It is well established that bright and
dark solitons are stable; thus, it is necessary to verify the regime of the instability of the rest of solutions. On this fact, it will
be used the following solutions of Eq. (1).

) = [VP + Al )| €, o = Pz, (54)
while P, is the incident power. To seek the perturbation, we use Eq. (53) into Eq. (1)
iA(x,t) + a1 Age(x,t) + agAzy + asPoA(z,t) + as Py (A(x,t) + A*(z,t))
— 18Py Ay (x,t) — i Py (Az(x,t) + AL (z,1)) = 0, (55)
Hence, Eg. (54) maybe solved in the frequency domain. To do so, it will be considered fetfmn,a) as:
Az, t) = by - /ET=) L p, . pmilKa=0) (56)
Inserting Eq. (55) into Eq. (54) gives the coefficient matrixpandb,,

N +2a3Py+ a1 KQ—as K? +2068 K B PyK + a3 Py by 0 57)
“BPyK + azPp aKQ—Q—23PK +2a3Py — asK? b ) \o )’

Rev. Mex. k5.67 040705
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The dispersion relation is obtained when a solution of Eq. (56) exists. Spreading out determinant leads to
—A0BP K — dasPyasK? —2a1K*Qas — 362Py2K? — 0% + 3432 Py% + as’K*
+4asPya1 K Q+ a2K?Q? = 0. (58)

Fora?K? # 1, it is appear the modulation instability (MI) ,

( —2a3Pyar K + 28 PoK + a1 K3as

+ G,L?))POQCL%K2—8G3P()2(L1K2ﬁ+ﬁ2P02K2+4ﬂ P0K4a1a2+3 G%K4ﬁ2po2+3 032P02+022K4—4 agpoagKQ) <0, (59)
and the gain spectru(K) = 2Im(2) and it is revealed

1
G(K) =2 <a,2f(2—1> <2&3P0(11K+25P0K+G1K3a2
1

+ \/G%POQCL%K2 —8a3P2a; K203 + B2P3K2 + 4 3 PyK*ajas + 3a3 K432 Py + 3a}P} + a3 K4 — 4a3P0a2K2). (60)

0.3,

[, ()2

+0.15

= 0.1

. b 100
150 150
200 X
FIGURE 1. Spatiotemporal plot evolution 3-D of the chirp-free bright|¢f (,¢)|* of (12) ata; = 1,a3 = 1.14,w = 0.324,x = 0.2,

v = 0.25.
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FIGURE 2. Spatiotemporal plot evolution 2-D of the chirp-free bright|¢f (z, t)|* of (12) ata; = 1,a3 = 1.14,w = 0.324,x = 0.2,
v = 0.25.
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(8=0) . (8 = 0.007)

[—a,=0.005
—2,=0.007
—32,=0.009

QK)
QK)

_az=0.009
— az=0.007
-a,=0 ons

1 L L L -3 L L |
0 50 100 150 200 0 50 100 150 200

a) K [Gain)/m b) K [Gain}/m

FIGURE 3. The modulation instability gain spectrum a) in the absence of self-steepénring and b) with the effect of the self-steepening
£ =0.007 ata; = 1,a3 = 0.007, Py = 100.

Figures 1 and 2 plot the analytical 2D and 3D free-chirp5. Conclusion
bright solutions folly | at ata; = 1,a3 = 1.14,w = 0.324, . ) ) . ) )
% = 0.2,v = 0.25. We note that when the self-steepening is This work  studies r_nodulatlon anaIyS|§ and optical soli-
absent § = 0), it is obtained bright and dark optical soli- tons of PNLSE having STD, perturbation and some non-
tons with normal-GVD without any deformation of wave- linearity terms. We employ the sinh-Gordon technique and
form. However, Kerr nonlinearity, STD and low GVD lead €XPC®(&))-technigue to handle the obtained ordinary differ-
to dark solitons to the proposed model of NLSE. In addition €ntial equation (ODE). Obtained results are bright and dark
the obtained bright solitons depend on the GVD, STD, and?pti_cal sollitons and trigpnometric functions. Comparg our
Kerr nonlinearity parameters. Also, it is observed that thefindings with some previous works [14, 15], some additional
(MI) gain spectrum depends on the STD, Kerr nonlinearity@re obtained by adopting the famous ex@(¢))-expansion
and self-steepening parameters; Figures 3a) and 3b) stre&¢thod. In addition, the STD and the cubic nonlinearity
the (MI) gain spectrum with the effect of self—steepening.terms have contributed to generation og bright and dark soli-
More and more the presence of SPM in the Ml gain instabil{OnS. Thus, in order to verify the instability regime, we used
ity will accentuate the instability zone and the MI gain will the modulation instability (M), to establish the gain spec-
grow exponentially. The formation of soliton due the fight- trum. From there, two areas emerge, where one is stable and
ing between nonlinear and dispersion terms of the nonlineae second unstable. The model will take into account mod-
Schivdinger equation will be impacted during the propaga_ulatlons of self-phase and cross-phase in a future work.
tion in long distance because of the act of SPM and the signal
received will be highly perturbed.
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