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1. Introduction

Research on exact solutions of nonlinear systems has reached
cruising speed these days. The best known solitons solutions
have found their applications in several research areas includ-
ing optical fibers, plasm, biology, and quantum physics, just
to name a few. Thus, optical solitons did not remain anony-
mous for a long time because of their direct implications in
trans-continental and trans-oceanic data transport [1–10]. It
is important to remember that thanks to the advent of op-
tical solitons, the field of communication has experienced
an expansion through high speed data transfer, and guaran-
teed protection. Thereafter, many theoretical and experimen-
tal results have been followed with the mathematical tools
to handle them. In this way, exact optical solitons result-
ing from the nonlinear Schrödinger equations with different
nonlinearities have been reported [10–13]. Some of the an-
alytical methods that facilitated the success of these results
are expansion methods including modifiedexp(−ψ(ξ)) func-
tion, (G′/G), trial-error, auxiliary equation, rational func-
tion, Riccati-Bernoulli sub-ODE , the sine-Gordon expan-
sion,exp(−φ(ξ))-expansion, see [2–23].

The present work, aims to unearth exact optical solitons
to PNLSE [14,15]:

iψt + a1ψxt + a2ψxx + a3|ψ|2ψ − iβ(|ψ|2ψ)x = 0, (1)

ψ(x, t) is complex wave profile,t represents temporal vari-
able andx is spatial variable.a1 is the STD,a2 the coef-
ficient of group velocity dispersion (GVD), whilea3 is the
cubic nonlinearity which will be combined with the disper-
sion terms in order to build optical solitons. However,β is

the self-steepening coefficient.
Section 2 concern the traveling-wave solution to trans-

form the PNLSE into to integrable form of nonlinear ordi-
nary differential equation. In Secs. 3 and 4, we apply two
integration schemes to look optical solitons and we estab-
lish also the existence criteria of the obtained results. In
Sec. 5 we discussed the modulation instability of of the ob-
tained results. The last part of the paper is devoted to con-
clusion. To determine optical solitons to Eq. (1), we will use
sinh-Gordon and exp(−Φ(ξ))-expansion techniques with the
traveling-wave hypothesis.

1.1. Traveling waves solution

It is used the following transformation to (1) to build soliton
solution

ψ(x, t) = φ(ξ) exp[iθ(x, t)], ξ = x− vt, (2)

whereφ represents the shape of the soliton and depends on
the Kerr non-linearity. However the phaseθ(x, t) is given by

θ(x, t) = −κx + ωt + θ0, (3)

Inserting (2) and used (3) into (1) it is obtained the speed of
the soliton from the imaginary part

v =
a1(2κ− ω)

1− a1κ
, 1 6= a1κ. (4)

with the constrains relation on the self-steepening parame-
ters.

β = 0. (5)
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Here, we omit the SPM term to preserve the obtained bright
and dark optical solitons against deformation of the wave-
form, sensitivity deterioration of the receiver and the trans-
mission limits distance cause by the latter in dispersion op-
tic fibers. Recently, it has been demonstrated numerically
that a waveform distortion is caused by the SPM in nonlinear
Schr̈odinger equation in the transmission fiber [15,18].

(−ω + a1κω + a2κ
2)φ

+
(

a2
1

(2κ− ω)
1− a1κ

+ a2

)
φξξ + a3φ

3 = 0, (6)

whereφξξ = ∂2φ/∂ξ2.
Now, multiplying Eq. (6) byφξ and integrating once gives

(
a2
1

(2κ− ω)
1− a1κ

+ a2

)
φ2

ξ

− (
ω − a1κω − a2κ

2
)
φ2 +

a3

2
φ4 = 0, (7)

Then, after separating variables and integrating with zero
constant it is obtained

x− vt =
∫

dφ

φ
√

ω − a1κω − a2κ2 − a3
2 φ2

, (8)

Consequently,

φ(x, t) =
A

cosh[B(x− vt)]
, (9)

in which

A = ±
√

a3

2
, (10)

B = ±a1

√
2κ− ω

1− a1κ
, (11)

and the corresponding chirp-free bright soliton

ψ1(x, t) =
A

cosh[B(x− vt)]

× exp[i(−κx + ωt + θ0)], (12)

Then, the constraint relation from the obtained Eq. (10) and
Eq. (11) implies

(1− a1κ)(2κ− ω) > 0, (13)

and

a3 > 0, (14)

We note that, in the absence of self-pentification (β = 0),
the asymmetry in the form of a pulse is also absent, which
implicitly recognizes the formation of shock waves. Here
this absence could also affect the pulse width of the solitons
obtained. However, the presence of GVD and cubic nonlin-
earity reinforces the search for optical solitons which will be
at least robust against the formation of shocks. In addition,
we also point out that the ODE (7) can be directly integrated,
but to obtain specific optical solutions, we choose to do so
through two integration techniques.

2. Sinh-Gordon expansion method

Following expression is adopted as in [19–21], the detail of
the method can be obtained in [19]. By principle of balance
from (6) betweenφξξ andφ3, N = 1.

φ(ξ) = φ(w(ξ)) = A0

+ A1 sinhw(ξ) + B1 cosh w(ξ), (15)

andA0, A1 andB1 are parameters to be determined.
To build some special Jacobian elliptic function solution,

we used the following expression

sinh[w(ξ)] = cs(ξ; m), (16)

cosh[w(ξ)] = ns(ξ;m), (17)

m represents modulus of Jacobian functions [19–21].
Now, substituting Eq. (15) along with others derivatives into
Eq. (6) and taking into consideration (16a-16b), it is recov-
ered after some computations:

• cosh3(w(ξ)):

3a3A
2
1B1 + a3B

3
1 −

2a2
1ωB1

1− a1κ

+ 2a2B1 +
4a2

1κB1

1− a1κ
= 0, (18)

• cosh2(w(ξ)):

3a3A0B
2
1 + 3a3A0A

2
1 = 0, (19)

• sinh(w(ξ)) cosh2(w(ξ)):

a3A
3
1 −

2a2
1ωA1

1− a1κ
+ 2a2A1

+ 3a3A1B
2
1 +

4a2
1κA1

1− a1κ
= 0, (20)

• cosh(w(ξ)):

a1κωB1 + a2B1c− 4a2
1κB1

1− a1κ
− 3a3A

2
1B1 − a2

1ωB1c

1− a1κ

− ωB1 − 2a2B1 +
2a2

1ωB1

1− a1κ
+ 3a3A

2
0B1

+
2a2

1κB1c

1− a1κ
+ a2κ

2B1 = 0, (21)
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• sinh(w(ξ)) cosh(w(ξ)):

6a3A0A1B1 = 0, (22)

• Constant:

a2κ
2A0 − 3a3A0A

2
1 + a1κωA0 + a3A

3
0 − ωA0 = 0, (23)

• sinh(w(ξ)):

−ωA1−a3A
3
1+a1κωA1+

2a2
1κA1c

1−a1κ
+

a2
1ωA1

1−a1κ
−a2

1ωA1c

1−a1κ
−2a2

1κA1

1−a1κ
+3a3A

2
0A1−a2A1+a2A1c+a2κ

2A1=0, (24)

With help ofMaple 14 , we solve Eqs. (17-23), and it is recovered the following solution families

• Family 1:

A0 = 0, A1 = 0, B1 = B1,

ω = −−κ2a3B1
2 + 2a3B

2
1 − ca3B

2
1 − 4a2

1κ
3 + a1κ

3a3B
2
1 − 2a3B

2
1a1κ + a1ca3B

2
1κ

2(2a1κ− 1)
. (25)

• Family 2:

A0 = 0, A1 = A1, B1 = 0,

ω = −−κ2a3A
2
1 − a3A

2
1 − ca3A

2
1 − 4a2

1κ
3 + a1κ

3a3A
2
1 + a3A

2
1a1κ + a1ca3A

2
1κ

2(2a1κ− 1)
. (26)

• Family 3:

A0 = 0, A1 = B1, B1 = B1,

ω = −−2κ2a3B
2
1 + a3B

2
1 − 2ca3B

2
1 − 2a2

1κ
3 − a3B

2
1a1κ + 2a1κ

3a3B
2
1 + 2a1ca3B

2
1κ

2a1κ− 1
. (27)

• Family 4:

A0 = 0, A1 = −B1, B1 = B1,

ω = −−2 κ2a3B
2
1 + a3B

2
1
−2ca3B

2
1 − 2a2

1κ
3 − a3B

2
1a1κ + 2a1κ

3a3B
2
1 + 2a1ca3B

2
1κ

2a1κ− 1
. (28)

2.1. Jacobian elliptic function solutions

From family 1, it is obtained the following Jacobian elliptic function solutions

ψ11(x, t) = B1ns(ξ,m)× exp
(
i[−κx + ωt + θ0]

)
. (29)

From family 2, we recovered

ψ12(x, t) = A1cs(ξ, m)× exp
(
i[−κx + ωt + θ0]

)
. (30)

From family 3, it is gained the combined Jacobian elliptic function solutions

ψ13(x, t) = B1 {cs(ξ, m) + ns(ξ, m)} exp
(
i[−κx + ωt + θ0]

)
. (31)

Then, from family 4 it is acquired the combined Jacobian elliptic function solutions

ψ14(x, t) = B1 {−cs(ξ, m) + ns(ξ,m)} exp
(
i[−κx + ωt + θ0]

)
. (32)
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2.2. Trigonometric and singular solutions

From family 1, whenm → 1,it is obtained

ψ15(x, t) = B1 coth
(

x− a1(2κ− ω)
1− a1κ

t

)
exp

(
i[−κx + ωt + θ0]

)
. (33)

Then from family 2, whenm → 1, it is recovered singular optical solutions

ψ16(x, t) = A1 csch

(
x− a1(2κ− ω)

1− a1κ
t

)
exp

(
i[−κx + ωt + θ0]

)
. (34)

To family 3 and 4, the combined optical solutions is obtained, whenm → 1.

ψ17(x, t) = B1

(
csch

[
x− a1(2κ− ω)

1− a1κ
t

]
+ coth

[
x− a1(2κ− ω)

1− a1κ
t

])
exp

(
i[−κx + ωt + θ0]

)
. (35)

and

ψ18(x, t) = B1

(
− csch

[
x− a1(2κ− ω)

1− a1κ
t

]
+ coth

[
x− a1(2κ− ω)

1− a1κ
t

])
exp

(
i[−κx + ωt + θ0]

)
. (36)

2.3. Periodic and singular solutions

Whenm → 0, it is recovered periodic and singular solutions to (1) From family 1, it is obtained

ψ19(x, t) = B1 csc
(

x− a1[2κ− ω]
1− a1κ

t

)
exp

(
i[−κx + ωt + θ0]

)
. (37)

From family 2, we recovered

ψ20(x, t) = A1 cot
(

x− a1[2κ− ω]
1− a1κ

t

)
exp

(
i[−κx + ωt + θ0]

)
. (38)

From family 3, it is gained the combined solutions

ψ21(x, t) = B1

(
cot

[
x− a1{2κ− ω}

1− a1κ
t

]
+ csc

[
x− a1{2κ− ω}

1− a1κ
t

])
exp

(
i[−κx + ωt + θ0]

)
. (39)

Then, from family 4 it is acquired the combined optical solutions

ψ22(x, t) = B1

(
− cot

[
x− a1{2κ− ω}

1− a1κ
t

]
+ csc

[
x− a1[2κ− ω]

1− a1κ
t

])
exp

(
i[−κx + ωt + θ0]

)
. (40)

3. exp(−Φ(ξ))-expansion method

Let

φ(x, t) =
N∑

i=0

Ai(exp(−Φ(ξ)))i, (41)

in whichAi are unknown parameters, whileΦ(ξ) satisfies [22,23] the ODE:

Φ′(ξ) = exp(−Φ(ξ)) + µ exp(Φ(ξ)) + λ, (42)

Using homogeneous principle of balance betweenφξξ andφ3 in (6), it is obtainedN = 1. Hence,

φ(x, t) = A0 + A1(exp(−Φ(ξ))), (43)

Substituting Eqs. (41) and (42) into (6) leads to a polynomial in (exp(−Φ(ξ))). By MAPLEsoftware and letting coefficients of
(exp(−Φ(ξ))) to 0:

• Set 1:A0 = A0, A1 = A1, κ = 1
a1

, ω = 2
a1
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• Set 2:

A0 = λ

√
2 a1

3κ2 − 2a2
1κ + 2a2a1κ− a2

a3 (2a2
1κ

2 − a2
1λ

2 + 4a2
1µ− 4a1κ + 2)

, A1 = 2

(√
2a1

3κ2 − 2a2
1κ + 2a2a1κ− a2

a3 (2a2
1κ

2 − a2
1λ

2 + 4a2
1µ− 4a1κ + 2)

)
,

ω =
2a2κ

2 − a2λ
2 + 4a2µ− 2a2κ

3a1 + a2λ
2a1κ− 4a2µa1κ− 2a2

1κλ2 + 8a2
1κµ

2a2
1κ

2 − a2
1λ

2 + 4a2
1µ− 4a1κ + 2

, κ = κ.

From set 1, it is obtained five families of solutions:
(1.1) If λ2 − 4µ > 0, andµ 6= 0, it is acquired

ψ21,1(x, t)= A0+
2A1µ

−
√
−4µ+λ2 tanh

[
1
2

√
−8µ+2λ2

{(
|
∣∣∣x−a1(2κ−ω)

1−a1κ t

)∣∣∣|+ ξ0

}]
− λ

exp
(

i

[
−κx+

2
a1

t+θ0

])
, (44)

(1.2) If λ2 − 4µ < 0, andµ 6= 0, it is obtained

ψ21,2(x, t)=


A0+

2A1µ
√

4µ− λ2 tan
[

1
2

√
−8µ + 2λ2

{(
|
∣∣∣x− a1(2κ−ω)

1−a1κ t

)∣∣∣|+ ξ0

}]
− λ


 exp

(
i

[
−κx +

2
a1

t + θ0

])
, (45)

(1.3) If λ2 − 4µ < 0, andµ0 andλ 6= 0, it is gained

ψ21,3(x, t) =


A0 +

2A1λ

cosh
[
λ

{(
|
∣∣∣x− a1(2κ−ω)

1−a1κ t

)∣∣∣|+ ξ0

}]
+ sinh

[
λ

{(
|
∣∣∣x− a1(2κ−ω)

1−a1κ t

)∣∣∣|+ ξ0

}]
− 1




× exp
(

i

[
−κx +

2
a1

t + θ0

])
, (46)

(1.4) If λ2 − 4µ = 0, andµ 6= 0 andλ 6= 0, it is gained

ψ21,4(x, t) =


A0 +

2A1λ
2
[{

x− a1(2κ−ω)
1−a1κ t

}
+ ξ0

]

−2λ
[{

x− a1(2κ−ω)
1−a1κ t

}
+ ξ0

]
+ 2


 exp

(
i

[
−κx +

2
a1

t + θ0

])
, (47)

(1.5) If λ2 − 4µ = 0, andµ = 0 andλ = 0, we have

ψ21,5(x, t) =


A0 +

A1[
x− a1(2κ−ω)

1−a1κ t
]

+ ξ0


 exp

(
i

[
−κx +

2
a1

t + θ0

])
, (48)

From set 2, it is obtained five general solutions as follows
(2.1) If λ2 − 4µ > 0, andµ 6= 0, it is acquired

ψ21,6(x, t) = λ

√
2 a1

3κ2 − 2a2
1κ + 2a2a1κ− a2

a3 (2a2
1κ

2 − a2
1λ

2 + 4a2
1µ− 4a1κ + 2)

+
2A1µ

−
√
−4µ + λ2 tanh

[
1
2

√
−8µ + 2λ2

{(
|
∣∣∣x− a1(2κ−ω)

1−a1κ t

)∣∣∣|+ ξ0

}]
− λ

exp (i [−κx + ωt + θ0]) , (49)

(2.2) If λ2 − 4µ < 0, andµ 6= 0, it is obtained
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ψ21,7(x, t) = λ

√
2 a1

3κ2 − 2a2
1κ + 2a2a1κ− a2

a3 (2a2
1κ

2 − a2
1λ

2 + 4a2
1µ− 4a1κ + 2)

+
2A1µ

√
4µ− λ2 tan

[
1
2

√
−8µ + 2λ2

{(
|
∣∣∣x− a1(2κ−ω)

1−a1κ t

)∣∣∣|+ ξ0

}]
− λ

exp
(
i[−κx + ωt + θ0]

)
, (50)

(2.3) If λ2 − 4µ < 0, andµ0 andλ 6= 0, it is gained

ψ21,8(x, t) = λ

√
2 a1

3κ2 − 2a2
1κ + 2a2a1κ− a2

a3 (2a2
1κ

2 − a2
1λ

2 + 4a2
1µ− 4a1κ + 2)

+
2A1λ

cosh
[
λ

{(
|
∣∣∣x−a1(2κ−ω)

1−a1κ t

)∣∣∣|+ξ0

}]
+sinh

[
λ

{(
|
∣∣∣x−a1(2κ−ω)

1−a1κ t

)∣∣∣|+ξ0

}]
−1

exp
(
i[−κx + ωt + θ0]

)
, (51)

(2.4) If λ2 − 4µ = 0, andµ 6= 0 andλ 6= 0, it is gained

ψ21,9(x, t) =


λ

√
2 a1

3κ2 − 2a2
1κ + 2a2a1κ− a2

a3 [2a2
1κ

2 − a2
1λ

2 + 4a2
1µ− 4a1κ + 2]

+
2A1λ

2
[{

x− a1(2κ−ω)
1−a1κ t

}
+ ξ0

]

−2λ
[{

x− a1(2κ−ω)
1−a1κ t

}
+ ξ0

]
+ 2




× exp
(
i[−κx + ωt + θ0]

)
, (52)

(2.5) If λ2 − 4µ = 0, andµ = 0 andλ = 0, we have

ψ21,10(x, t) =


λ

√
2 a1

3κ2 − 2a2
1κ + 2a2a1κ− a2

a3 (2a2
1κ

2 − a2
1λ

2 + 4a2
1µ− 4a1κ + 2)

+
A1[

x− a1(2κ−ω)
1−a1κ t

]
+ ξ0




× exp
(
i[−κx + ωt + θ0]

)
, (53)

Whereξ0 is a constant of integration.

4. Modulation analysis

This section of the paper will address the modulation analysis of the unstable solutions. It is well established that bright and
dark solitons are stable; thus, it is necessary to verify the regime of the instability of the rest of solutions. On this fact, it will
be used the following solutions of Eq. (1).

ψ(x, t) =
[√

P0 + A(x, t)
]
eiφNL , φNL = P0x, (54)

while P0 is the incident power. To seek the perturbation, we use Eq. (53) into Eq. (1)

iAt(x, t) + a1Axt(x, t) + a2Axx + a3P0A(x, t) + a3P0 (A(x, t) + A∗(x, t))

− iβP0Ax(x, t)− iβP0 (Ax(x, t) + A∗x(x, t)) = 0, (55)

Hence, Eq. (54) maybe solved in the frequency domain. To do so, it will be considered form ofA(x, t) as:

A(x, t) = b1 · ei(Kx−Ωt) + b2 · e−i(Kx−Ωt). (56)

Inserting Eq. (55) into Eq. (54) gives the coefficient matrix ofb1 andb2,
(

Ω + 2 a3P0 + a1K Ω− a2K 2 + 2 β P0K β P0K + a3P0

−β P0K + a3P0 a1K Ω− Ω− 2 β P0K + 2 a3P0 − a2K 2

)(
b1

b2

)
=

(
0

0

)
. (57)
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The dispersion relation is obtained when a solution of Eq. (56) exists. Spreading out determinant leads to

−4Ωβ P0K − 4 a3P0a2K 2 − 2 a1K 3Ω a2 − 3β2P0
2K 2 − Ω2 + 3 a3

2P0
2 + a2

2K 4

+ 4 a3P0a1K Ω + a1
2K 2Ω2 = 0. (58)

Fora2
1K

2 6= 1, it is appear the modulation instability (MI) ,
(
− 2 a3P0a1K + 2 β P0K + a1K 3a2

+
√

a2
3P

2
0 a2

1K 2−8a3P 2
0 a1K 2β+β2P 2

0 K 2+4β P0K 4a1a2+3 a2
1K 4β2P0

2+3 a3
2P0

2+a2
2K 4−4 a3P0a2K 2

)
<0, (59)

and the gain spectrumG(K) = 2Im(Ω) and it is revealed

G (K) = 2
(

1
a2
1K

2 − 1

)(
− 2 a3P0a1K + 2 β P0K + a1K 3a2

+
√

a2
3P

2
0 a2

1K 2 − 8a3P 2
0 a1K 2β + β2P 2

0 K 2 + 4 β P0K 4a1a2 + 3 a2
1K 4β2P0

2 + 3 a2
3P

2
0 + a2

2K 4 − 4 a3P0a2K 2

)
. (60)

FIGURE 1. Spatiotemporal plot evolution 3-D of the chirp-free bright of|ψ1(x, t)|2 of (12) ata1 = 1, a3 = 1.14, ω = 0.324, κ = 0.2,
v = 0.25.

FIGURE 2. Spatiotemporal plot evolution 2-D of the chirp-free bright of|ψ1(x, t)|2 of (12) ata1 = 1, a3 = 1.14, ω = 0.324, κ = 0.2,
v = 0.25.
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FIGURE 3. The modulation instability gain spectrum a) in the absence of self-steepeningβ = 0 and b) with the effect of the self-steepening
β = 0.007 ata1 = 1, a3 = 0.007, P0 = 100.

Figures 1 and 2 plot the analytical 2D and 3D free-chirp
bright solutions for|ψ1| at ata1 = 1, a3 = 1.14, ω = 0.324,
κ = 0.2, v = 0.25. We note that when the self-steepening is
absent (β = 0), it is obtained bright and dark optical soli-
tons with normal-GVD without any deformation of wave-
form. However, Kerr nonlinearity, STD and low GVD lead
to dark solitons to the proposed model of NLSE. In addition,
the obtained bright solitons depend on the GVD, STD, and
Kerr nonlinearity parameters. Also, it is observed that the
(MI) gain spectrum depends on the STD, Kerr nonlinearity
and self-steepening parameters; Figures 3a) and 3b) stress
the (MI) gain spectrum with the effect of self-steepening.
More and more the presence of SPM in the MI gain instabil-
ity will accentuate the instability zone and the MI gain will
grow exponentially. The formation of soliton due the fight-
ing between nonlinear and dispersion terms of the nonlinear
Schr̈odinger equation will be impacted during the propaga-
tion in long distance because of the act of SPM and the signal
received will be highly perturbed.

5. Conclusion

This work studies modulation analysis and optical soli-
tons of PNLSE having STD, perturbation and some non-
linearity terms. We employ the sinh-Gordon technique and
exp(−Φ(ξ))-technique to handle the obtained ordinary differ-
ential equation (ODE). Obtained results are bright and dark
optical solitons and trigonometric functions. Compare our
findings with some previous works [14, 15], some additional
are obtained by adopting the famous exp(−Φ(ξ))-expansion
method. In addition, the STD and the cubic nonlinearity
terms have contributed to generation og bright and dark soli-
tons. Thus, in order to verify the instability regime, we used
the modulation instability (MI), to establish the gain spec-
trum. From there, two areas emerge, where one is stable and
the second unstable. The model will take into account mod-
ulations of self-phase and cross-phase in a future work.
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