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Recently, nonlinear fractional partial differential equations have been used to model many phenomena in applied sciences and engineering.
In this study, the modified simple equation scheme is implemented to obtain some new traveling wave solutions of the nonlinear conformable
time-fractional approximate long water wave equation and the nonlinear conformable coupled time-fractional Boussinesq-Burger equation,
which are used in the expression of shallow-water waves. The time-fractional derivatives are described in terms of conformable fractional
derivative sense. Consequently, new exact traveling wave solutions of both equations are achieved.
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1. Introduction

Nonlinear problems with fractional-order derivatives are used
in several fields of engineering, and natural sciences such
as mathematical physics, fluid mechanics, nonlinear optics,
signal processing, plasma physics, mathematical biology,
chemical physics [1–3]. In many research in the literature,
mathematical models of real-world problems are expressed
more realistically and effectively with fractional-order dif-
ferential equations. For this reason, many systems and pro-
cesses have intensified studies on creating more realistic
models with fractional-order derivatives instead of integer-
order derivatives. Obtaining the exact or approximate so-
lutions of nonlinear physical problems involving fractional
derivatives is not always possible by using the classical meth-
ods. Therefore, researchers have been doing great efforts
to introduce new powerful and effective methods to solve
these equations. Among which the modified simple equa-
tion (MSE) method [4], the generalized Kudryashov method
[5], the (G′/G)-expansion method [6], the improved F-
expansion method [7], the generalized exponential rational
function method [8], the first integral method [9], the gen-
eralized bifurcation method [10], the modified trial equation
method [11], the extended auxiliary equation method [12],
the conformable double Sumudu transform [13], the con-
formable sub-equation method [14], the new extended direct
algebraic method [15], the generalized(G′/G)-expansion
method [16], the homotopy perturbation method [17] and col-
location methods [18, 19] are just a few to name. In the lit-
erature, there are several types of fractional derivatives. The
most widely used are Riemann-Liouville, Caputo, Grünwald-
Letnikov, and Jumarie’s modified Riemann-Liouville deriva-
tives [2, 20–24]. Unfortunately, all these fractional deriva-
tives do not have some classical properties, like the chain,

product, and quotient rules. Khalilet al. [25] proposed a new
interesting type of fractional derivative called conformable
fractional derivative to overcome these difficulties. Further-
more, Abdeljawad [26] has contributed to the conformable
fractional derivative definition, such as he proposed the def-
initions of right and left conformable fractional derivatives
and chain rule. In this work, we propose the MSE method,
which is an analytical method that has gained notable popu-
larity in recent times. This method’s robustness arises from
the general solution form that is defined by the sum of fi-
nite series and includes the unknown function. In addition,
thanks to this characteristic of the technique, the new and
more general solitary wave solutions are derived by selecting
special values of arbitrary coefficients in the exact solutions.
On the other hand, when comparing the MSE method with
the existing methods in the literature, such as the(G′/G)-
expansion method [6], the modified extended tanh function
method [27], the sine-cosine method [28], the generalized
Kudryashov method and the improved F-expansion method
[7] etc., these methods have more complex solution steps.
The basic idea behind these methods has to do with some
special pre-defined functions or a solution of the auxiliary
equation. These techniques require symbolic computational
software programs to solve the system of algebraic equations.
We observe that the proposed method is highly practical, sys-
tematic, potential, and straightforward. The MSE method has
been used to get exact solutions of various fractional partial
differential equations such as the space-time fractional mod-
ified regularized long-wave equation, the space-time frac-
tional modified Korteweg-de Vries equation, the space-time
fractional coupled Burgers’ equations [29], the nonlinear
time-fractional Sharma-Tasso-Oliver equation [30], the frac-
tional generalized reaction Duffing equation is and the frac-
tional nonlinear Cahn-Allen equation [31]. We apply this ef-
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ficient method to the nonlinear conformable time-fractional
approximate long water wave equation (ALW) [32] and the
nonlinear coupled conformable time-fractional Boussinesq-
Burger equation [33] to obtain analytical solutions of physi-
cal shallow water equations. There are many effective stud-
ies investigating the exact solutions of these equations using
various methods. The generalizedexp (−ϕ (ξ))-expansion
method [34] and the improved Bernoulli sub-equation func-
tion method [35] have been applied to obtain wave solutions
of the the nonlinear time-fractional ALW equation. Also,
the generalized Kudryashov method [32] has been imple-
mented to the nonlinear time-fractional ALW and the non-
linear coupled time-fractional Boussinesq-Burger equations
to attain different solutions schemes. Later, the first inte-
gral method [36], the two-variable(G′/G, 1/G)-expansion
method [37] and the(G′/G)-expansion method [38] have
been performed to find traveling wave solutions of the nonlin-
ear coupled time-fractional Boussinesq-Burger equation. To
the best of our knowledge, the exact solutions we achieved
are new and more general than the previous solutions of these
equations. We obtain eight distinct traveling wave solutions
for each two equations. According to the values of wave
speed and order of fractional derivative, these solutions are
convertible to different wave shapes. Thus, we demonstrate
3-dimensional, 2-dimensional, contour, and density graphs
of wave solutions with proper parameters to explain the com-
plex nonlinear phenomena. This study is constructed as fol-
lows: In Sec. 2, we present the definition of the conformable
fractional derivative and some basic properties. In Sec. 3,
we summarize the steps of the MSE method. In Sec. 4, the
proposed method is implemented to the physical equations.
Section 5 presents the graphs of solutions and physical ex-
planations. Conclusions are outlined in Sec. 6.

2. Preliminaries

In this segment we present the definition and several proper-
ties of the conformable fractional derivative [25,26].

Definition 1. The conformable fractional derivative of a
functionf = f (t) of orderα ∈ (0, 1] is given as

Dα
t f = lim

τ→0

f
(
t + τt1−α

)− f (t)
τ

for each t > 0,

wheref is a real-valued function defined on(0,∞).
Theorem 1. Assumeα ∈ (0, 1] and f = f (t) , h = h (t)
areα-conformable differentiable functions att > 0, then

(i) Dα
t (kf + mh) = kDα

t f+mDα
t h for eachk, m ∈ R,

(ii) Dα
t (tr) = rtr−α for eachr ∈ R,

(iii) Dα
t (fh) = hDα

t f + fDα
t h,

(iv) Dα
t

(
f

h

)
=

hDα
t f − fDα

t h

h2
.

Moreover, if f is a differentiable function, thenDα
t f =

t1−αf ′.

Theorem 2. Supposef = f (t) is a real-valued func-
tion defined on(0,∞) such thatf is differentiable andα-
conformable differentiable. Also, supposeh = h (t) is a dif-
ferentiable function defined in the range off . Then, the chain
rule is obtained as

Dα
t (f ◦ h) (t) = t1−αh (t)α−1

h′ (t)Dα
t (f (t))t=h(t) .

3. The modified simple equation method

This section introduces the fundamental steps of the MSE
method [30]:

Assume the nonlinear time-fractional evolution equation
as follows:

F (u,Dα
t u, ux, uxx, ...) = 0, (1)

whereα ∈ (0, 1] andF is a polynomial ofu (x, t).
Step 1.We perform the wave transformation

u (x, t) = u (ε) , ε = kx± c
tα

α
, (2)

to reduce Eq. (1) into the nonlinear ordinary differential equa-
tion (ODE):

Q (u, u′, u′′, u′′′, ...) = 0, (3)

where Q is a polynomial inu (ε) and its all derivatives,
whereinu′ (ε) = du/dε and so on.

Step 2. We suppose the formal solution of Eq. (3) in the
form

u (ε) =
N∑

k=0

Ak

[
ϕ′ (ε)
ϕ (ε)

]k

, (4)

whereAk are real constants such asAN 6= 0 andϕ (ε) is an
indetermined function to be calculated.

Step 3.We compute the integerN > 0 in Eq. (4) by con-
sulting the homogeneous balance between the highest order
derivatives and the highest order nonlinear terms consisted in
Eq. (3).

Step 4.We replace Eq. (4) and all its essential derivatives
into Eq. (3). As a conclusion of this replacement, we have a
polynomial ofϕ−i (ε) (i = 0, 1, 2, ...). Furthermore, we ar-
range all terms of the same power ofϕ−i (ε) and we equate
all the coefficients to zero. This process ensures a system of
equations that can be solved to calculate bothAk andϕ (ε).

4. Applications

In this part, the MSE method is applied to nonlinear time
fractional systems of physical equations.
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4.1. The nonlinear conformable time-fractional approx-
imate long water wave equation

The ALW equation is a special form of the Whitham-Broer-
Kaup (WBK) equation, so we first take the WBK equa-
tion into account. The equation refers to the dispersion of
shallow-water waves with various distributions. The nonlin-
ear time-fractional WBK equation, which is frequently used
in fluid mechanics, is defined as follows:

Dα
t u + uux + vx + buxx = 0,

Dα
t v + (uv)x + auxxx − bvxx = 0,

(5)

whereint > 0, α ∈ (0, 1], u (x, t) is the velocity at the hor-
izontal,v (x, t) is the height at which the fluid deviates from
the equilibrium,a andb are constants at different diffusions.
In addition, ifα = 1 in Eq. (5), the system becomes the orig-
inal integer-order WBK equation. Also, when it takes the
valuesa = 1 andb = 0, it converts to the fractional mod-
ified Boussinesq equation [39–41]. In conclusion, when we
give the valuesa = 0 andb = 1/2 at Eq. (5), the equation
turns into the nonlinear time-fractional ALW equation as fol-
lows [32]:

Dα
t u + uux + vx +

1
2
uxx = 0,

Dα
t v + (uv)x −

1
2
vxx = 0,

(6)

whereα ∈ (0, 1], x represents the position of the wave andt
represents the timet > 0. Using the wave transformationε =
x− c(tα/α) for k = 1, equalityv = cu− (1/2)u2− (1/2)u′

and integrating with respect toε, Eq. (6) may be reduced to
integer order nonlinear ODE:

− 1
4
u′′ +

1
2
u3 + c2u− 3

2
cu2 = 0. (7)

Additionally, we obtainN = 1 from balancing principle in
Eq. (7). Therefore, Eq. (4) turns into the following form:

u (ε) = A0 + A1
ϕ′ (ε)
ϕ (ε)

. (8)

Substituting Eq. (8) and its derivatives into Eq. (7) then edit-
ing each terms with the same power ofϕ−i (ε), we get a sys-
tem as follows:

(ϕ)0 :
1
2
A3

0 + c2A0 − 3
2
cA2

0 = 0, (9)

(ϕ)−1 : −1
4
A1ϕ

′′′ (ε) +
3
2
A2

0A1ϕ
′ (ε)

+ c2A1ϕ
′ (ε)− 3cA0A1ϕ

′ (ε) = 0, (10)

(ϕ)−2 :
3
4
A1ϕ

′ (ε)ϕ′′ (ε)

+
3
2
A0A

2
1 (ϕ′ (ε))2 − 3

2
cA2

1 (ϕ′ (ε))2 = 0, (11)

(ϕ)−3 : −1
2
A1 (ϕ′ (ε))3 +

1
2
A3

1 (ϕ′ (ε))3 = 0. (12)

We deduce thatA0 = 0, A0 = c, A0 = 2c andA1 = ±1
from Eq. (9) and Eq. (12).

Case 1: IfA0 = c, there is a trivial solution. So, this case
is discarded.

Case 2: IfA0 = 0 andA1 = ±1. Solving Eq. (10) and
Eq. (11), we obtainϕ′ (ε) = ±(e±2cεc1/2c) andϕ (ε) =
(c1/4c2)e±2cε + c2. Here and in the sequel,c1 andc2 are
arbitrary constants of integration. Now, substitutingϕ (ε),
ϕ′ (ε) into Eq. (8), we get the exact wave solutions:

u (ε) =
2ce±2cεc1

c1e±2cε + 4c2c2
. (13)

So, we use hyperbolic function properties, and we attain wave
solutions whenc1 = 1, c2 = 1/4c2;

u1,2 (x, t) = c

(
1± tanh

[
c

{
x− c

tα

α

}])
, (14)

and whenc1 = 1, c2 = −1/4c2;

u3,4 (x, t) = c

(
1± coth

[
c

{
x− c

tα

α

}])
. (15)

Case 3: IfA0 = 2c andA1 = ±1. Using Eq. (10) and
Eq. (11), we obtainϕ′ (ε) = ±(e±2cεc1/2c) andϕ (ε) =
(c1/4c2)e±2cε + c2. We substitute,ϕ (ε), ϕ′ (ε) in Eq. (8)
and we attain the exact wave solutions:

u (ε) = 2c− c
2ce±2cεc1

c1e±2cε + 4c2c2
. (16)

So, we use hyperbolic function properties and we obtain the
solitary wave solutions whenc1 = c, c2 = 1/4c2;

u5,6 (x, t) = 2c− c

(
1∓ tanh

[
c

{
x− c

tα

α

}])
, (17)

and whenc1 = c, c2 = −(1/4c2);

u7,8 (x, t) = 2c− c

(
1∓ coth

[
c

{
x− c

tα

α

}])
. (18)

4.2. The nonlinear conformable coupled time-fractional
Boussinesq-Burger equation

The nonlinear coupled time-fractional Boussinesq-Burger
equation is used in several fields of science such as mathemat-
ical physics and fluid mechanics in the investigation of fluid
flow in physical systems. This system refers to the expansion
of shallow-water waves. Furthermore, this equation regulates
partial differential equations to identify the flow under a com-
pression surface in a fluid, the movement of water bodies, and
the motion is vertically well-mixed water bodies. Investigat-
ing the solutions of the equation is very significant for civil
and coastal engineers to enforce the nonlinear water wave
equations to side designs and port construction [42, 43]. The
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nonlinear coupled time-fractional Boussinesq-Burger equa-
tion is defined as in the following [33]:

Dα
t u− 1

2
vx + 2uux = 0,

Dα
t v − 1

2
uxxx + 2 (uv)x = 0,

(19)

wheret > 0, α ∈ (0, 1], v (x, t) is the height of the water sur-
face above a horizontal level at the bottom andu (x, t) is the
horizontal velocity field. Then, using the wave transforma-
tion ε = x−c(tα/α) for k = 1, the relationv = 2

(
u2 − cu

)
and integrating forε, Eq. (19) may be reduced to integer or-
der nonlinear ODE:

− 1
2
u
′′

+ 4u3 + 2c2u− 6cu2 = 0. (20)

Moreover, we acquireN = 1 from balancing principle in
Eq. (20). For this reason, Eq. (4) turns into the following
form:

u(ε) = A0 + A1
ϕ′ (ε)
ϕ (ε)

. (21)

Inserting Eq. (21) and its derivatives into Eq. (20) and com-
piling each terms with the same power ofϕ−i (ε), we have a
system as follows:

(ϕ)0 : 4A3
0 + 2c2A0 − 6cA2

0 = 0, (22)

(ϕ)−1 : −1
2
A1ϕ

′′′(ε) + 12A2
0A1ϕ

′(ε)

+ 2c2A1ϕ
′(ε)− 12cA0A1ϕ

′(ε) = 0, (23)

(ϕ)−2 :
3
2
A1ϕ

′(ε)ϕ′′(ε) + 12A0A
2
1(ϕ

′(ε))2

− 6cA2
1(ϕ

′(ε))2 = 0, (24)

(ϕ)−3 : −A1(ϕ′(ε))3 + 4A3
1(ϕ

′(ε))3 = 0. (25)

We conclude thatA0 = 0, A0 = c, A0 = c/2 andA1 =
±1/2 from Eq. (22) and Eq. (25).

Case 1: IfA0 = c/2, there is a trivial solution. Thus, this
case is rejected.

Case 2: IfA0 = 0 andA1 = ±1/2. Using Eq. (23) and
Eq. (24), we achieveϕ′ (ε) = ±(e±2cεc1/2c) andϕ (ε) =
(c1e

±2cε/4c2) + c2. Substitutingϕ(ε), ϕ′(ε) into Eq. (21),
we have the exact wave solutions:

u (ε) =
c1ce

±2cε

c1e±2cε + 4c2c2
. (26)

Now, using hyperbolic function properties, we get wave so-
lutions whenc1 = 1, c2 = 1/4c2;

u1,2 (x, t) =
c

2

(
1± tanh

[
c

{
x− c

tα

α

}])
, (27)

and whenc1 = 1, c2 = −1/4c2;

u3,4 (x, t) =
c

2

(
1± coth

[
c

{
x− c

tα

α

}])
. (28)

Case 3: IfA0 = c andA1 = ±1/2. Solving Eq. (23)
and Eq. (24), we takeϕ′ (ε) = ±(e±2cεc1/2c) andϕ(ε) =
(c1e

±2cε/4c2) + c2. Substituting,ϕ (ε), ϕ′ (ε) into Eq. (21),
we get the exact wave solutions:

u (ε) = c− cc1e
±2cε

c1e±2cε + 4c2c2
. (29)

Hence, we use hyperbolic function properties and we have
wave solutions whenc1 = 1, c2 = (1/4c2);

u5,6 (x, t) = c− c

2

(
1∓ tanh

[
c

{
x− c

tα

α

}])
, (30)

and whenc1 = 1, c2 = −(1/4c2);

u7,8 (x, t) = c− c

2

(
1∓ coth

[
c

{
x− c

tα

α

}])
. (31)

Consequently, the analytical solutions for the nonlin-
ear time-fractional ALW equation and the nonlinear coupled
time-fractional Boussinesq-Burger equation can be expanded
by selecting various arbitrary constantsc1 andc2. Moreover,
v (x, t) values can be calculated according to equalities in
equations.

5. Physical interpretation and graphs

This section presents the attained exact wave solutions of
both the nonlinear conformable time-fractional ALW equa-
tion and the nonlinear coupled conformable time-fractional
Boussinesq-Burger equation. We have obtained the traveling
wave solutions of long water wave equations. These solutions
are plotted with convenient values in several types like 3D,
2D, contour, and density graphs. The graphics have particular
intervals such as 3D graphs on−8 ≤ x, t ≤ 8, 2D graphs on
−8 ≤ x ≤ 8, contour and density graphs on0 ≤ x, t ≤ 10.

Figure 1a) show Eq. (14) u1 (x, t) for α = 0.56, k = 1
andc = 0.45. Figure 1b) representsu1(x, t) fixed at point
t = 1 with the same values in Fig. 1a) forα = 0.56 and
α = 1. Figure 1c) denotes contour and density graphs of
u1(x, t) with the same cases in 3D-graph. Figure 2a) gives
Eq. (15) u3 (x, t) for α = 0.70, k = 1 andc = 0.61. Fig-
ure 2b) demonstratesu3(x, t) fixed at pointt = 1 with the
same cases in Fig. 2a) forα = 0.70 andα = 1. Figure 2c)
shows contour and density graphs ofu3(x, t) with the same
values in 3D-graph. Figure 3a) expresses Eq. (27) u1 (x, t)
for α = 0.74, k = 1 andc = 0.49. Figure 3b) represents
u1(x, t) fixed at pointt = 1 with the same values in Fig. 3a)
for α = 0.74 andα = 1. Figure 3c) indicates contour and
density graphs ofu1(x, t) with the same cases in 3D-graph.
Figure 4a) demonstrates Eq. (28) u3 (x, t) for α = 0.82,
k = 1 and c = 0.18. Figure 4b) expressesu3(x, t) fixed
at pointt = 1 with the same cases in Fig. 4a) forα = 0.82
andα = 1. Figure 4c) indicates contour and density graphs
of u3(x, t) with the same values in 3D-graph. As a result,
we have obtained solitary wave solutions which have various
shapes according
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to the values of wave speedc and fractional orderα. Equations (14), (17), (27) and (30) represent kink shape soliton solutions
when parameterc > 0 andc < 0. In addition, Eqs. (15), (18), (28) and (31) denote singular soliton solutions whenc > 0 also
when the parameterc < 0 these equations express dark singular shape soliton solutions. The rest of the solutions have similar
graphs like as in drawn results.

5.1. Graphs of solutions for the ALW equation

FIGURE 1. a) 3D-graph. b) 2D-graph. c) Contour and Density graphs.

FIGURE 2. a) 3D-graph. b) 2D-graph. c) Contour and Density graphs.

5.2. Graphs of solutions for the Boussinesq-Burger equation

FIGURE 3. a) 3D-graph. b) 2D-graph. c) Contour and Density graphs.

FIGURE 4. a) 3D-graph. b) 2D-graph. c) Contour and Density graphs.

Rev. Mex. Fis.67060701
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6. Conclusion

We have applied the MSE method to acquire some traveling
wave solutions to the nonlinear conformable time-fractional
ALW equation and the nonlinear conformable coupled time-
fractional Boussinesq -Burger equation. We have checked
the correctness of the solutions by using theMathematica
program. The graphics of the solution functions have been
constructed concerning the convenient values. The MSE

method successfully attains analytical traveling wave solu-
tions of some nonlinear partial differential equations with
fractional order derivatives. This method also explains new
physical solutions in complex structures by obtaining new
types of solutions thanks to its general solution form, un-
known function, and independent parameters. The results
show that the MSE method is useful, effective, and innova-
tive to solve such equations in physics, applied mathematics,
and engineering.
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