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Recently, nonlinear fractional partial differential equations have been used to model many phenomena in applied sciences and engineering
In this study, the modified simple equation scheme is implemented to obtain some new traveling wave solutions of the nonlinear conformable
time-fractional approximate long water wave equation and the nonlinear conformable coupled time-fractional Boussinesqg-Burger equation,
which are used in the expression of shallow-water waves. The time-fractional derivatives are described in terms of conformable fractional
derivative sense. Consequently, new exact traveling wave solutions of both equations are achieved.
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1. Introduction product, and quotient rules. Khatit al.[25] proposed a new
interesting type of fractional derivative called conformable

Nonlinear problems with fractional-order derivatives are usedractional derivative to overcome these difficulties. Further-
in several fields of engineering, and natural sciences sucore: Abdeljawad [26] has contributed to the conformable
as mathematical physics, fluid mechanics, nonlinear opticsf,,raCt'onal derivative definition, such as he proposed the def-

signal processing, plasma physics, mathematical biology‘,”itions of right and left conformable fractional derivatives

chemical physics [1-3]. In many research in the literature@nd chain rule. In this work, we propose the MSE method,

mathematical models of real-world problems are expressefyNich is an analytical method that has gained notable popu-
more realistically and effectively with fractional-order dif- ity in recent times. This method's robustness arises from
ferential equations. For this reason, many systems and prd€ general solution form that is defined by the sum of fi-

cesses have intensified studies on creating more realistltit€ Series and includes the unknown function. In addition,
thanks to this characteristic of the technique, the new and

models with fractional-order derivatives instead of integer- ! : . "
order derivatives. Obtaining the exact or approximate somore general solitary wave solutions are derived by selecting

lutions of nonlinear physical problems involving fractional special values of arbitrary coefﬁcignts in the exact solutior]s.
derivatives is not always possible by using the classical methOn the other hand, when comparing the MSE method with

ods. Therefore, researchers have been doing great efforfe® €xisting methods in the literature, such as (6€/G)-
to introduce new powerful and effective methods to solveEXPansion method [6], the modified extended tanh function

these equations. Among which the modified simple equaMethod [27], the sine-cosine method [28], the generalized
tion (MSE) method [4], the generalized Kudryashov method<Udryashov method and the improved F-expansmp method
[5], the (G'/G)-expansion method [6], the improved F- [7] etc., these methods have more complex solution steps.

expansion method [7], the generalized exponential rational "€ Pasic idea behind these methods has to do with some

function method [8], the first integral method [9], the gen- specigl pre-defined fun_ctions ora solution _of the auxili_ary
eralized bifurcation method [10], the modified trial equation©duation. These techniques require symbolic computational

method [11], the extended auxiliary equation method [12],software programs to solve the system of algebraic equations.

the conformable double Sumudu transform [13], the con Ve observe that the proposed method is highly practical, sys-

formable sub-equation method [14], the new extended dired€Mmatic, potential, and straightforward. The MSE method has
algebraic method [15], the generalizé@” /G)-expansion b_een us_ed to get_ exact solutions of various fractlo_nal partial
method [16], the homotopy perturbation method [17] and Col_q_lfferentlal e_quanns such as the s_pace-tlme fractlt_)nal mod-
location methods [18, 19] are just a few to name. In the lit-fied regularized long-wave equation, the space-time frac-
erature, there are several types of fractional derivatives. Thional modified Korteweg-de Vries equation, the space-time

most widely used are Riemann-Liouville, Caputoiiwald-  ractional coupled Burgers’ equations [29], the nonlinear
Letnikov, and Jumarie’s modified Riemann-Liouville deriva- ime-fractional Sharma-Tasso-Oliver equation [30], the frac-

tives [2, 20-24]. Unfortunately, all these fractional deriva-tional generalized reaction Duffing equation is and the frac-
tives do not have some classical properties, like the chairfional nonlinear Cahn-Allen equation [31]. We apply this ef-
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ficient method to the nonlinear conformable time-fractionalTheorem 2. Supposef = f(t¢) is a real-valued func-
approximate long water wave equation (ALW) [32] and thetion defined on(0, o) such thatf is differentiable andx-
nonlinear coupled conformable time-fractional Boussinesqgeonformable differentiable. Also, suppdse-= & () is a dif-
Burger equation [33] to obtain analytical solutions of physi-ferentiable function defined in the rangefofThen, the chain

cal shallow water equations. There are many effective studrule is obtained as

ies investigating the exact solutions of these equations using

various methods. The generalizegp (—_gp (5))-expa_nsion D& (foh)(t) =t""h(t)* " (t) D (f ()i -
method [34] and the improved Bernoulli sub-equation func-

tion method [35] have been applied to obtain wave solutions

of the the nonlinear time-fractional ALW equation. Also,

the generalized Kudryashov method [32] has been |mple3 The modified simple equation method

mented to the nonlinear time-fractional ALW and the non-

linear coupled time-fractional Boussinesqg-Burger equationd Nis section introduces the fundamental steps of the MSE
to attain different solutions schemes. Later, the first inteimethod [30]:

gral method [36], the two-variablgG’/G,1/G)-expansion Assume the nonlinear time-fractional evolution equation
method [37] and théG’/G)-expansion method [38] have as follows:
been performed to find traveling wave solutions of the nonlin-

ear coupled time-fractional Boussinesg-Burger equation. To

the best of our knowledge, the exact solutions we achieved

are new and more general than the previous solutions of theé% eréa € )
equations. We obtain eight distinct traveling wave solutions ~ Step 1.We perform the wave transformation

for each two equations. According to the values of wave N

speed and order of fractional derivative, these solutions are u(z,t)=u(e), e = ka + CL7 2)
convertible to different wave shapes. Thus, we demonstrate o

3-dimensional, 2-dimensional, contour, and density graphs

of wave solutions with proper parameters to explain the comto reduce EqlX) into the nonlinear ordinary differential equa-
plex nonlinear phenomena. This study is constructed as foioN (ODE):

lows: In Sec. 2, we present the definition of the conformable Q (u,u’,u” u",..) =0, ()
fractional derivative and some basic properties. In Sec. 3,

we summarize the steps of the MSE method. In Sec. 4, thﬁ/hereQ is a p0|yn0mia| inu (5) and its all derivatives,
proposed method is implemented to the physical equationgyhereinu’ (¢) = du/de and so on.

Section 5 presents the graphs of solutions and physical ex-
planations. Conclusions are outlined in Sec. 6.

F (u, D{*u, Uy, Uy -..) = 0, Q)

(0,1] and F' is a polynomial ofu (x, t).

Step 2. We suppose the formal solution of EB) {n the

form
Lo al ¢ (g) y
2. Preliminaries u(e) =Y Ay [ ( )} , (4)
[23%3
k=
In this segment we present the definition and several proper-
ties of the conformable fractional derivative [25, 26]. where Ay, are real constants such ds; # 0 andy (¢) is an
Definition 1. The conformable fractional derivative of a indetermined function to be calculated.
functionf = f (¢) of ordera € (0,1] is given as Step 3.We compute the integ€¥ > 0in Eg. 4) by con-
¢l ; sulting the homogeneous balance between the highest order
D& f = lim flitr ) —f () foreach ¢ > 0, derivatives and the highest order nonlinear terms consisted in
=0 T Eqg. 3).
wheref is a real-valued function defined @f, o). Step 4.We replace Eq/4) and all its essential derivatives
Theorem 1. Assumex € (0,1] and f = f (), h = h(t)  into Eq. B). As a conclusion of this replacement, we have a
are a-conformable differentiable functions &t> 0, then polynomial of ™" (¢) (i = 0,1,2,...). Furthermore, we ar-

range all terms of the same power@f (¢) and we equate

() D (kf +mh) = kD f+mDi'h foreachk,m € R, 5 the coefficients to zero. This process ensures a system of

(i) D (t) = rt"—> for eachr € R, equations that can be solved to calculate bbthandyp (¢).

i)y Dg(fh) = hDf+ fDgh,

(iv) D¢ (£> = W, 4. Applications
Moreover, if f is a differentiable function, the®{f = In this part, the MSE method is applied to nonlinear time
ol fractional systems of physical equations.

Rev. Mex. Fis67 060701



APPLICATION OF THE MODIFIED SIMPLE EQUATION METHOD FOR SOLVING TWO NONLINEAR... 3

4.1. The nonlinear conformable time-fractional approx-  We deduce thatly = 0, 4y = ¢, Ag = 2candA; = +1
imate long water wave equation from Eq. ©) and Eq.12).

Case 1: IfAy = ¢, there is a trivial solution. So, this case
is discarded.

Case 2: IfAp = 0 andA; = £1. Solving Eq./0) and
Eq. (11), we obtainy’ () = +(e*2%¢;/2¢c) andg () =
(c1/4c?)e*?es 4 ¢y, Here and in the sequet; andc, are
arbitrary constants of integration. Now, substitutinge),
¢’ (¢) into Eq. B), we get the exact wave solutions:

The ALW equation is a special form of the Whitham-Broer-
Kaup (WBK) equation, so we first take the WBK equa-
tion into account. The equation refers to the dispersion o
shallow-water waves with various distributions. The nonlin-
ear time-fractional WBK equation, which is frequently used
in fluid mechanics, is defined as follows:

Diu+ uuy + vy + by, =0,
(5) . 2ceT2cecy
D?U + (UU)',E + QUgrr — Vg = 0, u (E) - Cle:I:2ca + 40262 :

(13)

whereint > 0, a € (0, 1], u (x, t) is the velocity at the hor-
izontal,v (z, t) is the height at which the fluid deviates from
the equilibrium,a andb are constants at different diffusions.
In addition, ifa = 1 in Eg. (B), the system becomes the orig- e
inal integer-order WBK equation. Also, when it takes the ur (z,t) =c <1 + tanh [C {33 - C}D , (14)
valuesa = 1 andb = 0, it converts to the fractional mod- @

So, we use hyperbolic function properties, and we attain wave
solutions when; = 1, ¢o = 1/4¢?;

ifi.ed Boussinesq equation [39—-41]. In conclusion, whgn W& nd wher; = 1, ¢, = —1/4¢?;
give the valuest = 0 andb = 1/2 at Eq. 6), the equation
turns into the nonlinear time-fractional ALW equation as fol- o
lows [32]: uga (z,t) =c <1 + coth [c {x - Ca}:|> . (15)
1
Dfu+ wug + vy + FUez =0, Case 3: IfAy = 2candA; = +1. Using Eq./10) and
1 (6) Eqg. (11), we obtaing’ (¢) = +(e*2%¢;/2¢c) andg () =
Do+ (uv), — 2 Vae = 0, (c1/4c®)et?e 4 ¢y, We substitutey (), ¢’ (¢) in Eq. §)
N and we attain the exact wave solutions:
wherea € (0, 1], « represents the position of the wave and
represents the time> 0. Using the wave transformatien= 2cet?escy

u(e) =2c—c (16)

x—c(t*/a) for k = 1, equalityv = cu— (1/2)u? — (1/2)u’

and integrating with respect tg Eq. 6) may be reduced to ) ) . )

integer order nonlinear ODE: So, we use hyperbolic function properties and we obtain the
solitary wave solutions wheny = ¢, c; = 1/4¢?;

cret2ee 4 4c2¢cy”

1 1 3
- Zu” + §U3 + Pu— §CUQ = 0. (7

Additionally, we obtainN = 1 from balancing principle in
Eq. (7). Therefore, Eq/4) turns into the following form:

¢ e)
¢ (¢)
Substituting Eq.8) and its derivatives into Eq7) then edit-

ing each terms with the same powerof (¢), we get a sys-
tem as follows: 4.2. The nonlinear conformable coupled time-fractional

_ .
usﬁ(x,t):2c—c<1$tanh c{x—c} ), a7

«

and where; = ¢, ¢ = —(1/4¢?);

u(e) = Ag+ Ay (8)

(07

urg (z,t) =2c—c <1 F coth _c {x — cta}_ > . (18)

1 3 Boussinesqg-Burger equation
(Lp)o : §Ag + Ay — §CA(2) =0, (9)
1 3 The nonlinear coupled time-fractional Boussinesq-Burger
() == 410" () + SAZALY (e) equation is used in several fields of science such as mathemat-
4 2 ical physics and fluid mechanics in the investigation of fluid
+ A1 (€) = 3cAgAry (e) =0, (10)  flow in physical systems. This system refers to the expansion
, 3 of shallow-water waves. Furthermore, this equation regulates
() " ZAW’ (e) " () partial differential equations to identify the flow under a com-
pression surface in a fluid, the movement of water bodies, and
+ §A0A% (¢’ (E))Z _ §cA§ (¢’ (5))2 =0, (11) the motion is vertically well-mixed water bodies. Investigat-
2 2 ing the solutions of the equation is very significant for civil
-3 1 / 3,1 3, 3 and coastal engineers to enforce the nonlinear water wave
i ——A —A =0. 12 ) . . .
(%) (&) + 271 (¥ (€)) (12) equations to side designs and port construction [42,43]. The
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nonlinear coupled time-fractional Boussinesq-Burger equa-

tion is defined as in the following [33]:

D — %vx + 2uu, =0,

X (19)
— g Usas + 2 (uv), =0,
wheret > 0, o € (0, 1], v (z, t) is the height of the water sur-
face above a horizontal level at the bottom and, ¢) is the
horizontal velocity field. Then, using the wave transforma-
tione = z—c(t*/a) for k = 1, the relatiorv = 2 (u? — cu)
and integrating foe, Eq. (19) may be reduced to integer or-
der nonlinear ODE:

1
- -u
2

Div

" 4B 4 2¢%u — 6eu? = 0. (20)
Moreover, we acquiréV = 1 from balancing principle in
Eq. (20). For this reason, Eq4J turns into the following

form: ,

¢ (e)
p(e)’
Inserting Eq./21) and its derivatives into Eq20) and com-
piling each terms with the same powerf (¢), we have a
system as follows:

'LL(6) = Ao + Al (21)

(0)° 1 4A% + 2c2 Ay — 6cA2 = 0, (22)
(07" s 3 A1 (0) + 124341 ()
+2c2 A1/ (€) — 12¢Ap A1 (e) = 0, (23)
(9) 72 AP ()" () + 1240 43P (6))’
—6cA2(Y'(€))* =0, (24)
(0) 7% 1 —A1(¢ () + 443 (¢ (2))* = 0. (25)

We conclude thatdy = 0, Ay = ¢, Ag = ¢/2 and A;
+1/2 from Eq. 22) and Eq. 25).

Case 1: IfA; = ¢/2, there is a trivial solution. Thus, this
case is rejected.

Case 2: IfAp = 0 andA4; = £1/2. Using Eq. 23) and
Eqg. (24), we achievey’ (¢) = +(e*?*c;/2c) andp (g) =
(c1€72°¢ /4c?) + co. Substitutingp(c), ¢/ (¢) into Eq. 21),
we have the exact wave solutions:

¢ cei2cs

—_—. 26
cre®2es 4 4c2ey (26)

u(e) =
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Case 3: IfAg = candA; = +1/2. Solving Eg. 23)
and Eq. R4), we takey' (¢) = +(e*?°¢;/2¢) andp(e) =
(c1e®2¢¢ J4c?) + cp. Substitutingyp (¢), ¢’ (¢) into Eq. 21),
we get the exact wave solutions:

Cclei2ce

- 29
cret2ee 4 4c2cy (29)

u(e) =c

Hence, we use hyperbolic function properties and we have
wave solutions when, = 1, c; = (1/4¢?);

us,6 (z,t) =c— ¢ <1$tanh c{x—ct} ) , (30)
2 i a |
and where; = 1, c; = —(1/4¢?);
c [ t*]
urg (z,t) =c— 3 <1qicoth c{x—c} ) . (31)
o

Consequently, the analytical solutions for the nonlin-
ear time-fractional ALW equation and the nonlinear coupled
time-fractional Boussinesg-Burger equation can be expanded
by selecting various arbitrary constantsandc,. Moreover,

v (x,t) values can be calculated according to equalities in
equations.

5. Physical interpretation and graphs

This section presents the attained exact wave solutions of
both the nonlinear conformable time-fractional ALW equa-
tion and the nonlinear coupled conformable time-fractional
Boussinesq-Burger equation. We have obtained the traveling
wave solutions of long water wave equations. These solutions
are plotted with convenient values in several types like 3D,
2D, contour, and density graphs. The graphics have particular
intervals such as 3D graphs e8 < x,¢ < 8, 2D graphs on
—8 < x < 8, contour and density graphs 6r< x, ¢t < 10.

Figure 1a) show Eq\14) u; (z,t) fora = 0.56, k = 1
andc = 0.45. Figure 1b) represents, (z,t) fixed at point
t = 1 with the same values in Fig. 1a) far = 0.56 and
a = 1. Figure 1c) denotes contour and density graphs of
uy(z, t) with the same cases in 3D-graph. Figure 2a) gives
Eq. (15) us (z,t) for = 0.70, k = 1 andc = 0.61. Fig-
ure 2b) demonstrates;(z, ¢) fixed at pointt = 1 with the
same cases in Fig. 2a) far= 0.70 anda = 1. Figure 2c)
shows contour and density graphswfz, t) with the same
values in 3D-graph. Figure 3a) expresses 24d) (1 (z,t)
fora = 0.74, Kk = 1 andc = 0.49. Figure 3b) represents
u(z, t) fixed at pointt = 1 with the same values in Fig. 3a)

Now, using hyperbolic function properties, we get wave sofor o = 0.74 anda = 1. Figure 3c) indicates contour and

lutions whenc; = 1, ¢o = 1/4¢%;

R
B

ta
r—CcC—
«

N o

w2 (z,t) = (1 + tanh

and where; =1, cp = —1/4¢c?;

) e
3

(28)

r—C—

’LL3’4 (Qi,t) = o

g (1 + coth

density graphs ofi; (z, t) with the same cases in 3D-graph.
Figure 4a) demonstrates E®8} us (z,t) for « 0.82,

k = 1 andc = 0.18. Figure 4b) expresses;(z,t) fixed

at point¢ = 1 with the same cases in Fig. 4a) fer= 0.82
anda = 1. Figure 4c) indicates contour and density graphs
of us(z, ) with the same values in 3D-graph. As a result,
we have obtained solitary wave solutions which have various
shapes according

Rev. Mex. Fis67 060701
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to the values of wave speednd fractional ordesv. Equations14), (17), (27) and B30) represent kink shape soliton solutions
when parametar > 0 andc < 0. In addition, Eqs.[15), (18), (28) and B1) denote singular soliton solutions when> 0 also

when the parameter< 0 these equations express dark singular shape soliton solutions. The rest of the solutions have similar
graphs like as in drawn results.

5.1. Graphs of solutions for the ALW equation

h) ; : )

FIGURE 1. a) 3D-graph. b) 2D-graph. c) Contour and Density graphs.

b | — u|x.1).a=070
= u|x.r),a=1 ' ———— 1

b) c)

FIGURE 2. a) 3D-graph. b) 2D-graph. c) Contour and Density graphs.

5.2. Graphs of solutions for the Boussinesg-Burger equation

\ —_—uxt),a=082

w{xr).a=l
4\

a) Y s b) 0)

FIGURE 4. a) 3D-graph. b) 2D-graph. c) Contour and Density graphs.
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6.

the correctness of the solutions by using Methematica
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Conclusion

method successfully attains analytical traveling wave solu-

tions of some nonlinear partial differential equations with
We have applied the MSE method to acquire some travelinfractional order derivatives. This method also explains new
wave solutions to the nonlinear conformable time-fractionalphysical solutions in complex structures by obtaining new
ALW equation and the nonlinear conformable coupled timetypes of solutions thanks to its general solution form, un-
fractional Boussinesq -Burger equation. We have checkelnown function, and independent parameters. The results

show that the MSE method is useful, effective, and innova-

program. The graphics of the solution functions have beetive to solve such equations in physics, applied mathematics,

constructed concerning the convenient values.
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