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In this research work, within the framework of relativistic and nonrelativistic noncommutative quantum mechanics, the deformed Klein-

Gordon and Sclidinger equations were solved with the modified equal vector scalar Manning-Rosen potential that has been of significance
interest in recent years using Bopp’s shift method and standard perturbation theory in the first-order in the noncommutativity parameters

(©,0,x) in 3-dimensions noncommutative quantum mechanics. By employing the improved approximation of the centrifugal term, the
relativistic and nonrelativistic bound state energies were obtained for some diatomic molecules such as (HCI, CH, LiH, CQ,INO, O

N2, Hz, and Ar). The obtained energy eigenvalues appear as a function of the generalized Gamma function, the parameters of noncom-

mutativity, and the paramete(8, A, ) of studied potential, in addition to the atomic quantum numijerg, I, s, m). In both relativistic

and nonrelativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary cases c
RQM and NRQM. A straightforward limit of our results to ordinary quantum mechanics shows that the present result is consistent with what
is obtained in the literature. We have seen that the improved approximation of the centrifugal term is better than the other approximations

in finding the approximate analytical solutions of the Klein-Gordon and@&@tihger equations for the modified Manning-Rosen potential in
relativistic noncommutative quantum mechanics and nonrelativistic noncommutative quantum mechanics.
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1. Introduction molecules such as HCI, CH, LiH, CO, NO,Qs, N, Hs,

. . and Ar, [13,14]. Many authors have studied Manning-Rosen
During the past two decades, considerable efforts have begfytential in the nonrelativistic case, in both the s-wave and I-
made by many researchers in various fields of physics angjaye cases (see for example [15-18]). Furthermore, this po-

chemistry to reach relativistic and nonrelativistic solutionstential was also studied in the relativistic Klein-Gordon, and
using many potentials by adopting different methods suchpjrac equations [19-23].

as the Nikiforov-Uvarov method [1], the Wentzel-Kramers-
Brillouin method [2], the proper guantization rule [3], and the problems apparat at the level of the non-renormalizable of

exact quantization rule [4], in addition to many other meth_the electroweak interaction, quantum gravity, string theor

ods. The exact solutions of the fundamental equations ar\?vhere the idea of non-comr,'ncdtativit rgsultir% fromg 0 er)-/,
only possible in some exceptional cases like the harmonic 0%.- f def i p i ¥/V Hei gb 'p19pe,o'
cillator and the Hydrogen atom as two typical models. As for les of deformation of space-space (W. Heisenberg in IS

most of the cases treated by researchers, it is done by usirgﬂf gresrt';Olsglzggesgéh:nfi?tﬁg?ng'i? ;E)Yv?zr?:}nfltﬁzzg bglog_'
approximations and numerical methods such as the Pekerjs yderi W J utl P

approximation [5], the Greene and Aldrich approximationlems' In thg past two decades, in particular, it has attracted a
[6], the good approximation proposed by B.H. Yazarbal great attention [24-35].

in the study of the oscillator strengths based on thigMs The main objective of this work is to develop the study
square potentia| under Sq‘fmﬁnger equation [7] and the new of B.J. Falayeet al, A.l. Ahmadovet al, and Z. H. Chen
approximation of the Centrifuga] term proposed C. Sef. et al. [13,18,19] within the framework of the Klein Gordon
[8]. The Manning-Rosen potential has been of relevant interand Schddinger equations. But in the context of symme-
est in recent years as it can be applied to various fields sudhies of noncommutative quantum mechanics for the purpose
as atomic, condensed matter, particle, and nuclear physiég get more investigation in the microscopic scales and from
in both relativistic and non-relativistic regimes [9-12]. Fur- achieving more scientific knowledge of elementary particles
thermore, it is used to describe the vibrations of diatomidn the field of nano-scales. The relativisti energy levels un-

As a result of several considerations and many physical
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der the modified Manning-Rosen potential have not been obtained yet in the context of the RNCQM and NRNCQM. Further-
more, we hope to find new applications and profound physical interpretations using a new, updated model of the modified
Manning-Rosen potential, which takes the form:

1 « (a - 16_2T/B> AeT/P
Vmp(r) - 2M52 < (1 - 6_7'/5)2 - 1— e—r/ﬁ —

OVinp (1) @

or  2r +0(8%), @)

Vmp(f) = Vmp(r) -

and

S (1) 1 AA=1)e27/8  Be /8
= — —
mp 2M 32 (176*7“/3)2 1—e-1/B
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where the parametet relates to the potential range whikeand« are two dimensionless parameters, ard is its range

andr is the distance between the two particles. The COUHE@GQU&'SLI(‘)lQ + L,093 + L.O,3, whereL,, L,, andL,

are the usual components of angular momentum opekaietRQM while the new noncommutativity parametey,, equals

6, /2. The new structure of (RNCQM) based on new covariant noncommutative canonical commutations relations (CNCCRs)
in Schiddinger, Heisenberg and interactions pictures (SP, HP, and IP), respectively, as follows [36-46]:

[w;P} - LW)TPV@)} - [@{L@)Tpg(t)] =theftOu, (3.1)

[@LT@J B [iu(t)fﬁsu(t)} N [iﬂ(t)jﬁfci(t)] = (3.2)

We generalize the CNCCRs to include HP and IP. It should be noted that, in our calculation, we have used the natural units
¢ =h=1.Herehex = h(1 + Tr[00/4]) =~ his the effective Planck constant and hérebserved in the NC commutator

* * * =
P Y R Y
ando*r = #v9 (0 is the non-commutative parameter), which is an infinitesimals parameter if compared to the energy values
and elements of antisymmetiicx 3 real matrix andy,,,, is the identity matrix. The symbdk) denotes the Weyl Moyal star
product, which is generalized between two ordinary functipfygg(z) to the new modified fornyf (z)g(z) = f(x) * g(z) in
the symmetries of RNCQM as follows [47-55]:
(e

2

+0(6?). (4)

T,=x,

f(@)g(@) — (f = g)(x) = exp(i0e"” 0,0, ) [ (x)g(x0) = fg(x) — ——00, 109

The indicesu, v = 1,3 and O(6?) stand for the second and higher-order terms of the NC parameter. Physically, the
second term in Eq. (4) presents the effects of space-space noncommutativity properties. Furthermore, the new unified two
operators:) () = (&, or p,)(t) and¢),(t) = (&), or p1,)(t) in HP and IP are depending on the corresponding new operators
é{j(t) = z, orp, in SP from the following projection relations, respectively:

ff(t) = exp(iI:IfwT)ff exp(—iﬁ;in) = éf(t) = exp(iI:Imp T) * ff * exp(—z’I:Imp T), (5.1)

nc—r nc—r
and

() = exp(iHRPT)ES exp(—iHpPT) = () = exp(iH e, T) + & * exp(—iH e, T), (5.2)

12 nc—or nc—or

whereT =t — t, and the three unified coordinate® = (z, orp,), £ (t) = (z, or p,)(t) and¢/ (t) = («] or p})(t) are
represented in three relativistic quantum mechanics pictures, while the dynamics of new sistémait are described from
the following motion equations in the modified Heisenberg picture as follows:

dé)! (t) oy, O déu(t) * &1 (1)
Zt :[gf(t)’HTp}+ gt T _{éf(t),ﬁ’”p }Jr gt '

nc—r

(6)
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The operatorsf{lg}_f’ andﬁ,’_””) are the free and global Hamiltonian for equal vector scalar Manning-Rosen potential while
(A" andH” ) the corresponding Hamiltonians for the modified Manning-Rosen potentials. The present investigation
aims at constructing a relativistic noncommutative effective scheme for the modified Manning-Rosen potential.

The paper is sketched in six sections. The rest of the five sections is organized as follows: We briefly review the usual
relativistic Klein-Gordon equation with equal vector scalar Manning-Rosen potentials in the next section. Section 3 is devoted
to the solutions of the deformed Klein-Gordon equation with the modified equal vector and scalar equal vector scalar Manning-
Rosen potentials using Bopp’s shift method and improved approximation of the centrifugal term to obtain the corresponding
effective potential in addition to the standard perturbation theory in the first-order in the noncommutativity paraetey$ (
we find the expectation values of some radial terms. Section 4 is reserved to present the new main global energy shift and th
global energy spectra of the molecular physics such as (HCI, CH, LiH, CO, NQ; N, Hs, and Ak, and HCI) produced
studied potential in the RNCQM symmetries. In Sec. 5, we apply our study for determining the energy spectra under this
potential in the nonrelativistic noncommutative quantum mechanics (NRNCQM). Finally, we conclude this paper in Sec. 6.

2. Revised of the eigenfunctions and the energy eigenvalues for equal vector scalar Manning-Rosen
in RQM

To achieve the main objective of the current study of finding solutions of deformed Klein-Gordon equation (KGE) in the
RNCQM symmetries under the modified equal vector and scalar modified Manning-Rosen potential, it is helpful for the reader
to see solutions in RQM. The equal vector and scalar modified Manning-Rosen potential [19] is given as:

h? ala—1)e /8 Ae="/B
m = - 5 7.1
V(1) =501 72 < (1= /P2 1= e"‘/ﬁ) (7.1)
and
2 (AN —=1)e /8 Be /8
Smp(7) = 2M 32 < (I—e /B2 " 1— e—T/ﬁ> : (7.2)

To achieve this goal of our current research it is useful to make a summary for the Klein?Gordon equation KGE three-
dimensional relativistic quantum mechanics:

{ = V24 M) + Sup ()] = [Eut—Vinp (1)) }0(,6,0) = 0. (8)
The vector potential/,,,,,(r) due to the four-vector linear momentum operatsi(V,,,,(r), A = 0) and the space-time

scalar potentialS,,,, () whereas the interaction of scalar and vector bosons are considering by usual substifutiens (

M + Spp, andp? — pt — AM), E,, is the relativistic energy eigenvalues, is the ordinary 3-dimensional Nabla operator
while (n = 0,1,2,...andl) are represents the principal and orbital quantum numbers, respectively. Since equal vector scalar,
Manning-Rosen potential has spherical symmetry, allowing the solutions of the time-independent KGE of the known form
U(r,0,¢) = (Uu(r)/r)Y™ (0, ¢) to separate the radial, ;(r) and angulai’;™ (6, ) parts of the wave function, thus Eq. (8)
becomes:

2
(2 = 2 = B2 = 2 [BuVi () + M5, 0] + V2,0 = S8, - 5 Yoy =0 @)

Using the shorthand notation

I(1+1)

Vve?fw(T) = 2(Eanmp(r) + MSmp(T)) - Vrgzp(T) + Sgnp(T) + 2

r

andEg’ = M? — E?

nl?

we obtain the following second-order Séinger-like equation:
d2 m m
(dTQ - [Eei” + V;effy(r)]> Upi(r) = 0. (10)
When the vector potential is equal to the scalar potedfig)(r) = S,,,,(r) the effective potential leads to the following

simple form:

I(141)

ng?p(r) = 2(E‘nl + M)Vmp(r) + r2

(11)
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The Ref. [19] gives the total wave function and the corresponding energy eigenyguesthe KGE with equal scalar
and vector scalar and vector modified Manning-Rosen potential as follows:

N,
U(r,0,¢) = 7”le<—r/ﬂ>k(1 — TN WDHOSD, By (w209t 14200, €T )Y (6, ), (12)

and

—n(n+ )14 ) —n? + Ap —wl(l +1)
2n + 1+ 9,y
wheres = ¢ /8, X\, = B/ M? — E? 9y = \/4Tlnl0<(a -+ @2+ 1)2,nu = (Ey+ M/M), Ny, is a normalization

constant an@ Fy(—n, 2\, + 9 + n + 1;1 4 2¢,,, s) are the hypergeometric polynomials. From the definition of Jacobi
polynomials [56]:

At = B/ M2 — B2, = ; (13)

PRA+ 1) 50n,,0.)
C(n+2\y+1) "

In terms of the definition of Jacobi polynomials, Eq. (12) can be written as:

o1 (—n, 20 + O 0+ 1,1+ 264, 8) = (1—2s). (14)

TL'F(Q)\M + 1)an ghni
W(r. 6 = 1— ([1/2]+[19n1,/2])P(2)\n1,,1977,1) 1—925)Y"™(0 ) 15
(Tv 790) F(TL 4 2)\nl i 1) r ( 5) n ( 5) l ( 790) ( )

3. The solution of DKGE under modified Manning-Rosen potential in RNCQM

The beginning of this section is devoted to reformulate the Manning-Rosen potential in the relativistic noncommutative quan-
tum mechanics symmetries (RNCQM). We achieve this goal by rewriting the KGE by applying the notion of the Weyl-Moyal
star product introduced previously (see Eqg. (3)) on the differential equation that satisfied by the radial wave &apnétipn

in the second section (see Eq. Eqg. (9)); thus, the radial wave furiéfjdm) in the RNCQM symmetries becomes as follows
[56-67]:

v = (16)

d2
{ oz = O = B2 = 2B, 2V, 00 -
It is known to the specialized physicists that F. Bopp was the first to propose pseudo-differential operators obtained from a
symbol by the quantization rulds — z,. = = — (i/2)9/9p) and(p — pn. = p — (i/2)9/0x) instead of the ordinary
correspondence — x and(p — (i/2)0/0x); the latter are known as Bopp’s shifts and the quantization procedure is
the so-called Bopp quantization [55,68-70]. This method has attracted the attention of many researchers and is used as an
alternative to the complicated star product calculations. As a consequence, we can rewrite the defordaga®clequation,
deformed Klien-Gordon equation, and deformed Dirac equation with the notion of star product to thédisgdar equation,
Klien-Gordon equation, and Dirac equation with the notion of ordinary product, respectively. This useful simplification can
be achieved through reformulating the new algebraic relations which are known as noncommutative canonical commutation
relations in the symmetries of relativistic noncommutative quantum mechanics with star product in Egs. (2) and (3.1) and (3.2)
without the notion of star product as follows (seeay, [56,59,61,62]):

[, 47] = [& (1), 21 (1)] = [2L(t), 2 (1)] =i0u,. (17)

The generalized positions and momentum coordindtes:p:; ), (2, p7)(t) and (21, pl,) () in the symmetries of RNCQM
are defined in terms of the corresponding coordinatésp;’), ([, p)(t) and(z], pl,)(t) in the symmetries of RQM via,

respectively [39-49]:

(=, p5) = <55§ =af — %”Pf,ﬁﬁ = p§>, (18.1)
(=, p(t) = (rﬁf (t) = )] (t) — eg” PIt), bl =pi) (t)>, (18.2)
(xh, ph)(t) = <56£(t) = a;,(t) — 9‘2‘” Pl(t),p), = p,ﬂ(t)>, (18.3)
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This allows us to find the operatef, = 2 — L6 in the symmetries of RNCQM [59-61]. It is convenient to introduce a
shorthand notation which will save us a lot of writing. — 7 the previously relation reduced to th& = 72 — L ©. According
to the Bopp shift method, Eq. (17) becomes similar to the following like thed@ihger equation (without the notions of star
product):

2
{;,Z,a - (M2 - ETQLI) - 2(Enl + M)‘/mp(’ﬁ) - l(l; 1) }Unl(r) =0. (19)

The new operators,,, () and1/7* are expressed as in RNCQM symmetries as follows:

. L6 OV, (1) 5
Vmp(r) - mp(r - ? or + 0(6 )’ (201)
and
1 1 L[é
m=m g T 0(6?). (20.2)
Consequently, we can rewrite:
LOaV,, (r
(Bt M)Vgl() = (Bt 4 M)Viy(0) — (B + 250 2l o), (21)

Moreover, to illustrate the above equation in a simple mathematical way and attractive form, it is useful to enter the
following symbolV"? .(r), thus the radial Eq. (20) becomes:

nc—eff
d2 m m
<d,.2 — [’ + Vncfeﬁ(r)]> Uni(r) =0, (22)
with

Vel opp(r) = V2 (r) + Voek (), (23)

whereV¢t (r) is given by the following relation:

m (l+1) E,+MOV,,(r)\ -

Voert (1) = ( T . 8? L(©). (24)

It becomes obvious that the radial modified differential equation obtained in Eq. (22) cannot be solved analytically for any
statel # 0 because of the centrifugal term. The effective perturbative potential, given in Eq. (24), has a strong singularity
r — 0; we need to use the new approximation of the centrifugal term proposed by CeSalig] for a short-range potential,
an excellent approximation to the centrifugal term. Unlike the following new approximation used in the previous work in
ordinary guantum mechanics [8,20,21,23]:

1 1 wexp[—r/p] exp[—2r/f] _ 1 [ ws i
r2 " 32 (1 —exp[—7/0] + 1 - exp{_r/g}]z) 32 (1 . + = 3]2) ) (25.1)

wherew is an adjustable dimensionless parameter. This allows us to obtain:

1 1 [ wexp[—r/f exp[—2r/0] 2 _ 1 w?s? 2ws3 st
(1 — exp[—r/f] * 11— exp{—r/ﬁ}]Q) T ([l NP + =P + = S]4> , (25.2)

which after straightforward calculations we obt&iw,,, () /0r as follows:

7“4%@

OViny(r)  ala—1)6 e30r B e~ 20r N A Ge0r A Je—2or (26)
o Mp? [1—e0r]® [1—e 0 2MB321—e0"  2MpB%(1—e07)%’
with (1/3) = 4. The above equation can be simplified to the following form :
OVinp (1) 52 3 s
ar M —ee TR ThaTy @27)
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with
A\ _ ala-1)§ AS \ _ a(a—-1)§
LN Ve oMp2 T MBR
and
A
3= W

Obviously, Eq. (25.1) cannot be determined frofr. Therefore, we must use the improved approximation of the centrifugal
term proposed by Badawt al. [71]; this method proved its power and efficiency when compared with the Greene and Aldrich
approximation for a short-range potential [6]. Unlike the following approximation used in the previous work in QM and NCQM
[17,18,59,60,62,72] :

I exp(—r/0) B s
T | L ey
This allows us to obtain:
1 exp(—r/28) s'/? (28.2)

r = B(L—exp(=r/B))  Bl—s)
The approximation (25.1) reduces to Eqg. (28.1) when the adjustable dimensionless patamétdnserting Eqgs. (25.2),
(27), (28.2) into Eq. (24) allows us to obtain the perturbed effective potential in the symmetries of RNCQM as follows:

(+1) s*  Eg+M

m 4 1—8 4 - =
Vperzt)(r): 85/62 ( 82/2 b $3/2 LO. (29)
A A A
s st s
The Manning-Rosen potential is extended by including new terms proportional to the radial terms
54 $5/2 s7/2

(1=s)*" (1=s)*" (1-s)*
and
§3/2
(1-s)*
to become the modified Manning-Rosen potential in RNCQM symmetries. Obviously, the newly generated effective potential
Vpert (1) for the modified Manning-Rosen potential is also proportional to the infinitesimal vectallowing us to consider
it as a perturbation potential compared with the parent potential opergf6(r) in the symmetries RNCQM, that is, the
inequalitpr’;’r{’(r) < V" (r) has become achieved. In other words, all the physical justifications for applying the time-
independent perturbation theory become satisfied. Now, we apply the perturbative theory, in the case of RNCQM, we find the
expectation values of the radial terms

84 85/2 S

(I=s)*" (1=s)*" (1—s)*

7/2

and

$3/2

(1-s)’
taking into account the wave function of Manning-Rosen potential which we have seen previously in the second section. After
straightforward calculations, we obtain the following expectations values:
g T

st [nIT(2A + 1) Ny | oA, 1 stdr
5 - n n nt (1 — ) HHnt (P dn) [ 9g))2 2 T 30.1
<(1_S)4>(nlm) I F(n+2)\nl+1) ] / s ( S) ( n [ 3]) (1_5)47 ( )
” 0
+oo
55/2 _n!r(Q)\nl + I)an_ 2 22 55/2d7"
e — nl 1 _ 1+19nl P(2>\nl-,19nl) 1 _ 2 2 302
<(1_s)3>(nl m) F(n+2>\nl+l) / 8 ( S) ( n [ S]) (1_8)37 ( )
” ) 0
< K > _ [nIT@Aw + DNy ] +/°<>82Anl(l_S)IMM(P@M“M“_28])2 s7/2dy (30.3)
=" iy LT 20 +1) | " (1—s)* '
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and

53/2 nIT' (2 + 1) Ny g too N o o) , 32
(1—s5)2 ( ): T(n + 22 + 1) /s nH(1 — §) U (PRI — 24]) m (30.4)
n,l,m n

We have used useful abbreviatiofis I, m|B|n,l,m) = <B>(n,l7m) to avoid the extra burden of writing equations. Fur-
thermore, we have applied the property of the spherical harmonics, which has the form

/ Y™ (0, 0)Y2" (0, 0) sin(0)dOdip = 0 S

We haves = exp(—dr) (with § = 1/08), implyingdr = —(1/§)(ds/s). After introducing a new variable = 1 — 2s, we have
s=(1-2)/2,dr =(1/6)(dz/1—z)andl —s = (z+1)/2. From the asymptotic behavior ef= exp(—dr) andz = 1 —2s,
whenr — 0 (z — —1) andr — +oo (2 — 1) this allows the reformulation of Egs. (30= 1, 4) as follows:

+1

st (2 + 1) Ny, 2 _

22X ni+Ini+1 g < (15)4> — |: F(é =T l 1) :| /(1 _ Z)2)\nl+3(1 + Z)ﬂnz S(PT(LZX,Ll,ﬁm)(z))de, (31_1)
(n,l,m) n

T(n+2\y +1)

+1
2
22/\m+19nl+1/25< %/ > _ [an(Q)\nz + I)an} /(1 C P21 g )2 (Pt (1))20;, (31.2)
(n,l,m)
22)\nl+"9nl+1/25<

+1

s7/2 nIT(2An1 + 1) N 17 .

> N [ F(1§+2l>\ liﬂl} / (1= )22 HB2 (1 4 2)Pm=3(PEA ) (2))2dz,  (3L.3)
(n,l,m) n

and

+1

§3/2 nID 2\ + 1) Ny 1 _

22A’Ll+ﬂ”+1/25<<1_5>2> - { F(7§+21A llnl} / (1= 22t 12(1 4 )P =L (PEA0) ()2, (31.4)
(n,l,m) n

For the ground state = 0, we haveP,” ”‘” dor) (z) = 1, thus the above expectation values in Egs. {31,1, 4) are reduced
to the following simple form:

+1

22)\01+1901+16< > _ Ngz /(1 _ Z)2x\oz+3(1 + Z)ﬁmi?’dz, (32.1)
(0,L,m) 1
+1
22)\oz+1901+1/25< 3> _ Ngz /(1_2)%01—3/2(1_,'_2)1901—QdZ7 (32.2)
0,l,m) A
7/2 o
22>\0z+19m+1/25< S 4> _ Ngl /(1_Z)2Aoz+5/2(1_|_Z)190z—3dz’ (32.3)
0,l,m) e
and
3/2 Vi
g2 +0u+1/25 [ 5 _ N2 / 1=\ 2o t1/2(1 1 Y1, 32.4
=52/ 0amy s ) ) oo

Where)\Ol = ﬁ\/MQ — Egl = (A7701 — O.)l[l + 1])/(1 + 190[), Yo = \/4’170l04(04 — 1) + (2l + 1)2 andnm = (Eol + M)/M
Comparing Egs. (3%,= 1, 3) with the integral of the form [73]:

+1

[ =021+ 2 P (@) P ) =

-1

208 (n + a+ D)I(n+ B+ 1)

677“’7,
Cn+a+B+1)(n+a+ B+ 1)n!

41
/(1 — )"t 4 2)" P =

—1

22n+atBHiP(n o+ DI(n+ B+ 1)
Cn+a+B+1)T2n+a+0+1)"

(33)
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A direct calculation gives the expectation values in Egs. {34.1, 3). Namely,

<(1i48)4>(0 Ly Ngéif fi;?gzﬂi’ ) 2, (34.1)

<O{ff">(0 . ]ZQPOfQA(;/Q)ZéQ)pOZ( 015/2;)’ (34.2)

<(18i/s2>4>(0 o N(gf)orl(?fl/;)gr/?p)(z(ioi =2, (343)
/

<(18352>2><0 o (ﬁlﬁ%[gp%:}i(f?g) ! (34.4)

wherep,,, equal2\,;+13,,. For the first excited state = 1, the Jacobi polynomial reduced Ry 1711 (2) = Q484 (1-2),
hereQq = 91, + 1,2y = —(2A;, + 9y, + 2), with X}, = 8/ M? — E?, = (—[3/2]9,, — 2+ Any, — wl[l + 1]) /(3 + V11),
Y1 = \/4Ana(a — 1)+ 2L+ 1)2,my, = (B}, + M)/M. Thus, the expectauon values in Egs. ¢33 1,6). Are reduces to
the following simple form:

5/2
< > =7 47 4 T, <1S ; > TN+ TP+ T, (35.1)
(1,l,m) ( S) (1,1,m)
and
O 47O 7, s%/2 (W) 4 @ ()
< > + T3 + Ty < 2> =T, +1T,7 +1,7. (35.2)
1,0 m) (1-s) (1,1,m)
where the 12- factorff(”( 1,4,7 =1, 3) are given by:
+1
Q2 [(1—2)P 31+ 2)Pu=3dz
(1) 1
Tl(z) 1 Ny, ? 0= i 22, +4 9,—3
AN Rk ez b wer B B L AR S A 31
Ty +1
22 [ (1= 2)2ut5(1 4 2)%u=3dz
-1
+1
Q2 [(1—2)Pu=3/2(1 + 2)"u2dz
(1) -1
?2(2) _ 1 Nll 2 20, .= }1(1 _ Z)2X11—1/2(1 + Z)ﬁ”_QdZ (36 2)
29 922 F0,+1/25 |20, + 1 HE ’ '
1y +1
E2, [ (1 —2)2 /21 4 2)%u=2dz
-1
+1
Q2 [ (1= 2)Put5/2(1 + 2)Pu=3dz
1) 1
;PZQ) = 1 Ny : 20,2 71(1 — 2)PutT2(1 4 2)Pu3dz (36.3)
3(3) 22)\11-‘1-19”-"-1/25 2)\” + 1 =11 ) B .
T, +1
22 (- 2)Put9/2(1 4 2)%u—3dz
—1
and
+1
02 [(1—2)Putl/2(1 4 2)%u—1dz
(1) 1
;%2) . 1 Nll 2 0 = ‘}1(1 _ Z)2A1l+3/2(1 + Z)ﬁlzfldz (36 4)
dy | T 222 (20, + 1 R ' '
T4

+1
22, [ (1= 2)2ut5/2(1 4 2)u—1dz
1
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By using the integral formula in Eq. (33) we obtain the analytical expressions of the 12-@&21(#5: 1,4,5=1,3) as
follows:

L2\, +4)T (9, — 2)Q7,

Tl(l) ) (wy, + D (wy; + 1)
7@ 1 [ Ny, ] 49,5, 2N, +5)'(,, —2) 7 (37.1)
Tl(?») o [20, + (wy; +2)(wy; +2)
! AZ3 T (2, +6)0(9y; — 2)
(wy; +3)T(wy; +3)
0302, —1/2)T(9,;, - 1)
7 ) 8( wll 5/2)['(w,; —5/2)
T2(3) 6 22, +1 (Wu 3/2)r (wu 3/2) ’ '
2 AZ3T (20, +3/2)T(9,, — 1)
2(“’11 —1/2)r (Wu - 1/2)
Q3T (20, +7/2)T (9, - 2)
" 2 (o, + 172 (wy, 1 1/2)
Tgﬁz) _ LNy 40,5, T2, +9/2)T'(9,;, — 2) (37.3)
T?ZP,) o 12X, +1 (wy +3/2)T(wy; +3/2) ’ '
3 4E%ZF(2/\H + 11/2)F(19u — 2)
(wy +5/2)(wy; +5/2)
and
QIT(2A, +3/2)0(0y))
7 , 2(wy; +1/2)(wy, +1/2)
th2) _1 Nu 20,5, (2A; +5/2)L(Yy,) (37.4)
d 20, + 2(wy, +1/2)T (wy, +1/2) ’ '

ELT2A, +7/2)T(0,,)
8(wy; +5/2)T(wy; +5/2)

with wy;, = 2X,, + ¢,,. The substitution of Egs. (37.1) (37.2), (37.3) and (37.4) into Egs. (35.1), (35.2) (35.3), and (35.4) gives
the expectation values in the first excited stdtd, m):

84 1 Nll :|2
5 - Iy —2
(T =5 ] 7002
« < QUF 2)\1[ + 4) 4Qll51lr(2>\ll + 5) 4E%ZF(2/\U + 6) ) (38 1)
wll +1 wll + 1) (wu =+ 2)F(w11 + 2) (wll + S)F(wu + 3) '
5/2 N 2
TET A
(1 — (1,0,m) 22+ 1
Q%l 2/\1[ — 1/2) 4911511F(2>\11 + 1/2) 4E§l1“(2>\11 + 3/2)
X . (382)
8 wll — 5/2 wll — 5/2) 4(w1l — 3/2)F(w11 — 3/2) 2((4)” — 1/2)F(Wll — 1/2)
S7/2 1] Ny 1°
(G g ™7 [rsT) 002
(1 s) 1,,m) (5 201+ 1
02,7 2>\1; +7/2) 4Q1ELT (200 +9/2) 42T (20 + 11/2)
« (38.3)
(Wi +1/2)T (w1 +1/2)  (wiy +3/2) (w1 +3/2)  (wu +5/2)T(wy; + 5/2)
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10 A. MAIRECHE

and

§3/2 1] N 2
—5)2 -5 - G
(1=92/ gm0 [2A+1

( Q2 T2\ + 3/2) 201,210 (20 +5/2) E3T(2M, + 7/2)
2wy + 1/2)T (w1 +1/2)  2(w1y + 1/2)T (w1 +1/2)  8(wiy + 5/2)T (w1 + 5/2)

The relativistic study of the modified equal vector scalar Manning-Rosen potential is divided into three principal parts.
The first one is devoted to studying the spin-orbit effect generated by the noncommutativity space-space. This is achieved
by replacing the coupling of the angular momentum operator with noncommutativity couﬁﬁngy the new equivalent
coupling®LS (with © = (02, + 02, + ©2,)1/2). We have oriented the spin vector of the diatomic molecules such as HCI,
CH, LiH, CO, NO, G, |5, N3, Hy, and A, to the direction of the vectd® under modified equal vector scalar Manning-Rosen
potential. Then we replace it with the corresponding vali@/2)(J2 — L? — $2) Furthermore, in quantum mechanics, the
operatorg H'? ., J?, L2, %, and.J,) forms a complete set of conserved physics quantities, the eigenvalues of the operator
(J2 — L2 — §?) are equal the valugsi(I) = j(j +1) —I(1+1) —s(s+1), with |l — s| < j < |I+ s|. Consequently, the energy
shift A%, (n = 0,0,j,1,5) = AE: (0,0, 4,1,s) andAE:S (n = 1,0,4,1,5) = AE3 (1,0, 4,1, 5) due to the perturbed
effective potential producet,.%, (r) for the ground state and the first excited state, respectively, in RNCQM symmetries as

pert
follows:

> . (38.4)

1 Tm

ABRD(0,0,4,15) = S (Gl + 1] = 1l +1] = s(s + DOX)GT), (39.1)
1 Tm

AES9(0,0,4,1,5) = S0+ =1l +1) = s(s + DO(X) (5 s (39.2)

where the global expectation vaI(JK%.l m) is determined from the following expression:

1 4 E, M
<X>g),z,m) = dthit) < 1 : 4> -
(1-3) (0,1,m)

B p
§5/2 §7/2 §3/2
X )\1 <> +)\2 <> +)\3 <> s (40)
( (I—s)? (0,1,m) (I—s)* (0,1,m) (1—s)? (0,1,m)
while (X)("F ) = (X)(1",.my- We can now generalize the above resd& (n,©, j,1, s) to the case of'" excited
states in RNCQM symmetries as follows:
1
AE; (n,0,4,1,5) = §(j[j + 1] —I[l+1] — s(s + 1)@(X)?Zf£m). (41)

mp
,l,m)

4
(X)rme = I(l+1) < S > _ L+ M
( (n,l,m)

Thus, we can express the general expectation value as foll

(n,l,m) ﬂ4 1— 8)4 ﬁ

\ 85/2 \ 87/2 \ 83/2 42
) ' <(1 - 5)3 >(n,l,7n) A <(1 - 8)4 >(n,l,nL) e <(1 - 8)2 >(n,l,7n) . ( )

The second main part in the relativistic study of the modified equal vector scalar Manning-Rosen potential is corresponding
to replace both Lfé and©15) by (oXL, andoR), respectively, her® and o are, respectively symbolize the intensity of
the induced magnetic field by the effect of deformation of space-space geometry and a new infinitesimal noncommutativity
parameter, so that the physical unit of the original noncommutativity para@eieiiengthy is the same unit of R, we have
also need to appl%n,l,m|1ﬁz\n’,l',m’> =m0 O1p Oy (With —(1, 1) < (m,m) < +(1,1")). All of this data allows for
the discovery of the new energy shiftzz)? (n = 0,0,1,m) = E}}}, (0,0,1,m) andAE}} (n = 1,0,1,m) = E} (1,0,1,m)
due to the perturbed Zeeman effect created by the influence of the modified equal vector scalar Manning-Rosen for the ground
state and the first excited state in (RNC: 3D-RS) symmetries as follows:

AER,(0,0,1,m) =X(X) (", om, (43.1)
AER,(Lo,l,m) =R(X){["7,  om. (43.2)
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A THEORETICAL STUDY OF THE MODIFIED EQUAL SCALAR AND VECTOR MANNING-ROSEN POTENTIAL ... 11

Thus, we can generalize the above particular cases to the general Esén, o, [, m) of the modified equal vector scalar
Manning-Rosen potential which corresponds toritiieexcited states in (RNC: 3D-RS) symmetries as follows:

1(1+1) < s > By + M
AET (n,o,l,m) =X -
p( ) < ﬁ4 (1 _ 8)4 (nidsm) ﬁ

\ $5/2 \ $7/2 \ $3/2 »
g 1<<1s>3><no,l,m)+ 2<<1s>4><n,l,m)+ 3<<1s>2>(n,l,m> o (49)

Now, for our purposes, we are interested in finding a new third automatically important symmetry for modified equal
vector scalar Manning-Rosen potential at zero temperature in RNCQM symmetries. This physical phenomenon is induced
automatically from the influence of a perturbed effective poteffjgf (), which we have seen in Eq. (31). We discover these
important physical phenomena when our studied system consigfsnain-interacting is consider as Fermi gas, it is formed
from all the particles in their gaseous state under rotation with angular veﬁd:itwe make the following two simultaneous
transformations to ensure that previous calculations are not repeated:

6 — xf. (45.1)

Here x is just infinitesimal real proportional constants. We can express the effective poigfiial(r), which induced
the rotational movements under the effect of modified equal vector scalar Manning-Rosen potential at zero temperature for the
diatomic molecules as follows:

l(l + 1) 34 Enl + M 35/2 57/2 53/2 SN
mp ) _ ar. 45.2
VpercrolT") X( 31— 5 A e + A2 1=t + A3 (1—s)2 (45.2)

To simplify the calculations without compromising physical content, we choose the rotational vé%i@ez. The next
step is to transform the spin-orbit coupling to the new physical phenomena as follows:

XQ(S)QE — xg(r)QL., (46)
with
i+ s E.+M s5/2 §7/2 $3/2
g(S) - 64 (1 _ 5)4 - B <)\1 (1 — 8)3 + )\2 (1 — 8)4 —+ >\3 (1 — 8)2> . (47)

All of this data allows for the discovery of the new energy shift], (n = 0, x,l,m) = AE], (0, x,1,m) andAE/, (n =
Lx,l,m) = AE,J;I,(LX, I,m) due to the perturbed Fermi gas effect which generated automatically by the influence of the
modified equal vector scalar Manning-Rosen potential for the ground state and the first excited state in RNCQM symmetries

as follows:

AESL(0,x,1,m) = (X) (" xQm, (48.1)
and
AFE! (1, x,1,m) = (X yxm. (48.1)

Thus, we can generalize the above particular cases to the general case which corresporiti extlited states in RNCQM
symmetries as follows:
AFEL(n,x,1,m) = (X) (L amy X2 (49)
It is worth mentioning that K. Bencheikét al. [74,75] studied rotating isotropic and anisotropic harmonically confined
ultra-cold Fermi gas in a two and three-dimensional space at zero temperature but in this study, the rotatigngk)érin

was added to the Hamiltonian operator. In contrast to our case, where this rotation term automatically appears due to the larg
symmetries resulting from the deformation of the space-phase.
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12 A. MAIRECHE
4. Results and discussion

In this section of the paper, we summarize our obtained reshi{ (0,0, 7,1, 5)), (AL, (1,0, 4,1, 5)), (AE,(0,0,1,m)),
(AE},(1,0,1,m)),and @Efnp(o, X,!,m)),and (AE{;p(l, X, !, m)), for the ground state and first excited state due to the spin-
orbital complying, modified Zeeman effect, and perturbed Fermi gas potential which indutfg}fﬁijﬁl()y) on based to the super-
position principle. Accordingly, we can deduce the additive energy AHift?) (O, o, x, 0, 7,1, s, m) andAE}L (0, 0, x, 1, 4,1, 5,m)
under the influence of modified Manning-Rosen potential in RNCQM symmetries as follows:

AER,(0,0,x,0,5,1,5,m) = (X) (0 1y (k[7, 1, 8]0 + Rom + xQm), (50.1)
and
AE(0,0,x,0,5,1,8,m) = (X) (0 1m) (kl7,1, 8]0 + Rom + xQm). (50.2)

It is easily to generalize the above special cases tathexcited states&Efg;((%, o, X,n, j,1,s,m) under the influence
of modified Manning-Rosen potential in RNCQM symmetries as

AEfr(z);)(@v g, X O7ja lv S, m) = <X>E(;nl{)m) (k[]v la 3}6 + Nom + XQm) (51)

The above results present the global energy shift, which is generated by the effect of noncommutativity properties of space-
space; it depends explicitly on the noncommutativity paraméters, x), the parameters of equal vector scalar Manning-
Rosen(f, A, «) in addition to the atomic quantum numbérs j,1, s, m). We observed that the obtained global effective
energyAEfg;(G), o, X,n, j,1,s,m) under Modified Manning-Rosen potential carries units of energy because it is combined
from the carrier of energyl/* — E?,). As a direct consequence, the enefgfy”,, (0, o, x, 8, A, a, n, j,1, s, m) produced with
modified equal vector and scalar equal vector scalar Manning-Rosen potentials, in the symmetries of RNCQM, corresponding
the generalized" excited states, the sum of the square-résts! (0, o, x,n, j, 1, s, m)]*/? of the shift energy, and,,; due
to the effect of equal vector scalar Manning-Rosen in RQM, which determined from Eq. (12), as follows:

EWLP (@3 0—7 X7 67 A’ a? n7j7lﬂs) m) = Eﬂl - M+ (<X>rmp [k(j) l? 8)6+N0—m+XQm})1/2' (52)

r—nc (n,l,m)

For the ground state and first excited state, the above equation can be reduced to the following form:

E™ (©,0,x,8,A,a,n=0,5,1,s,m) = Ey — M + (<X>€(;7flzjm) [k(4,1,5)0 + Ram + xQm])1/2. (53.1)
and
E’ry‘Tnc(@7 g, X757 Avavn = ]-7j7 la S, m) = Ell - M + (<X>Z{n,lz,)m) [k(j, l, S)@ + Nom + XQm])1/2 (532)

Equation (52) can de describe the relativistic energy of some diatomic molecules such as HCI, CH, LiH, CQ, NO, O
Ns, Ha, and Ar, under the modified equal vector scalar Manning-Rosen potential in RNCQM symmetries.
5. Nonrelativistic spectrum under the modified Manning-Rosen potential

The radial parlU,,;(r) of the complete wave function

Un r m
\11(7’797@) = #YYI (97§0>

in ordinary nonrelativistic QM satisfied the following equation for Manning-Rosen potential:

d2U7ll(r) nr—m; nr—m
dr2 +2M (B - Very P(r))Uni(r) = 0, (54)
where
h? —1)e~2/8  Ae77/P I(1+1
Vopy "0(r) = ola—1e _ A | WD)
el 2MpB% | (1—e7/8)2 1—e /B 2Mr2

is the nonrelativistic effective potential in ordinary NRQM. The radial wave fundtigri~) in nonrelativistic noncommutative
three-dimensional real space NRNCQM symmetries becomes as follows [56-67]:

d2Unl(T‘)

a2 T IM(E! ™™ — V" (1)) 5 Uy () = 0. (55)

eff
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A THEORETICAL STUDY OF THE MODIFIED EQUAL SCALAR AND VECTOR MANNING-ROSEN POTENTIAL ... 13

According to the Bopp shift method, Eg. (55) becomes similar to thed8lainger equation (without the notions of star
product):

d2 Unl ( )

S A 2M (BT = V() Ui (1) = 0. (56)

eff
We can express the new effective potenﬁﬁﬁ’f (7#) in NRNCQM symmetries:

V) = VI VA ). (57)

The global effective potential’,g;”(r) is the perturbative potential produced with modified equal vector scalar Manning-
Rosen potential in NRNCQM symmetries plus the additive pitt 1)/2Mr4)L6O in Eq. (20.2):

(l+1) Cé— OWVonp (1 )@_’_0(62) (58)

Vpert —
mp (7) 2Mr* or  2r

We have applied the type of approximations suggested by Greene and Aldrich anétCxnfpr a short-range potential
(see Eq. (28.1)) and we have calculagdd,, (r)/0r (Eq. (27)). Now, substituting Eq. (27) into Eq. (55) and repladiyig by
its corresponding approximation in Eq. (28.2), we get the perturbative potential in (NC: 3D-RS) symmetries,

7/2 3/2

(+1 s - 1 s s
2Mpt (1—s) (T—s)F " -5
Thus, we need the expectation valuesbf(1 — s)*, s°/2/(1 — 5)3, s7/2/(1 — 5)*, ands3/2/(1 — s)? to find the nonrel-
ativistic energy corrections produced with the perturbatlve potevmglt(r). By using the wave function in Eq. (15) and the
expectation values in Eq. (34= 1,4), and Eq. (38; = 1, 4). For the ground state and first excited state, respectively, we get

nr—mp

the corresponding global expectation valges, ; 7 and(x)};

m)
4
s = g sy )
2M 3 (1-y9) (0,1,m)

1 \ < 35/2 > \ < 87/2 > \ < 53/2 > (60 1)
- s + + ; :
BA\NO=93 iy NO= 9 iy NA= 82/ (01

_ l(l—|—1)< g4 >
nr—mp
X m —
< >(17l’ ) 2Mﬂ4 (1 5)4 (1,,m)

1 \ < 35/2 > \ < 87/2 > \ < 53/2 > (60 2)
—— |\ M 73 tA2{ o7 TA3{ 7—=3 . .
ﬁ (1 - 5)3 (1,l,m) (1 - 8)4 (1,1,m) (1 - 5)2 (1,1,m)

By following the same physical methodology that we have developed in our previous relativistic study, the energy cor-
rectlonsAE%(O, 0,0,x,J,1,s,m) and AE}" (1,0, 0,x,74,1,s,m) for the ground state and first excited state due to the

spin-orbit complying, modified Zeeman effect and nonrelativistic perturbed Fermin gas potential which inducgptl(yy)
under the influence of modified Manning-Rosen potential in NRNCQM symmetries

85/2 N
pert(r) = (Al T—sp e ) L6 +0(e7). (%9

and

AER(0,0,8,A,0,n=0,],1,5,m) = (X){g.1.m (k(j,1,5)0 +Rom + xQm), (61.1)
and
AEL(©,0,68,A,a,n = 1,5,1,5,m) = <X>?fl_7$f (k(4,1,8)0 4+ Rom + xQm). (61.2)

It is easily to generalize the above special cases tath@xcited states under the influence of modified Manning-Rosen
potential in NRNCQM symmetries as follows:

AERL(0,0,8,A,0,n, 4,1, 5,m) = (X) (51 my (k(5,1,5)0 + Rom + xQm), (62)

(n,l,m)
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14 A. MAIRECHE

with (x)7" """ is given by

(n,l,m)
nr—m {l+1) st
<X>(n,l,m})) = oM 3 <(1 — )
& (n,l,m)

1 \ < $5/2 > \ < s7/2 > \ < g3/2 > (63)
- — o (7 dg (s .
ﬂ ' (]‘ - 8)3 (n,l,m) 2 (1 - 8)4 (n,l,m) ° (]‘ - 8)2 (n,l,m)

The nonrelativistic energ¥,.” .. (0,0, 8, A, a,n, j,1, s,m) for the diatomic molecules (HCI, CH, LiH, CO, NO 0I5,
N2, Hs, and Ar) produced with modified equal vector scalar Manning-Rosen potential, in the symmetries of (NC: 3D-RS),
corresponding to the generalizet! excited states, the sum of the nonrelativistic endzgy due to the effect of equal vector
scalar Manning-Rosen in NRQM, and the corrections produced with the perturbed spin-orbit interaction and modified Zeeman
effect, as follows:

, 1 R (A+ala—1) 1(nla)\’
mp o ) Uy
Enr nC(630—7/67A)a7n7]7l787m) 2 b2l(l+1) 2/};[)2 < T(n,l7a) 4
+ 00ty (B(G,1,8)0 + Rom + xQ), (64)

herer(n,l,a) = 2n+1+ /(1 — 2a)2 + 4I(l + 1), b — B andc is a dimensionless constant and eqydl2 when(r/b) < 1,
while the case o = 0 is identical to the conventional approximation given in Eq. (28.1). The first two terms are the
nonrelativistic energy due to the Manning-Rosen potential in NRQM, which is determined directly from the study of Z.Y.
Chen,et al. [18].

Now, considering composite systems such as molecules madle-o® particles of masses.,,(n = 1,2) in the frame of
noncommutative algebra, it is worth taking into account features of descriptions of the systems in the non-relativistic case, it
was obtained that composite systems with different masses are described with different noncommutative parameters [76-78]:

* * *
= = 10 65
sias) = Laronao] = Loy =% (©)
where the noncommutativity parame&, is given by:
2
=D un), (66)
n=1

with p, = my, />, my the indicegn = 1, 2) label the particle, anélf[i) is the parameter of noncommutativity, corresponding
to the particle of mass:,,. Note that in the case of a system of two particles with the samemgassm- such as the diatomic
(O, I3, N2, Hy, and Ar) molecules, the parameﬁ@fﬁ) = 0,,,.. Thus, the three parameté&so andy which appears in Eg. (63)
are changed to the new form:

<Z un@““) <Z un@“”) (Z un@“”) : (67.1)
2 2 2 2 2 2
= <Z uiag)) + (Z ui0§§)> (Z piots ) : (67.2)

n=1

2 9 2
<Z unx(")> + (Z uixé’%)) (Z 32Xy ) : (67.3)
n=1

As it is mentioned above, in the case of a system of two particles with the samenmnassms, we have@Ef},) = O,

a,(“,) = O, andxfﬁ,) = X Finally, we can generalize the nonrelativistic global enétfyf ,,.(0, 0, x, 3, A, a, n, 4,1, s,m)
under the modified Manning-Rosen potential considering that composite systems with different masses are described with
different noncommutative parameters for the diatomic molecules (HCI, CH, LiH, CO, and NO) as:

(l+1)e 1 <A+Ma—U_7m%a»2

Emp (®7U7X7ﬁ’A7a7n7j7l7S)m):

nrene 2ub> 2ub? 7(n,l, @) 4
+ 00 (Gt (B, 1,5)0° + Ro“m + x“Qm), (68)
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The important result in this work is to consider DKGE and DSHE under modified Manning-Rosen has a physical behavior
similar to the Duffin-Kemmer equation, which provides us a basis to study relativistic spin-zero and spin-one bosons [79], it
can describe a dynamic state of a particle with spin one in the symmetries of relativistic noncommutative quantum mechanics.
Worthwhile it is better to mention that for the two simultaneous lindiés o, x) — (0,0,0) and(©°,0¢, x¢) — (0,0,0), we
recover the results of the in Refs. [13,18,19].

6. Summary and conclusion

Ispin-orbit couplings which are generated with the effect of
This paper covers the perspective of modified equal vecthe perturbed effective potenti&],.’,(r) in the symmetries
tor scalar Manning-Rosen potential in both relativistic Of relativistic and nonrelativistic noncommutative quantum
and nonrelativistic regimes that correspond to high andn€chanics. In addition, we can conclude that the DKGE be-
low energy physics. We have employed both simulta-cOmMes similar to the Duffin-Kemmer equation under modi-
neous methods, the Bopp's shift and standard perturbdi®d equal vector scalar Manning-Rosen potential, it can de-
tion theory methods, to obtain the new bound state soluScribe a dynamic state of a particle with spin one in the sym-
tions the deformed Klein-Gordon and Setinger equa- Metries of relativistic noncommutative quantum mechanics.
tions by applying the improved approximation schemeFurthermore, we have applied our results. to composite sys-
to deal with the centrifugal term. The obtained new!®ms such as molecules made/of= 2 particles of masses
bound state solutionEE™?, (O, 0, x, 3, A, a,n,j,1,s,m) my(n = 1,2). Itis worth mentioning that, for all cases, when

r—nc

and E"P_ (©,0,x, 3, A,a,n,j,1,5,m) corresponding to {0 make the two simultaneously limit®, o, x) — (0,0,0)
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