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London superconductor and time-varying mesoscopic LC circuits
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In this work, we study the classical and quantum dynamics of a London superconductor and of a time-dependent mesoscopic or nanoscale
LC circuit by assuming that the inductance and capacitance vary exponentially with time at a constant rate. Surprisingly, we find that the
behavior of these two systems is equivalent, both classically and quantum mechanically, and can be mapped into a standard damped harmonic
oscillator which is described by the Caldirola-Kanai Hamiltonian. With the aid of the dynamical invariant method and Fock states, we solve
the time-dependent Schrödinger equation associated with this Hamiltonian and calculate some important physical properties of these systems
such as expectation values of the charge and magnetic flux, their variances and the respective uncertainty principle.
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1. Introduction

Over the past years, the study of classical and/or quantum
systems that may be described by the same mathematical for-
malism has received considerable attention of physicists and
continues to be a living and interesting research area of mod-
ern physics. This interest is because the elucidation of simi-
larities in the behavior of systems studied by different areas
of physics frequently allows the knowledge of each area to
help the understanding of the other.

In recent years, the phenomenon of superconductivity has
been the focus of considerable theoretical and experimen-
tal study in the literature. The origin of this great inter-
est is due to its potential application in various branches of
physics [1–6]. This phenomenon was first observed in Leiden
by Onnes in 1911 [7] when he noted that the resistance of a
rod of frozen mercury suddenly drops to zero when cooled to
the boiling point of helium, 4.2 K, and in 1933 [8], Meissner
and Ochsenfeld discovered that this phenomenon expels the
magnetic field from within the superconductor. This discov-
ery is nowadays known as the Meissner-Ochsenfeld effect.
Later, other important contributions to the study of super-
conducting materials were given by some researchers [9–13].
However, a great deal of our knowledge on superconductivity
can be obtained from the London equations [9,13].

With the development of nanometer techniques and mi-
croelectronics, classical and quantum effects of mesoscopic
or nanoscale circuits have attracted a lot of interest from
physicists [14–20]. In the study of mesoscopic circuits, an
LC (inductance L and capacitance C) circuit represents a fun-
damental cell. To our knowledge, the quantization of this cir-
cuit was first performed by Louisell in the 1970s [21]. This
author has studied the quantum effects of a nondissipative
mesoscopic LC circuit with a source and expressed its fluctu-
ations in the vacuum state. Based on Louisell’s work and with
the progress of quantum information and quantum computa-

tion, many articles concerned with mesoscopic or nanoscale
circuits have been published in the literature [1–5,22–25].

The connection of superconductors with a mesoscopic
LC circuit can be made through the Josephson junctions. In
fact, one can consider Josephson junctions connected to an
inductance by a capacitor [1,2,6]. So, it is of high interest to
academics to study mesoscopic LC circuits from both classi-
cal and quantum viewpoints. Yet, in recent years physicists
have found that a practical solid quantum computer might be
built by using some solid-state devices, for example, taking
a Josephson junction as its core [1, 2]. Here, it is worth re-
membering that a Josephson junction is composed of two su-
perconductors weakly connected by a thin layer of insulating
material [1,2,6].

In the present paper, stimulated by a connection between
superconductors and mesoscopic LC circuits, we investigate
the behavior of a London superconductor and a mesoscopic
LC circuit with a time-varying inductance increasing expo-
nentially and a time-dependent capacitance decreasing expo-
nentially from the classical and quantum viewpoints. No-
tably, we find that the behavior of these systems is identi-
cal and can be described by the Caldirola-Kanai Hamilto-
nian. Furthermore, using the dynamical invariant method de-
veloped by Lewis and Riesenfeld [26] and Fock states, we
easily solve the time-dependent Schrödinger associated with
this Hamiltonian and write its solutions in terms of a spe-
cial solution of the Milne-Pinney equation [27, 28]. Finally,
we use Fock states to calculate some quantum properties of
these systems, such as the expectation values of the charge
and magnetic flux, their quantum variances, and the corre-
sponding Heisenberg uncertainty principle.

This paper is organized as follows. In Sec. 2, we discuss
the classical equivalence of the London superconductor and
of the time-dependent mesoscopic LC circuit. The quantum
equivalence is presented in Sec. 3. In Sec. 4, we conclude the
paper with a short summary.
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2. Classical description

2.1. London Superconductor

In this subsection, we discuss the classical behavior of the
London superconductor. In order to do so, let us first con-
sider, for the sake of clarity on the exposition of the math-
ematical formalism, the classical Maxwell’s equations with
free charge and currents sources which can be written in the
form

∇ · ~D = ρ, (1)

∇× ~E = −∂ ~B

∂t
, (2)

∇ · ~B = 0, (3)

∇× ~H =
∂ ~D

∂t
+ ~J. (4)

whereρ is the total density charge. The constitutive equa-
tions relating the fields are given by~D = ε ~E and ~B = µ ~H
whereε andµ are, respectively, the electric permittivity and
the magnetic permeability. Strictly speaking, the electric per-
mittivity and the magnetic permeability are complex, but in
this paper, we assume that they are real. Further, the charge
and current satisfy the continuity equation

∇ · ~J = −∂ρ

∂t
, (5)

where~J represent the total current density.
The electromagnetic equations of the superconductor,

that is, the London’s equations, are given by [9,13,29]

∂ ~Js

∂t
=

1
µλ2

L

~E, (6)

∇× ~Js = −nse
2
s

ms

~B, (7)

where
λ2

L =
ms

µnse2
s

, (8)

is the London penetration depth. In the above expressions,
~Js is the supercurrent density, andns, ms andes are, respec-
tively, the density of electrons in a superconducting state, the
mass, and the charge of the superconducting electrons. Now,
the total current density is

~J = ~Jn + ~Js, (9)

where ~Jn is the current density associated with the normal
electrons given by

~Jn = σ ~E, (10)

with σ being the electric conductivity. Then, differentiating
Eq. (9) with respect to time and using the Maxwell and Lon-
don equations as well as the continuity equation (5), we ob-
tain the equation of motion for the total charge within a cer-
tain volume of the superconductor as

q̈(t) +
σ

ε
q̇(t) + ω2q(t) = 0, (11)

where the dots stand for time-derivatives,ω2=c2/λ2
L is the

frequency andc = 1/
√

µε is the velocity of the light in the
superconductor. The expression (11) represents the equation
of motion of a standard damped harmonic oscillator whose
solution is

q(t) = Ae−σt/2ε sin(Ωt + δ), (12)

whereA andδ are constants to be determined by the initial
conditions andΩ is given by

Ω2 = ω2 −
( σ

2ε

)2

, (13)

with Ω2 > 0 (oscillatory solutions). The Eq. (11) can be eas-
ily derived from the time-dependent classical Hamiltonian

H(t) = e−σt/ε Φ2

2ε
+

1
2
eσt/εεω2q2, (14)

whereq andΦ are canonical variables withΦ being the mag-
netic flux. This Hamiltonian is the well-known Caldirola-
Kanai Hamiltonian, which has been used in the literature
to study time-dependent systems in various areas of physics
[19, 30–35]. It is also easily verified that for this case, the
classical magnetic flux is given by

Φ = εeσt/εq̇, (15)

which can be rewritten as

Φ = L′(t)i, (16)

wherei = q̇ is the current within a certain volume of the
superconductor and

L′(t) = εeσt/ε, (17)

represents the inductance of the London superconductor.
What is more, Eq. (15) yields

ε = −dΦ
dt

= εeσt/εω2(t)q = L′(t)ω2q, (18)

which is the Faraday’s law for the London superconductor.
Therefore, the above results give a complete classical de-
scription of the London superconductor.

2.2. Time-dependent mesoscopic LC Circuit

In the present subsection, we are interested in studying the
classical behavior of the time-dependent mesoscopic LC cir-
cuit. The classical scheme of this circuit is well-known.
In the present case, it consists of an inductanceL(t) and
a capacitanceC(t). The time-dependent capacitance enters
the total voltage asq1/C(t), and the time-dependent induc-
tance induces a magnetic field with the fluxΦ1 = L(t)i1,
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which contributes to the voltage, that is, Faraday’s law. Here,
i1 = q̇1 is the current in the circuit. Then, by using Kirch-
hoff’s laws, one readily obtains the equation of motion for
the chargeq1 as

q̈1(t) +
L̇

L
q̇1(t) + ω2

1q1(t) = 0, (19)

whereω2
1=1/LC is the resonant frequency of the circuit. In

the follows, we assume thatL(t) andC(t) vary exponentially
with time at a constant rate in the form [20,36]

L(t) = L0e
ηt and C(t) = C0e

−ηt, (20)

whereη is a positive constant andL0 = L(0) and C0 =
C(0). So, we can rewrite the equation(19) as

q̈1(t) + ηq̇1(t) + ω2
0q1(t) = 0, (21)

whereω2
0=1/L0C0. At this point, we observe that the time-

dependence of the inductance gives rise to a dampingη in the
amplitude of the system. Hence,L̇(t) behaves as an effective
conductivity for the circuit (compare Eqs. (11) and (19)).

The equation of motion (21) can be derived from the
Hamiltonian

H1(t) = e−ηt Φ2
1

2L0
+

1
2
eηtL0ω

2
0q2

1 , (22)

whereΦ1 is the magnetic flux which is given by

Φ1 = L0e
ηtq̇1 = L(t)i1. (23)

Here, we note that the Hamiltonian (22) is similar to the
Hamiltonian (14). From Eq. (23) we get Faraday’s law as

ε1 = −dΦ1

dt
= L0e

ηtω2
0q1 = L(t)ω2

0q1. (24)

Furthermore, the solution of Eq.(21) is given by

q1(t) = Be−ηt/2 sin(Ω1t + ξ), (25)

where the constantsB andξ are determined by the initial con-
ditions andΩ2

1 > 0 is the modified frequency of the circuit,
which is given by

Ω2
1 = ω2

0 − (η/2)2. (26)

At this stage, we let us observe that the mathematical for-
malism for describing the classical behavior of the London
superconductor and the time-varying mesoscopic LC circuit
with inductance and capacitance modulated exponentially at
a constant rate is identical. In both cases, the equations of
motion are governed by a standard damped harmonic oscil-
lator [Eqs. (11) and (21)] which can be obtained from sim-
ilar Hamiltonians [Eqs. (14) and (22)]. These systems also
possess similar expressions for the magnetic flux [Eqs. (16)
and (23)], inductance [Eqs. (17) and (20)] and Faraday’s law
[Eqs. (18) and (24)]. In order to push this analogy even fur-
ther, we make the following correspondence:σ/ε⇔ η andε

⇔ L0. However, the equivalence of these two systems is not
complete. In fact, the dispersion relationsω andω0, which
are inherent to each physical system, differ, and as a conse-
quence, the behavior of the electromagnetic oscillations of
each system is different. On the other hand, in the absence
of dissipation, that is,σ = 0 andη = 0, the Hamiltonians
(14) and (22) reduce to that of a time-independent harmonic
oscillator withε andL0 playing the role of the mass of the
standard time-independent mechanical oscillator.

3. Quantum description

In order to obtain the quantum description of our time-
dependent mesoscopic LC circuit or, equivalently, of the
London superconductor, we must solve the time-dependent
Schr̈odinger equation associated with the Hamiltonian (22) or
Hamiltonian (14), respectively. Here, we consider the Hamil-
tonian (22). The time-dependent Schrödinger equation asso-
ciated with this Hamiltonian is

H1|Ψ, t〉 = i~
∂

∂t
|Ψ, t〉, (27)

where the chargeq1 and the magnetic fluxΦ1 now are canon-
ical operators satisfying the commutation relation[q1,Φ1] =
i~ with Φ1 = −i~∂/∂q1. The solutions of Eq.(27) can be
obtained with the aid of the dynamic invariant method in-
troduced by Lewis and Riesenfeld [26]. According to this
method, if there exist a time-dependent nontrivial Hermitian
invariant operatorI(t) (constant of motion) for the system
described by the Hamiltonian (22), and it obeys the equation

dI

dt
=

1
i~

[I, H1] +
∂I

∂t
= 0, (28)

the solutions of the time-dependent Schrödinger equation
(27) can be written in terms of orthonormalized eigenstates
|φn, t〉 of I(t),

I(t)|φn, t)〉 = λn|φn, t〉, (29)

and phase functionsβn(t) as

|ψn, t〉 = eiβn(t)|φn, t〉, (30)

where theλn are time-independent eigenvalues and the phase
functionsβn(t) are derived from the equation

~
dβn(t)

dt
=

〈
φn, t

∣∣∣∣i~
∂

∂t
−H1(t)

∣∣∣∣ φn, t

〉
. (31)

with the orthonormality condition< φn′ , t|φn, t >= δn′n.
In this paper, we assume a quadratic invariant in the form
[19,32,36]

I(t) =
1
2

[(
q1

ρ

)2

+ (ρΦ1 − Lρ̇q1)
2

]
, (32)
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whereρ(t) is a time-dependent real function satisfying the
Milne-Pinney equation [19,27,28]

ρ̈(t) + ηρ̇(t) + ω2
0ρ(t) =

1
L2(t)ρ3(t)

, (33)

with L(t) given by equation(20).
Next, our task is to solve the eigenvalue Eq. (29). In order

to do this, we will use the Fock state base since, as it is well-
known, the quantum behavior of some quantum systems, in
particular quantum harmonic oscillator-type systems, is more
obvious in Fock states, which are states with specific num-
bers of energy quanta. Then, let us introduce annihilation and
creation-type operatorsa(t) anda†(t) defined by [19,26,37]

a(t) =
(

1
2~

)1/2 [
q1

ρ
+ i(ρΦ1 − Lρ̇q1)

]
, (34)

a†(t) =
(

1
2~

)1/2 [
q1

ρ
− i(ρΦ1 − Lρ̇q1)

]
, (35)

with
[a(t), a†(t)] = 1. (36)

In terms of these operators, the invariant (32) can be rewritten
as

I(t) = ~
[
a†(t)a(t) +

1
2
)
]

. (37)

From the Eqs. (36) and (37) we see that the eigenvalue equa-
tion for I(t) (see Eq. (29)) can also be solved exactly, just as
for the harmonic oscillator in the time-independent case by
using the Fock states|n, t〉. So, defining the Hermitian num-
ber operator byN = a†a so thatN |n, t〉 = n|n, t〉, we find
that

I(t) = ~
(

N +
1
2

)
. (38)

I(t)|n, t〉 = ~
(

n +
1
2

)
|n, t〉, (39)

a(t)|n, t〉 = n1/2|n− 1, t〉, (40)

a†|n, t〉 = (n + 1)1/2|n + 1, t〉. (41)

From Eq. (38) we see that the eigenstates ofI(t) are also
eigenstates ofN and vice versa.

In what follows, we want to find the phase functions given
by Eq. (31). By making the change|φn, t〉 → |n, t〉 and after
performing some basic calculations, we get that

βn(t) = −
(

n +
1
2

) t∫

0

1
L(τ)ρ2(τ)

dτ. (42)

We now consider a particular solution of the Milne-Pinney
Eq. (33) given by [19,32]

ρ(t) =
e−ηt/2

(L0Ω1)1/2
. (43)

For this case, Eq. (42) reduces to

βn(t) = −Ω1

(
n +

1
2

)
t. (44)

Therefore, we can write the solutions of the Schrödinger
Eq. (27) as

|ψn, t〉 = eiβn(t)|n, t〉, (45)

with βn(t) given by Eq. (44). The general solution to
the Schr̈odinger Eq. (27) can be written as|Ψ, t〉 =∑

n cn|ψn, t〉, where the coefficientscn are constant.
Next, we use the Fock states to calculate some quantum

properties for the quantized mesoscopicLC circuit. To this
end, we use the Eqs. (39), (40), and (41). After a little alge-
bra, we find that

〈I〉 = ~
(

n +
1
2

)
, (46)

〈q1〉 = 〈Φ1〉 = 0, (47)

〈q2
1〉 = ~ρ2

(
n +

1
2

)
, (48)

〈Φ2
1〉 = ~

[
1
ρ2

+ (Lρ̇)2
] (

n +
1
2

)
. (49)

By using the above expressions, we find the quantum vari-
ances as

(∆q1)2 = 〈q2
1〉 − 〈q1〉2 = ~ρ2

(
n +

1
2

)
, (50)

(∆Φ1)2 = 〈Φ2
1〉 − 〈Φ1〉2

= ~
[

1
ρ2

+ (Lρ̇)2
](

n +
1
2

)
. (51)

Multiplication of (50) by (51) yields

(∆q)(∆Φ) = ~
[
1 + (Lρρ̇)2

]1/2
(

n +
1
2

)
, (52)

which represents the uncertainty principle for our system. By
using the particular solution (43), the uncertainty principle
(52) reduces to

(∆q1)(∆Φ1) =
~ω0

Ω1

(
n +

1
2

)
. (53)

From (53), we see that the uncertainty principle does not de-
pend on time and that its value becomes larger when the dis-
sipation, that is,η increases. What is more, the above results
give us the quantization of the charge, the magnetic flux, and
the uncertainty principle for our time-dependent mesoscopic
LC circuit. Now it is worth noticing that in the absence of the
dissipation,η = 0, the expression (53) becomes

(∆q1)(∆Φ1) = ~
(

n +
1
2

)
, (54)
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which is similar to the uncertainty principle of a harmonic
oscillator with frequencyω0 (see Eq. (21)). We also no-
tice that for this case, the particular solution (43) becomes
ρ = 1/(L0ω0)1/2 and the Hamiltonian (22) and the anni-
hilation and creation operators (35) and (36), respectively,
are formally reduced to that of the standard time-independent
harmonic oscillator.

Finally, we observe that for the London superconduc-
tor, the quantum description can be carried out following the
same procedure used for the time-dependent nanoscale LC
circuit case since, as we have demonstrated previously, the
mathematical framework to study the behavior of both sys-
tems is identical.

4. Summary

In this work, we have presented a simple procedure to ana-
lyze the classical and quantum behavior of the London su-
perconductor and of a mesoscopic LC circuit with an induc-
tance and a capacitance varying exponentially with time at
a constant rate. Notably, we have found that the behavior

of these two systems is equivalent, both classically and quan-
tum mechanically. We also have shown that this behavior can
be mapped into, in both cases, a standard damped harmonic
oscillator which is governed by the well-known Caldirola-
Kanai Hamiltonian. Yet, we have noted thatL̇(t) behaves
as an effective conductivity for the mesoscopicLC circuit.
Further, by using the invariant method, appropriated annihi-
lation, and creation-type operators and Fock states, we have
easily solved the time-dependent Schrödinger equation for
the time-dependent mesoscopic LC circuit (the same proce-
dure can be made for the London superconductor) and writ-
ten its solutions in terms a particular solution of the nonlin-
ear Milne-Pinney equation. In addition, by using Fock states,
we have calculated the expectation values of the charge and
magnetic flux, their quantum variances as well as the uncer-
tainty principle for the quantized time-dependent mesoscopic
LC circuit. Finally, we expect that the procedure developed
in this paper can be helpful to investigate subjects related to
London superconductors and other mesoscopic or nanoscale
circuits.
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