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In this work, we construct solitary wave solutions for fractional nonlinear evolution equations in wave theory, which are used to explain the
physical wave formation structures on the surface and in the water, namely the time fractional fifth-order Sawada-Kotera equation and the
(4+1) dimensional space-time fractional Fokas equation by Kudryashov method with a new function. The aim of this study is to obtain new
solitary solutions by reducing the number of calculations. As a result, new types of solitary wave solutions are obtained via Mathematica
11.3 package program. Here the fractional derivative is described in beta sense.
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1. Introduction ential equations. The main starting point of the method is
based on the efficiency of the functiohn) = (aexp(n) +

o)) -1 i
Fractional order partial differential equations have beerfeP(=1))”" wherea andb are parameters. Besides the

among the hot topics discussed recently in books [1, 2] an&wethods applied when solving fractional equations, the di-
many research papers [3-34]. Solitary wave soluti(;ns argersity of fractional derivatives used is also an important part
considered a significant challenge in many disciplines, rangc_)f research. While some researchers preferred the Riemann-

ing from biology, quantum chemistry, electrodynamics, ViS_LlovHIe type derivative in their studies [3, 5, 12, 14, 19, 21],

coelasticity, image processing, systems identification and OpggmeFrzeseartlzheer'\s preferred tlhesgagzto_ typz derl(\j/atwe [5,32,
tical fibers to fluid mechanics. Well known traditional ap- ]. Recently, Atanganat al. [33, 34] introduced a new

proaches based on auxilary equations are known to have efﬁ_envanve deﬂnmgn: the b;ta—frsctpnal ]:jen\{atlwle.f tth-ord
ciencies for obtaining solitary wave solutions. Fractional or- In many previous studies the time-fractional fifth-order

der equations are currently Used in several modern technolg@Wada-Kotera equation and the time fractiogaht 1)-

gies of the twenty first century such as optical imaging, thedimensional Fokas equation have been handled with the sense

study of waves on dam water, solid state physics and swing2| Jumarie’s Riemann-Liouville derivative [3, 5,6, 8,12, 19].
ing in quantum mechanics. Since such equations contain hen, solitary solutions have been obtained by creating aux-

wide range of applications, it is important for researcherd &Y equations in acpordancg with the method’s own al-
to construct and apply robust algorithms for the solutionsgor'th_m for the equatlons,. Wh'?h are re‘i"%ced by using the
of fractional equations. In many fields of science and engi_travelmg wave transformations in the traditional methods ap-

neering, especially in physical problems, several techniqueBI'Ed' These equations, which have important roles in wave

have been proposed to obtain exact or approximate solution&1€0Y: are used to explain the physical wave formation struc-
such as theanh — sech method [3, 4], g-homotopy analy- tures that occur on the surface and in the water. In particular,

sis method (q-HAM) [5-7], residual power series methodWhereas Sawada-Kotera equation delineates a merely inelas-
[6], the sub-equation meth’od 6,8, 9], improved Bernoullitic scattering transaction, Fokas equation is driven to qual-

sub-equation function method [10], the reduced differential’y the surface waves and internal waves in channels or nar-

transform method [11], the generalized ex(&)— expan- rows of varying width and depth. The main motivation of

sion and improved F-expansion method [12], the extendeHjiS work is to obtain new solitary wave solutions with less
fractional D¢ G /G-expansion method [13], Jacobi elliptic computation. Hence, in this study, we apply the newest ver-

functions [154], the modified exponential function method SO ©f Kudryashov's algorithm with arbitrary refractive in-
[15], Sine-Gordon expansion method [16, 17], the exponengex [30,31] for efficient computation of these equations using

tial rational function method [18], the general Riccati equa-I"€ Peta derivative.

tion method [19], generalized Kudryashov method [20, 21],

the direct truncation method [22], the modified Kudryashovy  Motivation

method [4,23—-29] and so on. Recently, Kudryashov [30, 31]

proposed a new method based on arbitrary refractive index 1. Beta Derivative Definition

and pole order principle. The novelty of this approach is

the introduction of troducing a convenient logistic function Let « be a functiony : [a, 0] — R. In [34] Atanganeet al.
to obtain solitary wave solutions of nonlinear partial differ- proposed the beta derivative as following:
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Step 2: Secondly, we presume that the following travel-
ing wave transformation

u [x +¢ (x + F(la))la} — u[z]

ADYu(x)] = lim , () v(E,y, 2, w,t) = v(n), (10)
¢—0 ¢
. . . . J6] 1 \% ~ 1 \*
forall z > a, 0 < o < 1. If the limit of Eq. (1) exists, f is n=kr—|—|y+ (o) + —=(z+ T(a)
said to be beta-differentiable. Beta derivative definition does @ (a) @ (a)
not depend on the interval. If the function is differentiable at o 1 \“ ¢ y 1 \“ 11
a zero point Eq.3) is not equal to zero. o\ [(a) P e T(a) ’ (11)

Assuming thatu andv # 0 are two functions beta-
differentiable with0 < a < 1 then, the beta derivative pos- reduces the fractional order of the differential E®).ifito an
sesses the next properties: ordinary differential equation. Herg, 3, v, o andc are arbi-
trary constants. Then, by using the chain rule we have,
1) D3 [au(z) + bu(z)]=ag DS [u(z)] + by Dg[v(x)], (2)
p(v, v’ 0" ) =0. (12)
for all @ andb real numbers.

Step 3: By the proposed method, we consider that @) (

A Nna _
2) o Dzld =0, @) has a solution of the form:
with d a given constant.. N
[ o o - m m s 13
3 D fu(a)o(@)l—o(@)f D (@) +u(e)f D@, () v = D anQ" ) (13
AnDa _ Ana
4)3‘D$ ’U,(l‘) — U(x)o DZL’ [u(x)]Q ’LL(LL')O Dz [’U({,C)] (5) where
v(x) v2(z)
1
Considering from Eq. 1) the factor ¢ = Qn) = — (14)
(z + [1/T()])' " h, we see thah — 0, when( — 0, aexp(n) + bexp(—n)
therefore we obtain Q(n) adopts the given ordinary differential equation:
1\ du(x)
A pa — 2 _ "2 _ 2
e ) B O Q= Q21— x@). 15)
Introducing wherey = 4ab. The main feature of)(n) is that higher or-
o der odd derivatives includes bath(and its powers) andy,,,
n= il ( + 1 ) @) while the even derivatives have orfyand its powers. There-
o (a)) ’ fore, the expressions of the higher order derivatives from sec-

wherek is constant, we reach the equation ond to fifth order are

_ _ 3
(?Dg [u(n)] — ’idz(n) (8) QUU - Q 2XQ ) (16)
" Qrmn = Qn - GXQZQW (17)
3. Methodology Q= Q — 20xQ° + 24x°Q°, (18)
3.1. Methodolgy to figure out the solitary wave solitons Qunn = @y — 60xQ°Q,, + 120x°Q*Qy, (19)

The main steps of the proposed method are represented as@mmmm = @ — 182xQ3 + 840x2Q° — 720x*Q". (20)
follows:

Step 1: Initially, we consider the general form of nonlin-
ear fractional partial differential equations given by

Then, taking into account the polynomiab(n) =
Zﬁ:o a,» Q@™ (n) and assuming. That the pole order of the
equation isN by means of homogenous balance principle,
© (U,Uz,vln ey Uty Vg, Ugys -y DU, D0, D, .., (9)  We can find the relations of derivatives, vy, Uy, Unnnn

) ) ) andv,,,, as follows:
Dv, D;*v..., Div, ) =0, 0<a<l,

N
wherev = (z,y, z,w, t) is an unknown function ang is a vy = Z ammQ™1Q,, 1)
polynomial inv and its various partial derivatives in that the 1
highest-order derivatives and nonlinear terms are involved. N
Additionally Df*v, Dyv, Dgv, Dgv... are beta dervatives of Uy = Z am[m2Q™ — m2yQ™ 2 — mxQ™?], (22)

V. m=1
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N
Unpnn = Z Am [mBmel - Xm2 (m + 2)Qm+1 - Xm(m + 2)Qm+1]QW’ (23)
m=1
N
Vg = Y, mam [m® 4 (M + 6m*x° + 11mx® + 6x)Q* — (2m®x + 6m’x + 8mx +4x)Q*|Q™,  (24)
m=1
N
Unmnmn = Z mam Q™ m* + (m + 4)(m?x* + 6m>x* + 11mx> + 6x°)Q*

m=1
— (j +2)(2m*x6m>x + 8mx + 4x)Q?|Q,)- (25)

Step 4: Inserting Eq.[13) and 21)-(25) into Eq.12 we have the reduced form of the equation into polynomial which consists
of @ and@,,. Next, matching each coefficient for different powersi;tﬁ’fQﬁ; (h = 0, 1) we obtain a set of algebraic equations.
Finally, by solving this system, we obtain the solitary wave solutions of E2). (

4. Applications

4.1. The time-fractional fifth-order Sawada-Kotera Equation

The time-fractional fifth-order Sawada-Kotera equation is a significant unidirectional nonlinear evolution equation appurtenant
a fully integrable hierarchy of higher fractional order KdV equations. In other words, it is a special case of the KdV equations
as follows:

D04 Vg ppn 450,07 415 (VpUpp +0Vs02) = 0, (26)

where0 < o < 1. To apply the afordsaid method, first, we use the fractional beta transformation:
(2,8) = v(n) SN T (27)
v\, =vn), N = RZ o F(a) .

After this wave transformation, Ec26) is reduced into the following ODE:

’

—60 + EPv™ 4 450 0% + 15(0'v” +ov” ) = 0. (28)

By using the homogenous balance principle in [28) (balancing the highest order derivative and nonlinear term, we obtain
the pole ordefV = 2. Then, the second degree auxilary polynomial can be written as follows:

v(n) = ap + a1Q(n) + a2Q*(n), (29)

where
1
aexp(n) + bexp(—n)

Qn) =
adopts the differential equation:
Q% = Q2(1 - XQQ)a

with x = 4ab.
Calculating the derivatives of E(R9) from first to fifth order the following equations are obtained:

v'(n) = Qy a1 + 2a2Q(n)]
v’ (n) = a1 (Q(n) — 2Q° () + a2 (4Q*(n) — 8xQ*(n)) ,
v (1) = Qular (1 - 6xQ*(n)) + a2 (3Q(n) — 24xQ°(n))),
vl () = Qylar (1 +120x°Q* () — 60xQ* (1)) + 2a2(16 + 300x°Q" (1)) — 240xQ* (1)) Q(n)]- (30)

Rev. Mex. Fis68010703
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Substituting Eq.29) and Egs./80) into Eq. 28), we obtain an equation which contains the power§ofThen, by linking all
the same powers @ and equating all the coefficients to zero, we get the following algebraic system:
kPai — dar + 15apa; + 45aga1 =0,
30a? 4+ 90apa? 4 32k°ay — 20as + 120apas + 90azas = 0,
—60k5xa1 — 90xapa; + 45(1? + 225a1a9 4+ 270agarae = 0,
a3 — 90xa? — 480k°yas — 360xapas + 180atay + 240a3 + 180aga3 = 0,
120k°x*a; — 60aas — 570xayas + 225a1a3 = 0,
600k°x2ay — 600xa3 + 90a3 = 0.

Finally, solving this system we get seven cases of solitary wave solutions of th2grgqs(Case I:

14 14y {,f 28
= -, = O7 = -, k = =, (5 = -,
T A @273 5 5

)= —15 + x| ooy
Y= 705 T3 X da2en + xe™"

2
14 14 4a
v(z,t) = —— + —x — —= | - (31)
()= =15+ 3 <4a26%—§z<t+rm e Vi B )
Case Il
14 14y 7 28
__M —0 e S A
ap 157 ai ’ az 3 ’ 53 57
-2 M (e Y
Y= 705 T3 X daen 1 e
14 14 4 ?
a
= u , 32
’U(:L‘ ) 15 + 3 X (4(126_ %T—%(H‘ﬁ)a +Xei)/zw+§2(t+r(la))a> ( )
Case Il
4 2
w=-3 =0 a=-—(-Sx+Vix), k=1 =16
() = 44 10-2v10 4a ?
v =3 3 4a%e" + xe~n )
2
4 10— 2410 4a
U(SC,t) =—5t X 16 1\« 16 ]\« ' (33)
3 3 da2e® ()" 4 X,{”F(t*r(a))
Case IV
4 2
w=3. a=0  a=c(bx+Vix)., k=1 =16
oy = 4 10=2VI0 da ?
=3 3 4a2en + ye=n )’
2
4 10— 210 4da
)= - — _ — | . 34
v 3 3" <4azemf(t+mla>) +xe ot () > .

Rev. Mex. Fis68010703



SOLITARY WAVE SOLUTIONS FOR SOME FRACTIONAL EVOLUTION EQUATIONS VIA NEW KUDRYASHOV APPROACH 5

Case V.
40 20x 2400
a0 = —57 a; =0, a2 = 3 k=0, 6= 19
o= 4020 ( da Y
=701 T 3 Gazen y e )
2
40 20 4a
v(r,t) = —-= — & a N 35
(@t =—51~ 53X <4a262ﬁ£§’(t+r(la>) + yeitn (i) ) (39
Case VI:
4 2
aoz—g, a1 =0, a2:§(5X—\/ﬁ>v k=1, § =16,
4 10y —2V10 da 2
v(n) =—=+ -
3 3 4a%en 4 xe™"
2
4 10y —2v/10 da
v(z,t)=—=+ —e7 T e —% T | - (36)
3 3 4&261 o (t+1"(a)) + xe T+ (t+ F(Oé))
Case VII:
4 2
ao_ga a1:07 a2:§<5X+\/ﬁ)7 ]{3:1, (;:16’
4 10y +2V10 4a 2
v(n) =5+ e B
3 3 4a2en + ye "
2
4 10y + 2v/10 4a
v(z,t) =5 + —16(;0 1 \© _pp 16 1) ) (37)
3 3 4@263: o (t+1"(a)) -+ xe T+ (t+r(a))

4.2. The(4 + 1)-dimensional space-time fractional Fokas equation

The (4 + 1)-dimensional space-time fractional Fokas equation has the form:

9% oty oty 0% 0%v 0% 0%
- + +125——— +12v —
ot*dx™  Qx3*Qy™  JxOy3™ Oz dy® OOy~ 0z 0w®

First, we apply the fractional beta transformation:

=0, t>0, O<a<l. (38)

v(@,y,z,w,t) = v(n), (39)
e iy) 2o o) e ) o
Then, Eq.88) is reduced into the following ODE:
(4¢6 — 6yo) V" + (B%5 — 6°B) v + 1263 (v0') = 0. (41)
We integrate Eq.41) once, taking the integration constant zero for simplicity. Then, we obtain the following ODE:
(4¢0 — 6yo) v’ + (826 — 0°B) v + 1203 (') = 0. (42)

Again, using the homogenous balance principle and balacing the téfrasdvv’ we calculate the pole ordé¥ = 2. Then,
we can write the auxilary polynomial as:

v(n) = ao + a1Q(n) + a2Q*(n), (43)

where
1

aexp(n) + bexp(—n)

Qn) =

Rev. Mex. Fis68010703
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FIGURE 1. Three-dimensional plot of the solutic87) for a = 1, St ' 'l—j i s ittt

x =4 anda = 1.

FIGURE 2. Plot of the solutiond7) fora« = 1, x = 4 anda = 1.

- " 45

FIGURE 3. Three-dimensional plot of the solutic84) for
a=1/2,x =4anda = 1.

adopts the equation:
Qr = Q*(1 - xQ?), (44)

with y = 4ab.
The first and third derivatives of E8) are sufficient for the solutions. Hence, we take them as follows:

v'(n) = Qylar + 2a2Q(n)]

v () = Qnlar (1 —6xQ%(n)) + a2 (8Q(n) — 24xQ*(n))]. (45)

Substituting Eq.43) and Eqgs.45) into Eq. 42), we get an equation including the powergafThen collecting the terms with
the same power af) and equating the coefficients to zero, we obtain the following algebraic system:

4cday + B30ar + B6%ar — 6voar + 1235ay = 0,

126(5a% + 8cdas + 83%8as + 8338as + 866%as — 12voas + 2436agas = 0,
—6636xa1 — Gﬂégxal + 3606daias = 0,

—24335xay — 2436%xas + 24B5a3 = 0.

Solving this system we get ten cases of solitary wave solutions of thi8B)cpg:

Case l:
26 24+ 36%+3
ap=ag, a1 =0, ax=(6°+0%)x, o= (c+ 052+ 557 + ﬁ“0)7
3y
4a 2
2 2 2 2 2
v = a0 = (F+ )X<4a2en+xen> - v(myzw ) = ag — (5 +07) xA%, (46)
where

R
4a2en + xye™ "

Rev. Mex. Fis68010703
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and

t (o) ) 3 ) I e )’

Casel ll:

ag = aop, ay :05 ag :ﬁQXa 6207 V:Oa ’U('r’y7zawat) :ao_ﬁ2XA27 (47)
where A
a
A=———"-—
<4a26" —|—Xe—’7>
and
Ié) 1 * o 1 * ¢ 1 *
= — —_— — —_— —t+ = . 48
=a () o) e wa) “o
Case llI:
—c— 3 _ 62
aozﬂ, a; =0, a2:(52+62)X7 ’YZO’
35
—c— [* - (36° 2, 52\ . A2
U(l',y,z,w,t):T+(ﬂ +5))("47 (49)
where A
A= <a>
da%en 4+ ye™"
and
e YN B (e Y o (e LY e LY
T=a " () a \Y () a\’ () a I(a))
Case IV:
2
ag = ag, ay =0, az = (B> +6°) x, oc=1, 7256(04—534—6524—3,6’@0),
v(x,y, 2w, t) = ag — (8% + 6°) xA?, (50)
where A
a
A= —=
<4a2677 —i—xe—")
and

= (i) < b)) o (ve) <2 ()

Case V:

ag = aop, a; =0, a22(62—|—1)x, 6=1, U:%(c+ﬁs+ﬁ52+3ﬂao),
v(z,y, 2, w,t) = ag + (52 + 1) A2, (51)
where , ta
- <4a2e"+xe”)
and

o) ) ) ) ) )

Rev. Mex. Fis68010703
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FIGURE 4. 3D Plot of the solution49) for « = 0.25, x = 4 and
a=1.
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FIGURE 5. Plot of the solution/49) for « = 0.25, x = 4 and
a=1.

Case VI:
c+ B+ 3
0 - gﬁﬂv a1 =0, a2:(/82+1)Xa 6:17 ’7:07
2
oz 0) = = (94 1) 52)
where A
a
A= <4a2(3’7 + Xe‘”)
and
—l z+# 0‘+§ +L a+z w+L 0‘+£ t+La
T (o) a \Y " T() (@) a\'"T()) -
Case VII:
2
ag = ag, a1 =0, a2:(52+52)x, v=1, a:§5(0+ﬂ3+ﬁ52+3ﬁa0),
v(z,y, 2w, t) = ag + (8% + 6°) xA?, (53)
where A
a
A= <4a2(3’7 + Xe‘”)
and

b ) i) ) T ey )

8=1, J:%(1+c+62+3a0),

(54)

A:(Wef#)
=5 (o) + 2o+ () 2 o) ()

Rev. Mex. Fis68010703

Case VIII:
ap =ap, a1 =0, az= (1 + 62) X5
U(IE,y,Z,’LU,t) = Qo + (1 + 52) XA27
where
and
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FIGURE 6. 3D Plot of the solution6) for « = 1, x = 4 and FIGURE 7. 3D Plot of the solution§6) for « = 1/2, x = 4 and

a = 1. a = 1.
Case IX:
1+ 62
aoz_%y a1:O7 a2:(62+1)Xa 5217 7207
1462
U<xay7'z7w’t> :_%—i_ (62+1) XA27 (55)
where A
Ao (e
4a?en + xye™ "
and
GRS TSNS AR U T SIS B SN PO N
=% () a\” ') a ') « Ia))
Case X:
1+2
ag = — —267 0'1_07 GQ—QX, 6:1a ﬁ:17 7:1a 0'21,
1+2
v(z,y, z,w,t) = — J; taya?, (56)
where A
A ta
4a2en + ye™n
and

Q|+

oot ) 2 o) ) (o)

5. Concluding Remarks

We have applied a new approach of the Kudryashov method to the time-fractional fifth-order Sawada-Kotera equation and the
(4 + 1)-dimensional space-time fractional Fokas equation which arise in mathematical physics. The wave transformations
applied with the help of beta derivative definitions and¢h&inction included in the algorithm facilitated the computation of

the solutions. The general solutions for the time-fractional fifth-order Sawada-Kotera equation &hd-the-dimensional
space-time fractional Fokas equation have been pointed out as polynomials of the logistic function, which in turn are solu-
tions of the Riccati equation. Finally, some new exact solutions in the form of exponential functions for given equations are
established. We have also presented the numerical simulations for equations thanks to three dimensional plots. Therefore, w
conclude that this method may have general applications. As comparing the other methods, the advantage of this approac
is that the form of function is not used at the calculation. This gives us not only ease of calculation, but also the opportunity
to obtain new solutions. However, it should not be overlooked that this new method is more suitable for nonlinear equations
with even-order derivatives. Hence, one can conclude that the method can method can be applied to many fractional partia
differential equations.

Rev. Mex. Fis68010703
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