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1. Introduction

Fractional order partial differential equations have been
among the hot topics discussed recently in books [1, 2] and
many research papers [3-34]. Solitary wave solutions are
considered a significant challenge in many disciplines, rang-
ing from biology, quantum chemistry, electrodynamics, vis-
coelasticity, image processing, systems identification and op-
tical fibers to fluid mechanics. Well known traditional ap-
proaches based on auxilary equations are known to have effi-
ciencies for obtaining solitary wave solutions. Fractional or-
der equations are currently used in several modern technolo-
gies of the twenty first century such as optical imaging, the
study of waves on dam water, solid state physics and swing-
ing in quantum mechanics. Since such equations contain a
wide range of applications, it is important for researchers
to construct and apply robust algorithms for the solutions
of fractional equations. In many fields of science and engi-
neering, especially in physical problems, several techniques
have been proposed to obtain exact or approximate solutions,
such as thetanh− sech method [3, 4], q-homotopy analy-
sis method (q-HAM) [5–7], residual power series method
[6], the sub-equation method [6, 8, 9], improved Bernoulli
sub-equation function method [10], the reduced differential
transform method [11], the generalized exp−φ(ξ)− expan-
sion and improved F-expansion method [12], the extended
fractional Dα

ξ G/G-expansion method [13], Jacobi elliptic
functions [14], the modified exponential function method
[15], Sine-Gordon expansion method [16, 17], the exponen-
tial rational function method [18], the general Riccati equa-
tion method [19], generalized Kudryashov method [20, 21],
the direct truncation method [22], the modified Kudryashov
method [4, 23–29] and so on. Recently, Kudryashov [30, 31]
proposed a new method based on arbitrary refractive index
and pole order principle. The novelty of this approach is
the introduction of troducing a convenient logistic function
to obtain solitary wave solutions of nonlinear partial differ-

ential equations. The main starting point of the method is
based on the efficiency of the functionQ(η) = (aexp(η) +
bexp(−η))−1 wherea and b are parameters. Besides the
methods applied when solving fractional equations, the di-
versity of fractional derivatives used is also an important part
of research. While some researchers preferred the Riemann-
Lioville type derivative in their studies [3, 5, 12, 14, 19, 21],
some researchers preferred the Caputo type derivative [5,32,
33]. Recently, Atanganaet al. [33, 34] introduced a new
derivative definition: the beta-fractional derivative.

In many previous studies the time-fractional fifth-order
Sawada-Kotera equation and the time fractional(4 + 1)-
dimensional Fokas equation have been handled with the sense
of Jumarie’s Riemann-Liouville derivative [3, 5, 6, 8, 12, 19].
Then, solitary solutions have been obtained by creating aux-
iliary equations in accordance with the method’s own al-
gorithm for the equations, which are reduced by using the
traveling wave transformations in the traditional methods ap-
plied. These equations, which have important roles in wave
theory, are used to explain the physical wave formation struc-
tures that occur on the surface and in the water. In particular,
whereas Sawada-Kotera equation delineates a merely inelas-
tic scattering transaction, Fokas equation is driven to qual-
ify the surface waves and internal waves in channels or nar-
rows of varying width and depth. The main motivation of
this work is to obtain new solitary wave solutions with less
computation. Hence, in this study, we apply the newest ver-
sion of Kudryashov’s algorithm with arbitrary refractive in-
dex [30,31] for efficient computation of these equations using
the beta derivative.

2. Motivation

2.1. Beta Derivative Definition

Let u be a function,u : [a,∞] → R. In [34] Atanganaet al.
proposed the beta derivative as following:
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A
0 Dα

x [u(x)] = lim
ζ→0

u

[
x + ζ

(
x + 1

Γ(α)

)1−α
]
− u[x]

ζ
, (1)

for all x ≥ a, 0 < α ≤ 1. If the limit of Eq. (1) exists,f is
said to be beta-differentiable. Beta derivative definition does
not depend on the interval. If the function is differentiable at
a zero point Eq. (1) is not equal to zero.

Assuming that,u and v 6= 0 are two functions beta-
differentiable with0 < α ≤ 1 then, the beta derivative pos-
sesses the next properties:

1)A
0 Dα

x [au(x) + bv(x)]=aA
0 Dα

x [u(x)] + bA
0 Dα

x [v(x)], (2)

for all a andb real numbers.

2) A
0 Dα

x [d] = 0, (3)

with d a given constant..

3)A0 Dα
x [u(x)v(x)]=v(x)A

0 Dα
x [u(x)]+u(x)A

0 Dα
x [v(x)], (4)

4)A0 Dα
x

[
u(x)
v(x)

]
=

v(x)A
0 Dα

x [u(x)]− u(x)A
0 Dα

x [v(x)]
v2(x)

. (5)

Considering from Eq. (1) the factor ζ =
(x + [1/Γ(α)])1−α

h, we see thath → 0, when ζ → 0,
therefore we obtain

A
0 Dα

x [u(x)] =
(

x +
1

Γ(α)

)1−α
du(x)

dx
. (6)

Introducing

η =
κ

α

(
x +

1
Γ(α)

)α

, (7)

whereκ is constant, we reach the equation

A
0 Dα

x [u(η)] = κ
du(η)

dη
. (8)

3. Methodology

3.1. Methodolgy to figure out the solitary wave solitons

The main steps of the proposed method are represented as
follows:

Step 1: Initially, we consider the general form of nonlin-
ear fractional partial differential equations given by

ϕ
(
υ, υx, υy, ..., υt, υxx, υxy, ...., Dα

y υ,Dα
z υ..., Dα

t υ, ..., (9)

D2α
y υ, D2α

z υ...,D2α
t υ, ...

)
= 0, 0 < α ≤ 1,

whereυ = (x, y, z, w, t) is an unknown function andϕ is a
polynomial inυ and its various partial derivatives in that the
highest-order derivatives and nonlinear terms are involved.
Additionally Dα

t υ, Dα
y υ, Dα

z υ, Dα
wυ... are beta dervatives of

υ.

Step 2: Secondly, we presume that the following travel-
ing wave transformation

υ(x, y, z, w, t) = υ(η), (10)

η = kx−
(

β

α

(
y +

1
Γ(α)

)α

+
γ

α

(
z +

1
Γ(α)

)α

+
σ

α

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α )
, (11)

reduces the fractional order of the differential Eq. (9) into an
ordinary differential equation. Here,k, β, γ, σ andc are arbi-
trary constants. Then, by using the chain rule we have,

µ(υ, υ′, υ′′, ...) = 0. (12)

Step 3: By the proposed method, we consider that Eq. (12)
has a solution of the form:

υ(η) =
N∑

m=0

amQm(η), (13)

where

Q(η) =
1

a exp(η) + b exp(−η)
, (14)

Q(η) adopts the given ordinary differential equation:

Q2
η = Q2(1− χQ2), (15)

whereχ = 4ab. The main feature ofQ(η) is that higher or-
der odd derivatives includes bothQ (and its powers) and,Qη,
while the even derivatives have onlyQ and its powers. There-
fore, the expressions of the higher order derivatives from sec-
ond to fifth order are

Qηη = Q− 2χQ3, (16)

Qηηη = Qη − 6χQ2Qη, (17)

Qηηηη = Q− 20χQ3 + 24χ2Q5, (18)

Qηηηηη = Qη − 60χQ2Qη + 120χ2Q4Qη, (19)

Qηηηηηη = Q− 182χQ3 + 840χ2Q5 − 720χ4Q7. (20)

Then, taking into account the polynomialυ(η) =∑N
m=0 amQm(η) and assuming. That the pole order of the

equation isN by means of homogenous balance principle,
we can find the relations of derivativesυη, υηη, υηηη, υηηηη

andυηηηηη as follows:

υη =
N∑

m=1

ammQm−1Qη, (21)

υηη =
N∑

m=1

am[m2Qm −m2χQm+2 −mχQm+2], (22)
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υηηη =
N∑

m=1

am[m3Qm−1 − χm2(m + 2)Qm+1 − χm(m + 2)Qm+1]Qη, (23)

υηηηη =
N∑

m=1

mam[m3 + (m3χ2 + 6m2χ2 + 11mχ2 + 6χ2)Q4 − (2m3χ + 6m2χ + 8mχ + 4χ)Q2]Qm, (24)

υηηηηη =
N∑

m=1

mamQm−1[m4 + (m + 4)(m3χ2 + 6m2χ2 + 11mχ2 + 6χ2)Q4

− (j + 2)(2m3χ6m2χ + 8mχ + 4χ)Q2]Qη. (25)

Step 4: Inserting Eq. (13) and (21)-(25) into Eq.12 we have the reduced form of the equation into polynomial which consists
of Q andQη. Next, matching each coefficient for different powers ofQnQh

η (h = 0, 1) we obtain a set of algebraic equations.
Finally, by solving this system, we obtain the solitary wave solutions of Eq. (12).

4. Applications

4.1. The time-fractional fifth-order Sawada-Kotera Equation

The time-fractional fifth-order Sawada-Kotera equation is a significant unidirectional nonlinear evolution equation appurtenant
a fully integrable hierarchy of higher fractional order KdV equations. In other words, it is a special case of the KdV equations
as follows:

Dα
t υ+υxxxxx+45υxυ2+15(υxυxx+υυxxx) = 0, (26)

where0 < α ≤ 1. To apply the afordsaid method, first, we use the fractional beta transformation:

υ(x, t) = υ(η), η = kx− δ

α

(
t +

1
Γ(α)

)α

. (27)

After this wave transformation, Eq. (26) is reduced into the following ODE:

−δυ′ + k5υ(v) + 45υ′υ2 + 15(υ′υ
′′

+ υυ
′′′

) = 0. (28)

By using the homogenous balance principle in Eq. (28), balancing the highest order derivative and nonlinear term, we obtain
the pole orderN = 2. Then, the second degree auxilary polynomial can be written as follows:

υ(η) = a0 + a1Q(η) + a2Q
2(η), (29)

where

Q(η) =
1

a exp(η) + b exp(−η)

adopts the differential equation:

Q2
η = Q2(1− χQ2),

with χ = 4ab.
Calculating the derivatives of Eq. (29) from first to fifth order the following equations are obtained:

υ′(η) = Qη [a1 + 2a2Q(η)] ,

υ
′′
(η) = a1

(
Q(η)− 2Q3(η)

)
+ a2

(
4Q2(η)− 8χQ4(η)

)
,

υ
′′′

(η) = Qη[a1

(
1− 6χQ2(η)

)
+ a2

(
8Q(η)− 24χQ3(η)

)
],

υ(v)(η) = Qη[a1(1 + 120χ2Q4(η)− 60χQ2(η)) + 2a2(16 + 300χ2Q4(η)− 240χQ2(η))Q(η)]. (30)
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Substituting Eq. (29) and Eqs. (30) into Eq. (28), we obtain an equation which contains the powers ofQ. Then, by linking all
the same powers ofQ and equating all the coefficients to zero, we get the following algebraic system:

k5a1 − δa1 + 15a0a1 + 45a2
0a1 = 0,

30a2
1 + 90a0a

2
1 + 32k5a2 − 2δa2 + 120a0a2 + 90a2

0a2 = 0,

−60k5χa1 − 90χa0a1 + 45a3
1 + 225a1a2 + 270a0a1a2 = 0,

a2
1 − 90χa2

1 − 480k5χa2 − 360χa0a2 + 180a2
1a2 + 240a2

2 + 180a0a
2
2 = 0,

120k5χ2a1 − 60a1a2 − 570χa1a2 + 225a1a
2
2 = 0,

600k5χ2a2 − 600χa2
2 + 90a3

2 = 0.

Finally, solving this system we get seven cases of solitary wave solutions of the Eq. (26) as:Case I:

a0 = −14
15

, a1 = 0, a2 =
14χ

3
, k = 5

√
7
5
, δ =

28
5

,

υ(η) = −14
15

+
14
3

χ

(
4a

4a2eη + χe−η

)2

,

υ(x, t) = −14
15

+
14
3

χ

(
4a

4a2e
5
√

7
5 x− 28

5α (t+ 1
Γ(α) )

α

+ χe−
5
√

7
5 x+ 28

5α (t+ 1
Γ(α) )

α

)2

. (31)

Case II:

a0 = −14
15

, a1 = 0, a2 =
14χ

3
, k = − 5

√
7
5
, δ =

28
5

,

υ(η) = −14
15

+
14
3

χ

(
4a

4a2eη + χe−η

)2

,

υ(x, t) = −14
15

+
14
3

χ

(
4a

4a2e−
5
√

7
5 x− 28

5α (t+ 1
Γ(α) )

α

+ χe
5
√

7
5 x+ 28

5α (t+ 1
Γ(α) )

α

)2

. (32)

Case III:

a0 = −4
3
, a1 = 0, a2 = −2

3

(
−5χ +

√
10χ

)
, k = 1, δ = 16,

υ(η) = −4
3

+
10− 2

√
10

3
χ

(
4a

4a2eη + χe−η

)2

,

υ(x, t) = −4
3

+
10− 2

√
10

3
χ

(
4a

4a2ex− 16
α (t+ 1

Γ(α) )
α

+ χe−x+ 16
α (t+ 1

Γ(α) )
α

)2

. (33)

Case IV:

a0 =
4
3
, a1 = 0, a2 =

2
3

(
−5χ +

√
10χ

)
, k = 1, δ = 16,

υ(η) =
4
3
− 10− 2

√
10

3
χ

(
4a

4a2eη + χe−η

)2

,

υ(x, t) =
4
3
− 10− 2

√
10

3
χ

(
4a

4a2ex− 16
α (t+ 1

Γ(α) )
α

+ χe−x+ 16
α (t+ 1

Γ(α) )
α

)2

. (34)
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Case V:

a0 = −40
21

, a1 = 0, a2 =
20χ

3
, k = 0, δ =

2400
49

,

υ(η) = −40
21
− 20

3
χ

(
4a

4a2eη + χe−η

)2

,

υ(x, t) = −40
21
− 20

3
χ

(
4a

4a2e−
2400
49α (t+ 1

Γ(α) )
α

+ χe
2400
49α (t+ 1

Γ(α) )
α

)2

. (35)

Case VI:

a0 = −4
3
, a1 = 0, a2 =

2
3

(
5χ−

√
10

)
, k = 1, δ = 16,

υ(η) = −4
3

+
10χ− 2

√
10

3

(
4a

4a2eη + χe−η

)2

υ(x, t) = −4
3

+
10χ− 2

√
10

3

(
4a

4a2ex− 16
α (t+ 1

Γ(α) )
α

+ χe−x+ 16
α (t+ 1

Γ(α) )
α

)2

. (36)

Case VII:

a0 =
4
3
, a1 = 0, a2 =

2
3

(
5χ +

√
10

)
, k = 1, δ = 16,

υ(η) =
4
3

+
10χ + 2

√
10

3

(
4a

4a2eη + χe−η

)2

,

υ(x, t) =
4
3

+
10χ + 2

√
10

3

(
4a

4a2ex− 16
α (t+ 1

Γ(α) )
α

+ χe−x+ 16
α (t+ 1

Γ(α) )
α

)2

. (37)

4.2. The(4 + 1)-dimensional space-time fractional Fokas equation

The(4 + 1)-dimensional space-time fractional Fokas equation has the form:

4
∂2αυ

∂tα∂xα
− ∂4αυ

∂x3α∂yα
+

∂4αυ

∂xα∂y3α
+ 12

∂αυ

∂xα

∂αυ

∂yα
+ 12υ

∂2αυ

∂xα∂yα
− 6

∂2αυ

∂zα∂wα
= 0, t > 0, 0 < α ≤ 1. (38)

First, we apply the fractional beta transformation:

υ(x, y, z, w, t) = υ(η), (39)

η =
δ

α

(
x +

1
Γ(α)

)α

+
β

α

(
y +

1
Γ(α)

)α

+
γ

α

(
z +

1
Γ(α)

)α

+
σ

α

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

. (40)

Then, Eq. (38) is reduced into the following ODE:

(4cδ − 6γσ) υ′′ +
(
β3δ − δ3β

)
υ(iv) + 12δβ (υυ′)′ = 0. (41)

We integrate Eq. (41) once, taking the integration constant zero for simplicity. Then, we obtain the following ODE:

(4cδ − 6γσ) υ′ +
(
β3δ − δ3β

)
υ
′′′

+ 12δβ (υυ′) = 0. (42)

Again, using the homogenous balance principle and balacing the termsυ′′′ andυυ′ we calculate the pole orderN = 2. Then,
we can write the auxilary polynomial as:

υ(η) = a0 + a1Q(η) + a2Q
2(η), (43)

where
Q(η) =

1
a exp(η) + b exp(−η)

Rev. Mex. Fis.68010703



6 SERIFE MUGE EGE

FIGURE 1. Three-dimensional plot of the solution (37) for α = 1,
χ = 4 anda = 1.

FIGURE 2. Plot of the solution (37) for α = 1, χ = 4 anda = 1.

FIGURE 3. Three-dimensional plot of the solution (37) for
α = 1/2, χ = 4 anda = 1.

adopts the equation:

Q2
η = Q2(1− χQ2), (44)

with χ = 4ab.
The first and third derivatives of Eq. (43) are sufficient for the solutions. Hence, we take them as follows:

υ′(η) = Qη [a1 + 2a2Q(η)] ,

υ
′′′

(η) = Qη[a1

(
1− 6χQ2(η)

)
+ a2

(
8Q(η)− 24χQ3(η)

)
]. (45)

Substituting Eq. (43) and Eqs. (45) into Eq. (42), we get an equation including the powers ofQ. Then collecting the terms with
the same power ofQ and equating the coefficients to zero, we obtain the following algebraic system:

4cδa1 + β3δa1 + βδ3a1 − 6γσa1 + 12βδa0 = 0,

12βδa2
1 + 8cδa2 + 8β3δa2 + 8β3δa2 + 8βδ3a2 − 12γσa2 + 24βδa0a2 = 0,

−6β3δχa1 − 6βδ3χa1 + 36βδa1a2 = 0,

−24β3δχa2 − 24βδ3χa2 + 24βδa2
2 = 0.

Solving this system we get ten cases of solitary wave solutions of the Eq. (38) as:
Case I:

a0 = a0, a1 = 0, a2 =
(
β2 + δ2

)
χ, σ =

2δ
(
c + β2 + βδ2 + 3βa0

)

3γ
,

υ(η) = a0 −
(
β2 + δ2

)
χ

(
4a

4a2eη + χe−η

)2

, υ(x, y, z, w, t) = a0 −
(
β2 + δ2

)
χA2, (46)

where

A =
(

4a

4a2eη + χe−η

)

Rev. Mex. Fis.68010703
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and

η=
δ

α

(
x +

1
Γ(α)

)α

+
β

α

(
y +

1
Γ(α)

)α

+
γ

α

(
z +

1
Γ(α)

)α

+
2δ

(
c + β2 + βδ2 + 3βa0

)

3γα

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

.

Case II:

a0 = a0, a1 = 0, a2 = β2χ, δ = 0, γ = 0, υ(x, y, z, w, t) = a0 − β2χA2, (47)

where

A =
(

4a

4a2eη + χe−η

)

and

η =
β

α

(
y +

1
Γ(α)

)α

+
σ

α

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

. (48)

Case III:

a0 =
−c− β3 − βδ2

3β
, a1 = 0, a2 =

(
β2 + δ2

)
χ, γ = 0,

υ(x, y, z, w, t) =
−c− β3 − βδ2

3β
+

(
β2 + δ2

)
χA2, (49)

where

A =
(

4a

4a2eη + χe−η

)

and

η =
δ

α

(
x +

1
Γ(α)

)α

+
β

α

(
y +

1
Γ(α)

)α

+
σ

α

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

.

Case IV:

a0 = a0, a1 = 0, a2 =
(
β2 + δ2

)
χ, σ = 1, γ =

2
3
δ
(
c + β3 + βδ2 + 3βa0

)
,

υ(x, y, z, w, t) = a0 −
(
β2 + δ2

)
χA2, (50)

where

A =
(

4a

4a2eη + χe−η

)

and

η=
δ

α

(
x +

1
Γ(α)

)α

+
β

α

(
y+

1
Γ(α)

)α

+
2δ

(
c + β3+βδ2+3βa0

)

3α

(
z+

1
Γ(α)

)α

+
1
α

(
w+

1
Γ(α)

)α

+
c

α

(
t+

1
Γ(α)

)α

.

Case V:

a0 = a0, a1 = 0, a2 =
(
β2 + 1

)
χ, δ = 1, σ =

2δ

3γ

(
c + β3 + βδ2 + 3βa0

)
,

υ(x, y, z, w, t) = a0 +
(
β2 + 1

)
χA2, (51)

where

A =
(

4a

4a2eη + χe−η

)

and

η=
1
α

(
x+

1
Γ(α)

)α

+
β

α

(
y+

1
Γ(α)

)α

+
γ

α

(
z+

1
Γ(α)

)α

+
2δ

(
c+β3 + βδ2 + 3βa0

)

3γα

(
w+

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

.
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FIGURE 4. 3D Plot of the solution (49) for α = 0.25, χ = 4 and
a = 1. FIGURE 5. Plot of the solution (49) for α = 0.25, χ = 4 and

a = 1.

Case VI:

a0 = −c + β + β2

3β
, a1 = 0, a2 =

(
β2 + 1

)
χ, δ = 1, γ = 0,

υ(x, y, z, w, t) = −c + β + β2

3β
+

(
β2 + 1

)
χA2, (52)

where

A =
(

4a

4a2eη + χe−η

)

and

η =
1
α

(
x +

1
Γ(α)

)α

+
β

α

(
y +

1
Γ(α)

)α

+
σ

α

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

.

Case VII:

a0 = a0, a1 = 0, a2 =
(
β2 + δ2

)
χ, γ = 1, σ =

2
3
δ
(
c + β3 + βδ2 + 3βa0

)
,

υ(x, y, z, w, t) = a0 +
(
β2 + δ2

)
χA2, (53)

where

A =
(

4a

4a2eη + χe−η

)

and

η=
δ

α

(
x+

1
Γ(α)

)α

+
β

α

(
y +

1
Γ(α)

)α

+
1
α

(
z +

1
Γ(α)

)α

+
2δ

(
c + β3 + βδ2+3βa0

)

3α

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

.

Case VIII:

a0 = a0, a1 = 0, a2 =
(
1 + δ2

)
χ, β = 1, σ =

2δ

3γ

(
1 + c + δ2 + 3a0

)
,

υ(x, y, z, w, t) = a0 +
(
1 + δ2

)
χA2, (54)

where

A =
(

4a

4a2eη + χe−η

)

and

η =
δ

α

(
x +

1
Γ(α)

)α

+
β

α

(
y +

1
Γ(α)

)α

+
γ

α

(
z +

1
Γ(α)

)α

+
2δ

(
1 + c + δ2 + 3a0

)

3γα

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

.
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FIGURE 6. 3D Plot of the solution (56) for α = 1, χ = 4 and
a = 1.

FIGURE 7. 3D Plot of the solution (56) for α = 1/2, χ = 4 and
a = 1.

Case IX:

a0 = −c + 1 + δ2

3
, a1 = 0, a2 =

(
δ2 + 1

)
χ, β = 1, γ = 0,

υ(x, y, z, w, t) = −c + 1 + δ2

3
+

(
δ2 + 1

)
χA2, (55)

where

A =
(

4a

4a2eη + χe−η

)

and

η =
δ

α

(
x +

1
Γ(α)

)α

+
1
α

(
y +

1
Γ(α)

)α

+
σ

α

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

.

Case X:

a0 = −1 + 2c

6
, a1 = 0, a2 = 2χ, δ = 1, β = 1, γ = 1, σ = 1,

υ(x, y, z, w, t) = −1 + 2c

6
+ 2χA2, (56)

where

A =
(

4a

4a2eη + χe−η

)

and

η =
1
α

(
x +

1
Γ(α)

)α

+
1
α

(
y +

1
Γ(α)

)α

+
1
α

(
z +

1
Γ(α)

)α

+
1
α

(
w +

1
Γ(α)

)α

+
c

α

(
t +

1
Γ(α)

)α

.

5. Concluding Remarks

We have applied a new approach of the Kudryashov method to the time-fractional fifth-order Sawada-Kotera equation and the
(4 + 1)-dimensional space-time fractional Fokas equation which arise in mathematical physics. The wave transformations
applied with the help of beta derivative definitions and theQ function included in the algorithm facilitated the computation of
the solutions. The general solutions for the time-fractional fifth-order Sawada-Kotera equation and the(4 + 1)-dimensional
space-time fractional Fokas equation have been pointed out as polynomials of the logistic function, which in turn are solu-
tions of the Riccati equation. Finally, some new exact solutions in the form of exponential functions for given equations are
established. We have also presented the numerical simulations for equations thanks to three dimensional plots. Therefore, we
conclude that this method may have general applications. As comparing the other methods, the advantage of this approach
is that the form of function is not used at the calculation. This gives us not only ease of calculation, but also the opportunity
to obtain new solutions. However, it should not be overlooked that this new method is more suitable for nonlinear equations
with even-order derivatives. Hence, one can conclude that the method can method can be applied to many fractional partial
differential equations.
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