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Time-dependent interactions in tunnelling dynamics
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In this paper, the tunnelling of a particle through a potential barrier is investigated in the presence of a time-dependent perturbation. The
latter is attributed to the process of the energy measurement of the scattered particle. The time-depeidiamy&atguation of the model

is exactly solved. The calculation of the probability density inside the barrier proves that the tunnelling dynamics is determined not only by
the transmitted and reflected waves but also by their interference. Furthermore, the interference term is time-dependent and contribute to th
scattering process duration. The tunnelling time is calculated as the time to stop the flow of probability density inside the barrier. This is the
minimum duration of the measurement process before detecting the particle beyond the barrier. Based on this, a new method of estimating
the tunnelling time by energy experimental measuring is proposed.
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1. Introduction is solved exactly and the probability density of the particle
within the barrier is calculated. Finally, the tunnelling time

Tunnelling is a phenomenon peculiar to the quantum worlds calculated both as the time required to stop the flow of

that has been W|de|y app“ed in physiCS, Chemistry' and oﬁhe probablllty current and by the transfer matrix method.

which is based the functioning of many technological de-We believe that these approaches are the most appropriate

vices, such as diodes, superconducting quantum interferené@ & non-stationary tunnelling problem, as is the one being

devices, quantum antennas and Superconducting qub|ts ﬂ.ﬂvestigated. In faCt, the tunnelling times defined in litera-

guantum computers [1-8]. The quantum tunnelling problenfure (dwell time, phase time, Larmor time, complex time)

can be addressed using two distinct approaches. The firkt7] mainly relate to stationary processes and are calculated

is the time-independent approach relying on the principle oftS average values obtained by integrating on all the scattering

conservation of energy [9-12]. In this case, the energy of th€hannels. In this case, the flow of probability density reaches

particle scattered through the potential barrier is equal to it& Steady-state and is maintained for the entire duration of the

initial energy. The second approach is the time-dependerficattering. But in a measurement process, this does not oc-

one, which is based upon the perturbation theory [13-16]. Irfur, and hence we need to change the way to calculate the

this case, the potential barrier is considered as a perturbatidHnnelling time. The configuration of the potential barrier

and the energy of the scattered partic|e is Spreads within aetermines the tunnelling time and allows to estimate a priori

small range. However, an accurate description of the tunthe uncertainty affecting the measurement of the energy of

nelling process cannot be made using just one of these afe scattered particle.

proaches. For instance, the measuring of the energy of a

particle scattered by a rectangular potential barrier, whose

value does not depend on time, can be performed only wheB. EXact solution of TDSE of the model

the tunnelling has endedge. after a timer. This means

that, according to the Heisenberg uncertainty principle, thé-et us consider a particle of mass m moving alanaxis. In

uncertainty affecting the energy of the scattered particle ighe regior0 < x < L a potential barriet/ (¢, z) is present:

0FE > h/27. Therefore, is impossible to state whether the

tunnelling is stationary or non-stationary, especially when the Ut,z) =U(x) + U(t) 0<z<IL, (1)

configuration of the barrier is such as to involve very short

tunnelling times. In these cases, the uncertainty affecting thWhereU(:c) is the potential for each point of the barrier and

particle energy can be of the order of the height of the barrier/ (¢) is a time-dependent interaction potential. We do not
In this work we study the tunnelling process of a particlemake any assumptions about the geometry of the barrier. In

through a potential barrier in presence of a time-dependerihe regionsz < 0 andz > L the potential is everywhere

interaction, due to a measurement process involved in thgero. We are interested investigating the dynamics of the par-

tunnelling. The tunnelling dynamics of this model is inves- ticle within the barrier. The TDSE for this model is:

tiggted_ by the time-depgnQent Sotinger equation (TDSE), 5 B2 o

which in the non-relativistic framework represents the most ih=—1p(t,x) = <_ + U(t,x)) vt z). (2)

suitable tool for dealing with similar problems. The TDSE ot 2m Ox?
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Substituting Eq. (1) in Eq. (2) is obtained: two possible energy values that the particle can assume in-
0 o side the potential barrier at different spacetime points. In fact,
ik ((’) _ U(t)) U(t, ) = <_ha + U(@) U(t,z). Eq. (10) is compatible with a simultaneous measurement of
ot the particle energy at the two sides of the barrier performed
) in the time intervalAt = (t — 0). As prescribed by quan-

Since we supposed the spatial and temporal contribution!™ Measurement theory, driven by Heisenberg's uncertainty
to the potential are independent, the wavefunctiéh ) can principle, the two energy values have expected to be differ-

be factorized as follows: ent [21]. _ . .
Let us now substituting Eq. (10) in the Eq. (2) obtaining:
Y(t, ) = (x)d(1). 4) ihan(t)or () + iha;(t)pr(x)e™ 1t = ap (U (t)pr(z)
Using Eq. (4), the Eq. (3) is split into two separate equa- +a;(t)U (t)pr(z)e“rs’ (11)
tions:
where
. 3] _ ) ot
ih (g = U() 9(t) = B(t) - { i) (8) = upye /S U®a) W
(-£ £ +UW) pla) = Bo(ay wi = wn = w; = (B — Ey)/h

. . , ) In Eq. (12) v(;) are arbitrary coefficients. The time-
whereF is the particle energy. The first of Eq. (5) admits the dependent coefficients, () are obtained multiplying both

following general solution: sides of Eq. (11) by () first and by’ () then, and inte-

() = o (LB~ (i/R) [} v ©6) grating inthe rangé < =z < L:

Tk

wheree is an arbitrary coefficient. The solution of the sec- ihak(t)/cp*T(:L‘)wT(x)d:c + ihay ()™t
ond of Eqg. (5) can be represented as the linear combination
between the transmitted component of the incident wave and
the component reflected by the right side of the barrier, de- . .
noted respectively by (z) and pr(x). These two com- X /‘Pﬂx)@ﬁf(x)dx = ak(t)U(t)/‘PT(x)wT(x)dw
ponents are evanescent waves characterized by an imaginary  =; zj
wave vectory = ++/2m(E — U)/h and they do not depend @,
on the time being localized waves [18-20]. Therefore, in the (DUt iwkjt/ * d 13
formula that yieldsy, only the terni/ (x) must be considered. +a;()U(b)e er(@)er(@)dr, (13)
For convenience we write(z) andpr(z) as follows:

zj

Tk

zj

Tk

pri@)=af(@); er(@)=PFgl), (O inat) / Prl@)pr(@)de + iha;(t)e*
wherea and are numerical coefficient anfi(z) andg(z) ©
are evanescent waves whose explicit form is: T Ty
F@) = e XIe/h g(g) = elxla/n, ®) x /@a(m)wR(w)dw = ak(t)U(t)/<PR($)<PT($)d$
It must be understood that the value of the imaginary Ty
wave vectory can vary within the range < = < L, depend- +a; (U (t)ekit / O(x)op(z)de. (14)
ing on the geometry of the barrier. The coefficieatand ' '

are obtained imposing the following boundary conditions: I ) ]
From Eq. (13) and Eq. (14) is obtained:

Vi(@)|z=0 = af(¥)]o=0;  af(z)le=L = Bg(2)]o=L, (9) i ()X i + ihia (£) X ekt
_ i i L plwkjt
wherey; (z) is the spatial part of the incident wave function, = ar(t)Vij + a;(8)Yj5e . (15)
which has the form of a plane wave with real wave vector ihay (t) Xgk + iha; (t) Xy e kit
K = v/2mFE /h[2]. Therefore, the general solution of Eq. (3) = ay(t)Yir, + a;(t)Y;pe kit

inthe rangd <z < Lis: In Eq. (15) X, andY;, are respectively the components

W(t, 2) = erop(a)e RIS VD) (Bt n of the overlapping and transition matrices, given by:

T
+ eopp(x)e "I/ U®A (Bt /R (10) Xij = [ v7(2)pr(z)de
o ) (16)
k
wherec; andc, are arbitrary coefficients that are obtained Yii = [ ¢h(2)U(t)pr(x)d’
normalizing the wave function. The ternis, and £; are T

Rev. Mex. Fis68 020702



TIME-DEPENDENT INTERACTIONS IN TUNNELLING DYNAMICS 3

wherezxy, z; € [0, L]. From Eq. (16) one sees th#t, = As expected, wheh= 0, i.e. when the measurement pro-
Y;; = 0. As one can be guessed, the theory being formueess has not yet started, the probability density tends asymp-
lating is very similar to the spectroscopic one and suggest®otically to zero ag tends tol. But as soon as+# 0 then the

that tunnelling can be interpreted as transition from a stat@robability density oscillates in every point inside the barrier
?r(x) to a state?r(z) induced by the potentid/(t). The between a maximum and a minimum given by:

Eq. (16) is a system of two linear differential equations where

: - . —_ 2,—2|x|z
unknown functions are;(t) anda;(t). Separating these un- Pmin(t, ) = a7
known functions and integrating respect the time is obtained: i NEITIvT
g g p pmax(t> l‘) _ |a|26—2|x\.1 T 4|771‘2(Z/|§)‘2 . (23)
a(t) = ewot 200 3y P
a(t) = —iwo Xk iwot sin(wt/2) (17) Therefore, once set a poirtinside the barrier, the proba-
kj w/2 bility density is spread over time in a range of values which is
h wider the smaller the energy differendg,(— E;), the higher
where the potential barrier and the greater the interference between
XY transmitted and reflected wave. Equation (23) represents the
wo = R L and w=wj; —wy. (18) d (23) rep

tool by which is possible to choose which initial parameters

. _ to modify to modulate the performance of an electronic de-
With Eq. (17) the TDSE is thus exactly solved. vice that based on quantum tunnelling.

In the case the form of the potenti@(x) is different from
the rectangular one, the procedure discussed above does not
change except for possible mathematical complications in the
In this section, the probability density inside the barrier iscalculation of the transition integrals.
calculated. Using Eq. (10) together with Eq. (17) we obtain:

4. Tunnelling time

(X Xjj — Xij Xjk)

3. Tunnelling probability density

p(t, x) = 7 (t,2)i(t, ) = pp(z)er(2)
The second step of this study is to estimate the tunnelling

2 a2
+w§|Xk’“|2 w*R(x)wR(m)M time. In fact, the time required to perform the measure-
| X (w/2) ment of the energy of the scattered particle must be at least
ok . sin?(wt/2) equal to the time needed to complete the tunnelling pro-
+ QWOTMCPT(x)@R(w)W' (19)  cess. Tunnelling time is one of the most debated and con-

troversial topics in guantum mechanics, both in the theoret-
The third term in the right-hand-side of Eq. (19) repre-ical and experimental framework [22-26]. There are differ-
sents the interference between the transmitted and reflectedt definitions of tunnelling time and all of them present
waves. Let us consider, for simplicity, the case of a rectweaknesses [17]. Moreover, these definitions refer to sta-
angular barrier wher& = UyVx € [0,L]. Then Eg. (19) tionary processes, while in this study we are addressing a
becomes: non-stationary tunnelling problem. In the case being inves-
tigated, related to a non-stationary problem, the tunnelling

2 22
2 | Xk | o2Ix|z S (wi/2) time is calculated as the time needed to stop the flow of prob-

p(t,z) = Jal?e X7 4|57

0 | Xj |2 (w/2)? ability density inside the barrier. The latter is given by the
X 2 9 following derivative:
+2woﬂa*ﬁbm (wt/ )’ (20)
ij (W/Q) ap(t7x) _ 2 —2|x|z
o = —2af[xe
where in writing Eq. (20) have been used Egs. (7) and (8). 1 2
Moreover, using the second of boundary conditions given by < (1 _ 4h [x|* sin (wt/2)> _ (24)
Eq. (9) is proved that: m?  (wt/2)?
| X 2 o252 |4 Equation (24) vanishes when the term in square brackets
1822 2R = 4 e 2Ixlz, (21)  equals zero. This implies that:
| X512 m?
- . : t=1y = 2 arcsin | 0 (25)
Substituting Eq. (21) in Eq. (20) we obtain: =To= . IIERA

o212 x|* sin?(wt/2) Therefore, Eq. (25) yields the tunnelling time. This time
m2 (w/2)2 depends on the energy difference and on the height of the
. potential barrier, but not on the barrier length. Therefore,
+ 2w0&a*ﬁw (22)  Eq. (25) implicitly predicts the Hartman effect [27] without
Xkj (w/2) having to apply any mathematical approximation. This is a

p(t,z) = |af?e X7 44
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relevant result that, to the best of our knowledge, is not menan indirect way of measuring the tunnelling time:
tioned in literature. If the argument of the arcsine function is

small enough, Eq. (25) can be simplified obtaining: 700> 1/2(Einc. — Egeagt)- (28)
Tp = 0 _ h ) (26) Equation (28) thus allows calculating the minimum tun-
2n|x[*  4(Uo — E) nelling time for any device based on quantum tunnelling, re-

Equation (26) shows more clearly that the tunnelling timegardless the form of the potential barrier. Knowing a priori
is shorter the higher the barrier is, and this is exactly what i$he particle mass, its initial energy and the height of the bar-
achieved in tunnelling diodes, where the potential barrier betier, from Eq. (28) is possible backwards to calculate the an-
tween the two semiconductors is high and narrow. gular frequencyw, and therefore, through Eq. (18), to have

Another approach that can be used to calculate the turipformation on the nature of the scattering dynamics inside
nelling time is the one based on the transfer matrix methodthe barrier. This is a new approach to study the tunnelling
The latter provides an important tool for investigating boundProcesses and represents the novelty of this work. The prob-
and scattering states in quantum structures. It is mainly usel@m remains that of performing a weak measurement to not
to solve the one-dimensional Schrodinger or effective mas§xcessively disturb the quantum system. Our approach to
equation,e_g, to obtain the quantized energies in quantumcalculating tunnelling time is reminiscent of Steinberg’s, in
well heterostructures and metal-oxide-semiconductor strucvhich ultracold rubidium atoms are propelled gently through
tures [28] or the transmission coefficient of potential barriers? barrier induced by a light beam [31]. In the experiment
[29]. Therefore, this method is suitable to calculate the tunis measured the change of the spin orientation of the atoms
nelling time also for a non-stationary case. For a one dimenwhen they exit the barrier. The amount of this change is pro-

sional scattering problem, like the one being investigated, theortional to the time spent by the atoms inside the barrier. In
tunnelling time is given by [30]: the theory we propose, the same experiment should be per-

formed measuring the energy change of the particle exiting

L .
1 m the barrier.
T = —|a| /1 /7&”6' —F() dx. 27)
0

. o , 5. Discussion
where Ejnc. is the energy of the incident particle at= 0

and E(x) is the energy of the particle in a given poinin- Understanding the dynamics governing quantum tunnelling
side the barrier. From Eq. (27) is clear that the tunnellingis of main importance to improve or design new tunnelling-
time is shorter the greater the transmission coeffidierdnd  based devices. This means performing experimental mea-
the greater the dispersion of the tunnelling-particle energgurements which, as is well known in the framework of quan-
(Eine. — E(2)) induced by the measurement process. In theum mechanics, involve interactions with the system. Hence
tunnelling time of Eq. (26), the energy dispersion effect ofthe need to investigate the tunnelling process of a particle
the tunnelling particle is implicit in the termg, through the  through a potential barrier, of any shape, in the presence
integral given by the second of Eq. (16). In Eq. (27), on theof a time-dependent perturbation. In this study, the time-
other hand, the dependence on the barrier height is containel&pendent Schrodinger equation of the particle inside the po-
in the transmission coefficiend|, which is proportional to tential barrier have been solved exactly, with the aim of cal-
the imaginary wave vectoy = ++/2m(FE — U)/h whose culating the probability density and obtaining information on
explicit form contains the potentidl. Therefore, the two the possible processes that take place within the barrier. As
approaches used to calculate the tunnelling time lead to thexpected, the probability density is given not only by the con-
same conclusions. However, the formula of Eq. (27) high4ribution of the transmitted and reflected waves, but also by
lights in a more direct way the dependencerobn the per- their interference. What emerges, however, is that the latter
turbation due by the measurement process, anticipating whabntribution is time-dependent and represents the dynamics
we will discuss shortly. by which the measurement process perturbs the tunnelling.
Let us now return to the problem of measuring the energyf his interaction contributes to the tunnelling time which, in

of the particle exiting the barrier. As mentioned at the begin-the framework being studied, can be interpreted as the min-
ning of this section, the time taken to perform this measureimum time to measure the energy of the scattered particle.
ment cannot be less than the tunnelling time. This is reflecte&tarting from this assumption and invoking the Heisenberg
in the error affecting the energy, which is greater the shorteuncertainty principle, is possible estimating the tunnelling
the tunnelling time, in accordance with the uncertainty prin-time from the experimental measurement of the particle en-
cipledE > h/279. In absence of the time-dependent interac-ergy after tunnelling, assuming that the uncertainty is given
tion due to the measurement process, the energy of the scdtty the difference between the initial energy and the measured
tered particle is equal to that of the incident particle. There€energy. This procedure allows to deal with tunnelling time re-
fore, we can infer that the measurement error on the energyardless of the possible definitions proposed in literature and
is given bydE = (Einc. — Edag), WhereEQex> is the mea-  to obtain information on the dynamics of the processes that
sured energy of the scattered particle. We have thus obtaingdke place inside the barrier.
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