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Analysis of efficiency in high-frequency digital markets using the Hurst exponent
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In this paper, we analyze the Efficient Market Hypothesis for automated high-frequency stock markets. Using the Hurst exponent as a
measure of efficiency, we show that the time series of high-frequency stock prices do not follow random walks, rejecting then (as we discuss
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1. Introduction

The history of the relation between Physics and Finance dates
back at least to the pioneering work of L. Bachelier [1], pub-
lished more than a century ago. However, it was not until
recent decades that a growing and well-established body of
research using tools from Physics, and particularly statisti-
cal mechanics, to understand economic phenomena through
time series analysis had emerged [2, 3]. To cite just a few
recent examples, in Refs. [4,5] the authors apply random ma-
trix theory to study cross-correlations in financial markets in
order to describe various market states and state transitions,
while in Ref. [6], a microscopic model for automatically done
high-frequency transactions is presented, using tools from the
kinetic theory of gases. Our work is framed in this tradition,
branded as Econophysics, from which the problem of the so-
called market efficiency, here discussed, has by no way es-
caped.

It is important to establish that when speaking of the effi-
ciency of the markets, two great perspectives of analysis must
be distinguished: the so-called distributive efficiency and the
informational efficiency. It is to the second approach to which
we dedicate this work. The informational efficiency of prices
is defined as the immediate incorporation of all relevant in-
formation for the formation of prices through the interaction
in the markets of highly sophisticated economic agents.

Introduced by Fama in Ref. [7], it has important impli-
cations for the theory, in particular, that the differences of
the logarithms of the consecutive prices of assets in a market
must follow a (Gaussian) random walk. This hypothesis has
been widely questioned, for example, in Refs. [8,9].

One of the most common explanations for the inefficiency
of real markets has been the “animal spirit” of Keynes [10],
that is, the psychological and emotional factors that lead in-
vestors to make their decisions in capital markets when there
is uncertainty, how human emotions can drive making finan-
cial decisions in uncertain and volatile environments.

Another explanation comes from the work of H. Simon
[11], through the concept of limited rationality, that postu-
lates that most people are only partially rational and act on
emotional impulses without rational foundations in many of
his actions.

Various authors, such as Lo in Ref. [12] and McCauley
in Ref. [9] for example, recover the elementary fact that fi-
nancial markets are, like all social phenomena, of a histori-
cal and dynamic nature, that is, agents respond to their spe-
cific social, political, psychological and technical conditions,
which is why it is inappropriate to postulate general and anti-
historical hypotheses about their behavior.

As indicated in Ref. [8], in recent years, most of the op-
erations in the large financial markets have been automated
and are now computers and not human beings who make
decisions by executing certain algorithms. Although in the
last decades, evidence has accumulated against the efficiency
of the traditional markets, one could imagine that, with the
execution of orders controlled by computer algorithms, de-
void of feelings and emotional decisions, efficiency could be
achieved in financial markets. Thus, the following question
arises: are automated markets more or less efficient than clas-
sical ones? That is, what happens to efficiency if, in the pro-
cess of incorporating the relevant information for price for-
mation, human beings are replaced by algorithms?

The objective of this work is to offer evidence, through
the analysis of time series of automated transactions in the
US and Mexican markets, that the use of computational algo-
rithms in automated high-frequency markets has not led these
markets to the efficiency prescribed by the neoclassical the-
ory. The organization of the paper is as follows: Section 2
develops the theoretical framework in which the analysis will
be carried out. Section 3 describes the characteristics of the
data and the methodology used for our analysis. In Sec. 4, the
results obtained are discussed. Section 5 contains the conclu-
sions. Section 6 contains the bibliography used.
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2. Theoretical framework

The informational efficiency of a market implies that the
consecutive price differences must be independent. Indeed,
if there were any correlation between consecutive prices, it
could be used to perform arbitrage, an action that would be
in contradiction with the assumed efficiency. Thus, one can
examine the short-term movement patterns that describe the
returns of the assets in the market in question and attempt to
identify the process underlying those returns. If the market
is efficient, the model will not be able to identify a pattern,
and we will conclude that the returns follow a random walk
process. If a model is able to establish a pattern, past market
data can be used to predict future market movements and the
market is therefore inefficient.

Note that the observation of a random walk is a neces-
sary condition for efficiency. There are studies that show that
this condition is not sufficient [13,14]. Consequently, the de-
viations of a random walk allow rejecting the informational
efficiency of the assets under study.

The method that we will use has its origins in the work of
Hurst [15], framed in the context of his studies in hydrology
and later refined by Mandelbrot and Wallis [16]. Given a time
seriesxn, n = 1, . . . ,m, with meanµ = (1/m)

∑m
i=1 xi and

varianceσ2 = (1/m)
∑m

i=1(xi − µ)2, we define its partial
centered sums asyn =

∑n
i=1(xi − µ) and its R/S statistics

or rescaled range as the ratio between the range of the partial
centered sums series and the standard deviation of the origi-
nal series:

R/S =
maxn≤m yn −minn≤m yn

σ
.

Hurst noted that the rescaled range of the time series of
annual flows of the Nilo river as a function of the lengthn
of the series was asymptotically a power law whenn tends
to infinity: E(R/S(n)) ∼ nH for n sufficiently large, where
E(R/S(n)) is the mean of the R/S statistics calculated on
the subseries of lengthn of the original series. The exponent
H of the power law is known as theHurst exponent. It is
known that under the hypothesis of the original series being
a random walk, the exponent isH = 0.5 [16]; instead, Hurst
foundH > 0.5.

In general, a Hurst exponentH greater than0.5 is as-
sociated with the long-term persistence of the series: the
range grows faster than expected from a random walk, that
is, movements in one direction follow, with greater probabil-
ity, movements in the same direction; whileH < 0.5 is asso-
ciated with long-term antipersistence: the range grows more
slowly than that of a random walk, that is, movements in one
direction are more likely to follow movements in the other di-
rection, this on average and for large enough lengths. In both
cases, the deviation ofH from its hypothetical value 0.5 can
be taken as a long-term memory measure: the movements of
the series are not independent of the remote past.

The study of long-term correlations measured by Hurst
exponent has been applied in Physics, for example, in

Ref. [17] to the ion saturation current fluctuations and
Ref. [18] to gamma, ray data. In the context of the finan-
cial time series that concerns us here, this long-term memory
translates into deviations from market efficiency.

The remaining part of this section will be devoted to
briefly discuss the approaches in the literature that will be
used in the next section to define our methodology, as well as
some results related to those of this work.

In Ref. [19], it is argued that, given a sequence of in-
dependent and identically distributed random variables, the
shape of the probability distributions of the random variables
affects the Hurst exponent of the series. The authors cal-
culate the Hurst exponentHstock for the daily series of the
S&P500 index. Then, they shuffle the series in order to re-
move its memory, after which they calculate the Hurst index
of the shuffled series, denoted byHperm (actually, this pro-
cess of shuffling and calculating is repeated a certain number
of times,Hperm is defined as the mean and the standard devi-
ation is reported). The difference betweenHstock andHperm

is an indicator of the memory of the original series, while if
Hperm is different of0.5. This is attributed to the distribu-
tions of the variables, since the shuffled series are, by con-
struction, memoryless. It is proposed then to useHperm as an
indicator of lack of memory, instead of the canonical value
0.5; that is, Hstock > (<)Hperm would be an indicator of
(anti)persistency. In other words, the significant null hypoth-
esis will be notHstock = 0.5, butHstock = Hperm.

In Ref. [20], it is argued that the R/S statistic is sensi-
tive to short-term correlations so that if for a time series is
obtainedH 6= 0.5, this is not enough to conclude the pres-
ence of long-term memory. In Ref. [21], the authors propose
that, to ensure that the results of theR/S analysis are due
to long-term correlations, the following experiment is carried
out: the series is divided into blocks of, for example, 50 ele-
ments each one, and the elements within each block are per-
muted to destroy the short-range correlations. With this new
series, the previous analyzes are repeated, and the long-term
memory is corroborated if the change in the Hurst exponent
is insignificant.

In Refs. [22, 23], the need to observe the evolution of
the efficiency, measured by the Hurst exponent, over time is
stated. The first article uses one-minute resolution data from
1983 to 2009 from the SP500. The Hurst exponent of the
daily subseries is calculated, and a decreasing evolution is
observed from0.8 towards0.5, with a statistically insignifi-
cant difference for the period 2005-2009. Similar results are
obtained for the monthly exponents. For the purposes of this
project, it is important to underline their explanation of the
phenomenon: they attribute it to the growth of algorithmic
trading. In the second article, daily exponent series are stud-
ied of eleven emerging markets between 1992 and 2002, with
similar results.

Other perspectives on market efficiency by studying
Hurst exponent had been proposed in the past. Very inter-
esting is the discussion in Ref. [24], in which the authors
study a measure of quantitative correlation between theoret-
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ical inefficiency and empirical predictability for 60 financial
indices from different countries. The Hurst exponent is taken
as a measure of market inefficiency, while to measure pre-
dictability, they use one of the most basic techniques of su-
pervised machine learning: Nearest Neighbor (NN) and its
proportion of correct answers. A considerable positive corre-
lation (around 60%) between inefficiency and predictability
is reported.

In Ref. [25], it is shown that before the great economic
collapses of 1929, 1987, and 1998 a clear decrease in the
Hurst exponent from the persistence regime (H > 0.5) to the
anti-persistence regime (H < 0.5) is observed.

In Ref. [26], Peters carries out an extensive analysis of
the R/S statistic, the relevance of which he argues through
the Fractal Market Hypothesis (FMH) as an alternative to the
Efficient Market Hypothesis (EMH). The fractal properties
of the financial time series would be due to the differences
in the time horizons of the financial agents, who, according
to their interests, incorporate certain pieces of relevant infor-
mation into the price of an asset that is not relevant for other
time horizons. Market stability is attributed to the dynamic
interaction of these different scales.

3. Nature of the data and methodology used

The data used in this investigation are the time series of
prices of the automated (algorithmic) operations that oc-
curred from March 7, 2018, to March 7, 2019, in the Mex-
ican and US markets (251 trading days). For the US market,
there were 539,834,024 records, and for the Mexican market,
78,863,574 records.

The importance for this work that our data comes from
fully-automated transactions cannot be overstated: it is for
this alone that we can test efficiency specifically for digital
markets.

The data belongs to 59 assets; of these, 35 correspond
to companies listed on the Mexican stock exchange: AC,
ALSEA, ALPEK, ALPHA, AMX, ASUR, BIMBO, BSMX,
CEMEX, CUERVO, ELEKTRA, FEMSA, GAP, GCARSO,
GENTERA, GFINBUR, GFNORTE, GMEXICO, GMXT,
GRUMA, IENOVA, KIMBER, KOF, LALA, LIVEPOL,
MEGA, MEXCHEM, NEMAK, OMA, PENOLES, PIN-
FRA, RA, TLEVISA, VOLAR, WALMEX; while the other
24 are from the US market: ABT, BAC, BMY, C, CSCO, F,
FB, FOXA, GE, GM, HPQ, INTC, KO, MDLZ, MO, MS,
MSFT, ORCL, PFE, TWTR, T, USB, WFC, VZ. The details
can be seen in Figs. 1 and 2.

The following analysis is carried out for the series of log-
arithmic returns

r(t, τ) = x(t + 1, τ)− x(t, τ),

FIGURE 1. Assets of the US market.

wherex(t, τ) is thet-th term of the series of means ofτ sec-
onds of logarithms of the prices of a given asset.

The Hurst exponent of a time series is obtained as fol-
lows: Givenn less than the length of the series, we calculate
R/S of all subseries of lengthn of the original series and de-
fineE(R/S(n)) as the average of these calculations. Finally,
the Hurst exponent of the series is calculated as the exponent
of the functionc ·nH that best fits (in the least-squares sense)
the functionn 7→ E(R/S(n)) for n large enough. Taking
into account the asymptotic nature of the Hurst exponent, as
well as the sensitivity of theR/S statistic to the length of the
time series [27], uniformly spaced values ofn are taken on a
logarithmic scale, with a minimumn of the order of29.

To analyze the evolution of the Hurst exponent through-
out the period under study, which is one year, we calculate
the Hurst exponentHstock of subseries of a certain numberN
of days, slid one day at a time [23]. For example, ifN = 5,
the Hurst exponent of the first five days of the series is calcu-
lated, then that of the series that goes from the second to the
sixth day, etc., and the last calculation is for the series of the
last five days, with which the evolution of the weekly Hurst
exponentHstock throughout the year is obtained.

There is no satisfactory analytical theory for the R/S
statistic; most of the results on the subject are derived from
computer simulations, which implies that they depend on par-
ticular models. Thus, althoughR/S is non-parametric, it is
usually used to test the null hypothesis of Gaussian random
walk [26], so its rejection may be due to non-Gaussianity or
short-term memory. That is why the methodology that will
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FIGURE 2. Assets of the Mexican market.

be used below to establish the statistical significance of our
calculations, inspired by the proposals discussed in Sec. 2, is
based on global and local permutations of the series in ques-
tion [19,21,23].

Continuing with the previous example withN = 5, for
each subseries of five days of the original series, we shuffle
its terms to destroy its memory, and the Hurst exponent is
calculated for this new randomized subseries. The process of
shuffling and calculating the Hurst exponent is repeated one
hundred times, thus obtaining a statistical sample, which we
will call Hperm, of the Hurst exponent of the subseries un-
der the null hypothesis of lack of long-term memory, so we
can use its quantiles to test the statistical significance of the
difference betweenHstock andHperm.

To rule out that the results thus obtained are due to short-
term memory, we obtain similarly a statistical sample of lo-
cally randomized Hurst exponents. Given a weekly subseries

(N = 5) and a fixed lengthl, the subseries is divided into
blocks ofl elements, and the elements within each block are
shuffled to destroy short-term correlations without altering
the long-range memory structure. This process is repeated a
hundred times to get a statistical sample which we will call
Hlocperm. Thus, if not onlyHstock but alsoHlocperm is statisti-
cally different fromHperm, then it is ruled out that the rejec-
tion of the null hypothesis is due to short-range correlations.

We make all these calculations for each subseries ofN
days, so we can observe the evolution ofHstock, Hperm, and
Hlocperm throughout the year.

4. Results and discussion

In Figs. 3 and 4 we plot forτ = N = 1 andτ = N = 5, re-
spectively, the evolution ofHstock (blue curve) and the area
between the0.1 and 0.9 quantiles ofHperm (purple zone).
Thus, when the blue curve passes outside this area, it is con-
cluded that the correspondent original (daily or weekly) sub-
series has long-term memory: the difference betweenHstock

andHperm is statistically significant; while when theHstock

curve passes inside, the randomness of the subseries cannot
be ruled out: the difference betweenHstock andHperm is not
statistically conclusive.

Figure 3 shows that for the US market, it is not possi-
ble in general to reject the null hypothesisHstock = Hperm

when τ = N = 1 (daily series of one-second averages),
while the inspection of Fig. 4 allows concluding the existence
of a clear tendency to anti-persistence (Hstock < Hperm) for
τ = N = 5.

In what follows, we will focus on the latter case. Figure
5 shows forl = 300 the effect of locally shuffling the series
to destroy their short-term memory. As before, we plotHstock

and the0.1 and0.9 quantiles ofHlocperm. Although the Hurst
exponent tends to increase slightly after the local shuffling,
the globalHlocpermshape is considerably similar toHstock, re-
inforcing the idea that its behavior reflects well the long-term
memory from the original series. Note that this tendency to
increaseHlocperm is not valid for all assets, for example,F .

Once we have visually detected the general trend towards
anti-persistence and the effect of local shuffling, we can de-
fine two annual inefficiency indices, one of them given by the
percentage of windows whose Hurst exponentHstock is below
the 0.1 quantile ofHperm, the second by the percentage of
windows such that the mean ofHlocpermmean does the same.
We will call each of the weak and strong anti-persistence in-
dices, and we will denote them byId, If respectively.

To be more specific, ifHq
perm is theq-quantile ofHperm

and

Nd = #
{

slidingN -days windows such thatHstock < H0.1
perm

}
,

then, since our data consist of 251 trading days and there-
fore we have251 − N + 1 sliding N -days windows, we
set Id := Nd/(251 − N + 1). Analogously we define
If := Nf/(251−N + 1), where

Rev. Mex. Fis.67061401
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FIGURE 3. Evolution ofHstock and 0.1 and 0.9 quantiles ofHperm for the series of US market forτ = 1 y N = 1.
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FIGURE 4. Evolution ofHstock and 0.1 and 0.9 quantiles ofHperm for the series of US market forτ = 5 y N = 5.
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FIGURE 5. Evolution ofHstock and 0.1 and 0.9 quantiles ofHlocperm for the series of the US market forτ = 5, N = 5 y l = 300.
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FIGURE 6. Values ofId andIf for the US market forτ = 5 y
N = 5.

Nf=#
{

slidingN -days windows such thatE(Hlocperm)<H0.1
perm

}

andE(Hlocperm) is the mean of the statistical sampleHlocperm.
Figure 6 shows the table ofId and If results by asset and
its average per market (US). It is concluded that most of
the assets spend a significant part of the year under the anti-
persistence regime.

It is important to note that even in the case of assets
with a low level of inefficiency measured with these indices
(TWTR, for example), the antipersistence trend is clear given
that theHstock andHlocpermcurves remain in the lower part of
theHperm zone throughout the year (recall that the antipersis-
tence threshold that we define: the 0.1 quantile ofHperm, is
as arbitrary as the more traditional0.05), a result that is hard
due to the statistical sensitivity of the methods used, since
it is observed systematically in all assets and throughout the
year. Thus, although they are useful as summary indicators,
they should not be considered as the ultimate criterion of ef-
ficiency. These observations on the qualitative nature of the
process are possible thanks to the use of a dynamic approach
to observe the evolution of the Hurst exponent [23], as op-
posed to the more traditional method of calculating a single
exponent for each series, a method that reduces the problem
to a purely quantitative and static criterion.

To formalize this idea and obtain, also here, a quantita-
tive indicator: considering the subset of theM = b251/Nc
consecutive weekly series without overlap (wherebnc is the
largest integer less than or equal ton) and givenq ≤ 0.5 and
nd the number of these weekly series such thatHstock is less

FIGURE 7. Values ofP q(n) for the US marketτ = 5, N = 5 y q = 0.1, 0.5.
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FIGURE 8. Values ofId andIf for the Mexican market forτ = 30

y N = 30.

than Hq
perm, the q-quantile ofHperm, and assuming theM

consecutive weekly series as independent experiments, that
is, assuming that these series are statistically independent of
each other (efficiency, lack of memory at that scale), what is
the probability of observing, as we do, at leastnd windows
(realizations) in whichHstock is belowHq

perm? This problem is
equivalent to determining the probability of obtaining at least

nd heads in a sequence ofM tosses with an (unfair) coin with
probability q of observing a head in each realization. This
probability is modeled with the binomial distribution:

P q(nd) =
M∑

i=nd

(
M

i

)
qi(1− q)M−i.

Thus, this p-value indicates how likely it is to observe
the behavior described above in an efficiency scenario given
by the independence between non-overlapping weekly series.
Once again, we define a strong version of this index given by
P q(nf ), wherenf is the number of weekly series such that
the mean ofHlocperm is less than the quantileq of Hperm. The
results forq = 0.1 andq = 0.5 are shown in Fig. 7. The
evidence against the null efficiency hypothesis thus formu-
lated is compelling. Except for the maximum value in the
table, which is obtained for TWTR withP 0.1(nf ) = 0.215,
all stocks clearly reject the null hypothesis with a 95% level
of confidence, almost always by a considerable margin, and
even TWTR does it for the other three-parameter combina-
tions.

Similar results were obtained for the Mexican market
(Figs. 8 and 9), although due to their lower resolutionτ = 30
andN = 30 are used. It is observed that the result of the
local permutations is more ambiguous in this case, which can
be interpreted as short-term memory lack.

5. Conclusions

This paper discusses the efficiency in high-frequency digital
markets, quantified by the Hurst exponent measured by the
R/S statistic. Results indicate that, in the period from March
7, 2018, to March 7, 2019, and for the 24 assets in the United
States market and the 35 in the Mexican market studied here,
the Efficient Market Hypothesis is clearly rejected: the pres-
ence of long-term memory, particularly of anti-persistence, is
clear.

As noted before, the relevance of these results to the
question of efficiency in automated digital markets lies like
our data, coming from fully-automated (algorithmic) transac-
tions. It is because of this that we can draw the main conclu-
sion of this paper: automated digital markets do not meet the
efficiency postulated by neoclassical theory. Thus, classical
explanations of the inefficiencies of human markets, based on
the psychological or emotional factors of human beings [10]
or their limited rationality [11], must be discarded, since the
algorithms that have ordered the transactions here studied do
not suffer from these human limitations. Therefore, market
inefficiency seems to be due to more fundamental factors of
economic dynamics. This opens a new line of investigation
in the search for the real sources of the lack of efficiency.
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FIGURE 9. Values ofP q(n) for the Mexican market forτ = 30, N = 30 y q = 0.1, 0.5.
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