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The two-variable Black-Scholes equation is used to study the option exercise price of two different currencies. Due to the complexity of
dealing with several variables, reduction methods have been implemented to deal with these problems. This paper proposes an alternativ
reduction by using the so-called Zwanzig projection method to one-dimension, successfully developed to study the diffusion in confined
systems. In this case, the option price depends on the stock price and the exchange rate between currencies. We assume that the exchat
rate between currencies will depend on the stock price through some model that bounds such dependence, which somehow influences tt
final option price. As a result, we find a projected one-dimensional Black-Scholes equation similar to the so-called Fick-Jacobs equation for
diffusion on channels. This equation is an effective Black-Scholes equation with two different interest rates, whose solution gives rise to a
modified Black-Scholes formula. The properties of this solution are shown and were graphically compared with previously found solutions,
showing that the corresponding difference is bounded.
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1. Introduction sources of risks. They obtain a modified Black-Scholes for-
mula for the option’s price, which depends on the volatilities

It is well known that a system of stochastic differential equa-of both variables.
tions describes the evolution of the prices of two or more

risky assets .[1]' : The options derived fro_m those tWO_Orreducing risks but on considering how much influence one
more underlying risky assets are.called muliiple-asset OIOt'on\%riable has on the other variables. This is achieved by us-
apd can be mo_deled.as a terr_nmql-boundary value problelmg a projection scheme that has been developed with great
with the multi-dimensional partial differential Black-Scholes ¢\ . o< in the study of diffusion in confined systems [6—10]

equation, in two or more varlablejs', depepdmg on the agset%he method consists of choosing a variable, called transver-
Due to the complexity of the explicit solution of the equation sal, whose influence is bounded and can depend on the other

mentioned above, an essential issue in the price of mUIt'ple\Eriable that is usually known as longitudinal. To apply this

?sset optéqns |s_wheltherba| prlgng |torodble_m . reducg ethod clearly, we choose a two-variable system and its pro-
0 a one-dimensional probiem Dy Introducing NEw appropriya oy 1o one dimension. In particular, the evolution of the

ate variables. One widely used possibility is the use of th ption price with an exercise price in foreign currency is stud-

so-callednumerairechange method, which is important in ied. In this case, both the stock price and the exchange rate

re_ducmg the number of risk sources to k_’e (_:(_)n3|dered in thﬁ/ill be the two variables on which the option’s price will de-
price of the options, as well as gives significant computa—pend_ As is well known for certain assumptions in the evolu-
tional simplifications [2, 3]. A numeraire is any strictly posi-

i . h hoice d i ch h tion of prices, itis possible to establish a relationship between
V€ price process whose cholce does not change e PropeRe g4ci-scholes equation and the usual diffusion equation.
ties of the market. It is used to compare numerical values

: : . . herefore the present method will work under the same as-
two different portfolios, expressing them in terms of the Samesumptions
numeraire [4]. The basic idea of the numeraire approach is to '
choose a variable that incorporates one of the risk sources and The paper is organized as follows: In Sec. 2 we present
express all market prices in terms of the one chosen as the nthe general equation of Black-Scholes in two dimensions and
meraire. This numeraire asset is risk-free in the new pricindriefly summarize the result of the generalized method for
system, thus reducing the number of risk factors frerto  this problem which was already presented in Ref. [5]. In
n — 1. At the end of the calculation, it is possible to return to Sec. 3 we review the basic steps of the projection method to
the standard prices through a simple transformation [2]. Furene dimension of the diffusion equation for a confined system
thermore, in [5] authors introduce a more general multiplicafproposed by Zwanzig. This gives rise to the so-called Fick-
tive transformation which can be applied repeatedly, reducingacobs equation, which is an effective one-dimensional diffu-
the number of dimensions by two or more and therefore thesion equation modified by the width of the channel [6,7,9,10].

In this paper, we propose a different strategy based not on
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In Sec. 4 the projection method is implemented on therate between foreign currenciggt). At the initial time, the
two-dimensional equation of Black-Scholes, obtaining first aexercise price is the same as the underlying stock price in the
Fick-Jacobs-like equation, where the influence of the rangérst currency. Initially, it is converted to the second currency
where the variable of the exchange rate is clearly definedand held for the life of the option. The problem is finding
This acts as the channel width in the Fick-Jacobs equatiothe right price at the maturity date when the holder decides
but with extra drag and relaxation terms. To give an adequatehether to pay the exercise price in the second currency to
interpretation, we rewrite that equation as an effective onebuy the underlying stock. Let, be the corresponding rate in
dimensional Black-Scholes equation that contains two effecthe original currency;, the rate in the new currenci, the
tive parameters for the interest rates, which include the influexercise price expressed in the second currency,/gnthe
ence of the integrated variable. If the relationship betweetiirst one.
both variables is modeled as a power law, both rates depend By considering the same assumptions as in Ref. [5],
only on the corresponding exponent, thus modulating its innamely, S(¢) follows a geometric Brownian motionX ()
fluence. This result contrasts with the numeraire approacfollows the Garman-Kohlhagen model [13], the rates are con-
or the generalized transformation where a source of risk isidered constants, and the Wiener scalar processes of each
reduced, while here, it remains even after integrating a varivariable satisfy the following
able.

In Sec. 5, we solve the effective Black-Scholes equation AW (t) - AW (t) = pdt, |p| <1, (2)
for the value of a European call option at expiration tifhe ) . ) o
and strike pricek,, obtaining an effective version of the so- it is possible to write a Black-Scholes equation for pricing
called Black-Scholes formula, whose modification is due tgmedel through the & formula [14]

the different interest rates and on the exponent of the power- ov 1 92V 92V
law. Finally, we graphically compare both solutions for typ- T3 {0252852 + 2pasaXSXM
ical values of the variables, and we obtain that the relative ¢
error between both is bounded for short times. In the last 9 w0 0%V ov
Sec. 6, we briefly summarize the results of the work. +oxX axe| T (rp — pUS”X)Sﬁ
- - - - aV

2. Multidimensional Black-Scholes equation +(ra—rp) X5 —raV =0, (3)

and its reduction V(S, X,T) = max(SX — Kg,0), @)

We focus on the well-known model in financial mathemat-
ics, thg so-called BIgck-SchoIes_ partial differential equa_tlonthe strike pricelcy — K,(0)X(0) = S(0)X(0), is constant,
which is a very particular and important case of the diffu- o M :
sion model to describe the price of the options [11, 12] ThebUth(t) = 5(0)X(0) X~ (¢) varies randomly.

P P e In Ref. [5] starting from Eq. [3) by the use of a gener-

option prices derived from several underlying assets satisf¥ilize d transformation they could reduce probl@)(@) with

the multidimensional Black-Scholes equations [1, 3, 5]. Thethe introduction of the group variable= SX, to the follow-
(n + 1)-dimensional Black-Scholes equation is given in thei ’

whereV (S, X, T) is the payoff function at expiry date, and

following way: ng
2
87V+1 ia--S-S-ﬂ %JF%UEZQL&ZJFMZ%/*MV:O, )
ot 2 £ "7Pigg. 5, : :
63=0 V(z,T) = maxz — K4,0), (6)
- oV
+ Z(r — %:)Sz'g —rV =0, (1) whereog, ox are the corresponding volatilities. Note that
i=0 ’ Eq. (B) can be interpreted as a 1D Black-Scholes equation

with an effective volatilityo? = 0% + 2posox + o%. The
solution to the problem5j-(6) when expressed in the first
currency is given by

whereV (S, ..., Sy, t) is the option price derived form the
assetsS;, with i = 0,...,n, with dividend rateg;. Also,
r > 0 is the risk-free interest rate, ang; are the compo-
nents of symmetrical non-negative matrix related to volatili- S(0)X(0)
ties [1,3,5]. The solution of the Edl)has been well studied, V (S, X,t) = SN(d1) — e e "1 TN (dy), (7)
for instance, in Refs. [1, 3, 5], so here we will focus on the
main example. where

To describe the exercise price of an option when the un- sx o2
derlying stock is traded in one currency, and the exercise In (soxo) + (Td + 7) (T—1)
price of the option is in a different one, it is possible to use d = o T —t ’
Eqg. (3) in two dimensions, where one variable will be the
price S(t) of the stock and the other will be the exchange dy =dy —0.VT — 1, (8)
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and the cumulative distribution function (CDF) of a normal it is possible to turn Eq./10) into an equation foP(z, t).

random variable is defined as

d
N(d) = \/% / e_yz/Qdy. 9)

In the last section, we will return to expressioT3-(36) to
compare with the result obtained with the new proposal.

3. Projection method for the diffusion in con-
fined systems

This is the so-called Fick-Jacobs equation wiign= D, =
Dy
OP(zx,t) 0 0 P(z,t)
= Do— — .
ot Oaxw(aj) oxr w(x)

(13)

It is worth noting that for this effective 1D diffusion, a drift
and a relaxation term induced by the channel wid{tr) can
be seen when the equation is rewritten as

2
oP (5‘P 8j8lnw (14)

- 0x2

0% Inw
— = P .
ot 0 )

or Or 0x2

In this section, we review the reduction to one dimension in- _ ) ) o

asymmetric channels.
For a 2D channel with boundaries defined #y(z) <
y(z) < Ag(x), withw(z) = Ay — A; its width, Zwanzig [6],

by the so-called entropic force induced by the boundaries,
also called entropic barriers [6].
The Eq. L3 is the lowest order in a projective method

Kalinay and Percus [7,8], Dagdug and Pineda [9], introducedhat considers that the concentration also depends on the
a projection method that allows to obtain corrections of atransversal coordinate, see [7-9] for channels. We will limit
higher order in terms of a expansion parameter D,./D,, ourselves to the lowest order in this work, and the complete
which is the ratio of the diffusion constants in the longitudinal treatment will be done elsewhere.
and transverse directions. By using this scale, the transverse
modes turn out to be fast and transient and separate from the
slow longitudinal ones that can be projected by integration ird.  Projection method for the 2D Black-Scholes
the transverse direction. equation

Let us start with the diffusion equation in two dimensions
for the concentratiop(z, y, t)

dp(z,y,t) Ppl@y,t)  p Opl@y,t)

ot Ox2 Yooy

with initial anisotropic diffusion constant®,, # D,,. Let us

define the marginal integrated concentratltr,¢) as fol-
lows

Let us first define the marginal option price that only depends
on the stock price by integrating what we call the transver-
sal variable, which in this case is the exchange rate between
foreign currenciesX. Thus, it is necessary to indicate the de-
pendence of the pric& on S. This will be modeled through
functionX = f(S), which is the analog of the channel width
for confined systems

=D, (20)

Az(z)

P(z,t) = p(z,y,t)dy.
Aq(x)
The method consists of integrating into the transversal coor-
dinatey. So, when imposing the parallel-to-boundary-flux,
as a boundary condition, and by the use of the Leibniz ruleyhere we consider that the lowest exchange rate is zero, that
e, is, without variation; of course, both the range and the explicit

(11)

US,t)= [ V(S X,t)dX, (15)

o\%‘

A() A(z) form of f will depend on the characteristics of each market
/ gp(%y)dy = 82 / p(x,y)dy and the diffgrent currencies. erre we will use power-law type
) x x , dependencies, only to exemplify the results.
, Let us integrate Eq.3) over X in some derivative terms
— Al(z)p(z, Az)), (12)  the use of Leibniz rulel2) is needed because the integration
| limits depend orb so that the final form is the following
ou  oiS*[9*U 9 ¢, ,0V 0 , oV
- Z - 4 = _ —_ _ — X —
o T2 {852 g (FVE.)) - 15 X_f:| * {as(fv(s’f(s)) v) - f ( oX X_f)]
2
ox |32 V| _ _ N _
# 20 | S8 | = axV(S.£(5) +20] + (o, - posor)$ | 5 = V(5. 5(5)

(16)
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In order to simplify this equation, we need to introduce which become constants that only depend on the correspond-
boundary conditions in the same way as in the projectioring power. Note that only in the case where= 0 and the
method. This is achieved when we impose that the currencgorrelation is zero, the two rates will coincide.

exchange can not exceed the maximunf @), thatis, when The next step will be to obtain the corresponding effec-
the following boundary condition is met tive Black-Scholes formula for this problem with the rates
OV 5 oy OV andry, solving 20) and comparing with the one previously
FosS g5 s, =% X gx ks (17)  obtained in Ref. [5].

The following is to introduce the order of approximation. At
the lowest order, pric& does not depend explicitly o, 5. Effective Black-Scholes formula
and from [L5), we can write
U(s) As usual for the solution of this equation, the following well-
V(S,X)= ) (18)  known variable change is chosen, which also serves to scale

) ) the variables in dimensionless quantities
After these considerations and some algebra where terms are

reduced, Eq./16) can be written in the following simplified PR 2T . S=Kye, (26)
form 05/2
2 Q2
aa—lt] + 0525 % [faas (?)} with 7" the maturity time and the price function given by
o (U US,T)=Kyv(y, 7). 27
With this, Eq. 20) becomes
This equation is similar to Fick-Jacobs Edl3| for diffu- ! 's. Eq. €0)
sion in channels, whergis analogous to the channel’s width o &% 9
w and induces modifications into the differential operators. ar ap T (¢ — 1)(97} — g2, (28)

Thus, f will induce an additional drag term and also a mod-
ification to the relaxation term. This can be seen when it isvhere
written as follows ¢
oU  03%S?0°U ou
ot T2 agr T V=00 @O i terminal conditionu(y, 0) = maxe¥ — 1,0). As cus-
that can be interpreted as a one-dimensional effective Blackomary, we can parameterize the solution by introducing two
Scholes equation for the marginal prite where the effec- constant parameters that are easily determined
tive rates are

1 T2

=L =2 2
J%/2’ q2 U%/2 ( 9)

028 0In f vy, 7) = e u(y, ), (30)
r1 = (rq — posox) — 5 55 (21)
) s oo thus, the equation becomes
S 0%1In OJln
To =14 + 052 882f + (T‘d — pUSO’X)ST,Sf. (22) au 8211, 8u
—=—+—Q2a+q -1
Comparing Eq.20) with the reduced Eq/5), we can note or  0y? 51/( @ 1)
that instead of effective volatility and the interest rate in the Fula(g —1) — go +a? — F]. (31)

second currency, in this case, the volatility of the stock re-
mains but two effective rates based:gnappear, with modi-  \when we neglect the coefficients of the second and third
fications due not only to volatilities but now with a coupling term on the right side of Eq. [30), we obtain the stan-

to the possible dependencefon 5 given by f. Itis note-  garq dimensionless diffusion equation = u,,, satisfying
worthy that sincef is a function ofS, the induced rates will u(y, 0) = max(ey(ka) — =¥ 0). This set the parameters

not be constant in the general case. However, if we conxg follows
sider a simplified model wherg is a power law of the form

f = AS™ with m € N, therefore o — l-—q 5= —(q1 —1)? p 32)
=5 = — 42
Y ,In f 23) 2 4
= ) = —-m, . . . .
a8 05?2 The solution to the heat equation can be written in terms
so the rates can be rewritten as of the CDF of a normal random variabl@) @s
2
_ 9s -
1= (rq — posox) — - m (24) u(y, ) = eW/2)(@+1)+(7/4) (a1 +1)* pr (dl)
0'2 2 5
Te =Tq— 7Sm + (ra — posox)m, (25) _ W/ -D+/H(@-1) nr <d2> ; (33)
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ST

where

5 Y T i Y T
dl—\/?‘f'\/;(ch + 1), d2—\/?+\/g(QI - 1)- (34)

When we return to the original variables, substituting the ..|
values ofg; andgs, we obtain the following expression that
can be regarded as the effective Black-Scholes formula for «:
our problem [

s =5 )

— Ky TN (d‘g) , (35)

FIGURE 2. Relative diference of both solutions Ecd)(and
Eq. (35). The green curve is close to= 0, while going to in-
creasingly blue curves increases the time progressively.

where

s o
. an—p+(T1+73)(T—t)

di = ogVT —t ’ proposed comparison must be for a fixed valueXgfso we
s o2 will choose a value in the rande2 < X < 1.4.
i In 2+ (= 5)(T - 1) 36 The relative difference AU =  (U(S,t) —
2= osV/T —1 : (36) V (S, X;,t))/U(S,t), between both solutions is bounded as

shown in Fig. 2. It can be seen that the greater valuAGf
When comparing this solution witlY), we notice is that  js reached near the expiration time of the option. However, it
(35) does not depend ol. The first term contains an addi- pever exceeds 1.
tional temporal dependence that vanishes only whea rs. Qualitatively both solutions are very similar and do not
Amusingly, the arguments of the normal CDE, (36), only  differ too much from one another. However, the comparison
depend on the ra'bQ and the VOIat|I|ty OfS, Wh|le in the for' Strong|y depends on the value &fin which we are Compar_
mer, they depend on the effective volatility and also onX.  jng. Equation85) contains the influence of the possible de-
In order to graphically compare both formulas, let us conpendence of on X modeled through the functiofi which
sider the value of a call option with an exercise price ofjs still to be established.
K, = 100 in the first currency. The expiration time will be For instance, by varyingn, it is possible to change the
at, say, one yedl' = 1. Taking into account the risk-free in- pehavior of the price. Indeed, for a fixed value of the correla-
terest rate in the first coin to bg = 0.12. For the volatilities tion, the variation of the exponent can be seen in Figs. 3 and
os = 0.085 andox = 0.045, as standard deviations per year 4, Asm grows from 0 to 4, the growth df becomes slower.
of both the profitability of the stock and the exchange ratesthis difference decreases as we get closer to the expiration
we will also consider the correlation as= 0.5. The plotted  date of the option Fig. 4. It must be determined if this can
range will be around the exercise pricefof< S < 130. We  pe observed in the actual behavior of the market. This will
realize that since’7) is an equation of two variables, the indicate the further need to obtain suitable modelsffor

Ues, U(S, 1)

4o0f

4
rd
L
,
/
g
L
o
/
#

S

80 0 100 110 120 130 80 %0 100 10 20 130

FIGURE 1. Value of the call option when the underlying stock price  FIGURE 3. Call option value from Eq.35) at¢ = 0.1. The black

and strike price in two different currencies, both evaluated neardot-dashed line is the cage= 0 andm = 0, which is the usual
initial time ¢ = 0.1. Blue curve corresponds to effective Black- one-dimensional soliution and is only drawn as a guide to com-
Scholes formule35) with m = 1. Red curve is Eql4) considering pare the complete solution. Price curves decrease as the exponent
X (0) = 1.3 and evaluating aX; = 1.2. increases from yellown = 0, to redm = 4.
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U, a good approximation of the solution given in Ref. [5]. This

solution has an additional dependency that vanishes when the
effective rates are equal, and this occurs whengwver0 and
m = 0. Otherwise, the effect of the exponent is thatpas
increases, the option valué grows increasingly slowly, as
seen in Figs. 3 and 4. It is possible to improve this behavior
by having more suitable models for widfh perhaps similar
to how solutions are bounded in the model predictive con-
trol [16, 17]. Also, it is worth stressing that the methods de-
veloped here can be applied in other situations. For example,
when volatility is stochastic, the price of an option is given by
s the Merton-Garman equation [15], which is a partial differ-
ential equation in two variables, namely, the stock price and
volatility. By bounding volatility like in this study, one could
found an effective version of the Merton-Garman equation.
This will be done elsewhere.

These results open the possibility for the study of mul-
tidimensional option pricing problems. They appear when
6. Conclusions dealing with price options on various underlying assets, such

as finding the price of options in a basket that is a financial
In this paper, we apply Zwanwig’s projection method, de-instrument where the underlying asset is a portfolio of sev-
veloped to study diffusion in channels, to the bidimensionaleral assets, for example, individual stocks. Most of the works
Black-Scholes equation for the case in which the option’sn several dimensions are mainly numerical, and only a few
value depends, in addition to the price of the underlyingpresent some exact solutions and approximations [5, 18], so
stock, on the exchange rate to a different currency. This casgeneralizing the present results to various dimensions would
had already been studied by O, Ro, and Wan in Ref. [5]be very useful. The projection method, either Zwanzig’s or
whose solution could be written in a very similar form to its generalization by Kalinay and Percus, has been success-
a one-dimensional Black-Scholes formula but dependent ofully applied to reduce two and three-dimensional systems by
the variable of exchange rate and of effective volatitity  introducing the width or cross-sectional area function into an
In the present one-dimensional projection approach, a Fickeffective equation and appropriate position-dependent diffu-
Jacobs equation was obtained, where the width function apsion coefficient [7,8]. Im dimensions, it would be necessary
pears explicitly, and in this case, it bounds the relationship beto guarantee that the problem definition domain is such that
tween the stock price and the currency exchange. We rewritene of the dimensions is much larger than the other 1
this equation in a similar way to the one-dimensional Black-and then project towards the longitudinal variable. An alter-
Scholes equation. The main difference is that we have twaative method to find the diffusion coefficient was proposed
different effective interest rates in this case, which in addi-by Berezhkovskii and Szabo [19] for tlhedimensional prob-
tion are not necessarily constant. For the case in which thiem. A further projection method based on differential geom-
width function f is a power law, the rates become dependenttry was proposed which consists of constructing the channel
only on the exponent:. It is then possible to solve the re- from the midline and then projecting [20]. The generaliza-
sulting Eq. 20) to find an effective Black-Scholes formula tion to any dimension of this method would need to have
for this problem. Both solution&) and 35) were compared, the domain as a function of the large coordinate and corre-
and it is observed that the relative difference between therspondingly transform the diffusion tensor, this will be done
is bounded, which indicates that the solution shown here ignywhere.

80

FIGURE 4. Call option value from Eq.35) att = 0.8. Colors as in
Fig. 3. The effect oin decreases when approaching the expiration
date of the option.
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