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The two-variable Black-Scholes equation is used to study the option exercise price of two different currencies. Due to the complexity of
dealing with several variables, reduction methods have been implemented to deal with these problems. This paper proposes an alternative
reduction by using the so-called Zwanzig projection method to one-dimension, successfully developed to study the diffusion in confined
systems. In this case, the option price depends on the stock price and the exchange rate between currencies. We assume that the exchange
rate between currencies will depend on the stock price through some model that bounds such dependence, which somehow influences the
final option price. As a result, we find a projected one-dimensional Black-Scholes equation similar to the so-called Fick-Jacobs equation for
diffusion on channels. This equation is an effective Black-Scholes equation with two different interest rates, whose solution gives rise to a
modified Black-Scholes formula. The properties of this solution are shown and were graphically compared with previously found solutions,
showing that the corresponding difference is bounded.
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1. Introduction

It is well known that a system of stochastic differential equa-
tions describes the evolution of the prices of two or more
risky assets [1]. The options derived from those two or
more underlying risky assets are called multiple-asset options
and can be modeled as a terminal-boundary value problem
with the multi-dimensional partial differential Black-Scholes
equation, in two or more variables, depending on the assets.
Due to the complexity of the explicit solution of the equation
mentioned above, an essential issue in the price of multiple-
asset options is whether a pricing problem can be reduced
to a one-dimensional problem by introducing new appropri-
ate variables. One widely used possibility is the use of the
so-callednumerairechange method, which is important in
reducing the number of risk sources to be considered in the
price of the options, as well as gives significant computa-
tional simplifications [2,3]. A numeraire is any strictly posi-
tive price process whose choice does not change the proper-
ties of the market. It is used to compare numerical values of
two different portfolios, expressing them in terms of the same
numeraire [4]. The basic idea of the numeraire approach is to
choose a variable that incorporates one of the risk sources and
express all market prices in terms of the one chosen as the nu-
meraire. This numeraire asset is risk-free in the new pricing
system, thus reducing the number of risk factors fromn to
n− 1. At the end of the calculation, it is possible to return to
the standard prices through a simple transformation [2]. Fur-
thermore, in [5] authors introduce a more general multiplica-
tive transformation which can be applied repeatedly, reducing
the number of dimensions by two or more and therefore the

sources of risks. They obtain a modified Black-Scholes for-
mula for the option’s price, which depends on the volatilities
of both variables.

In this paper, we propose a different strategy based not on
reducing risks but on considering how much influence one
variable has on the other variables. This is achieved by us-
ing a projection scheme that has been developed with great
success in the study of diffusion in confined systems [6–10].
The method consists of choosing a variable, called transver-
sal, whose influence is bounded and can depend on the other
variable that is usually known as longitudinal. To apply this
method clearly, we choose a two-variable system and its pro-
jection to one dimension. In particular, the evolution of the
option price with an exercise price in foreign currency is stud-
ied. In this case, both the stock price and the exchange rate
will be the two variables on which the option’s price will de-
pend. As is well known for certain assumptions in the evolu-
tion of prices, it is possible to establish a relationship between
the Black-Scholes equation and the usual diffusion equation.
Therefore the present method will work under the same as-
sumptions.

The paper is organized as follows: In Sec. 2 we present
the general equation of Black-Scholes in two dimensions and
briefly summarize the result of the generalized method for
this problem which was already presented in Ref. [5]. In
Sec. 3 we review the basic steps of the projection method to
one dimension of the diffusion equation for a confined system
proposed by Zwanzig. This gives rise to the so-called Fick-
Jacobs equation, which is an effective one-dimensional diffu-
sion equation modified by the width of the channel [6,7,9,10].



2 G. CHACÓN-ACOSTA AND R. O. SALAS

In Sec. 4 the projection method is implemented on the
two-dimensional equation of Black-Scholes, obtaining first a
Fick-Jacobs-like equation, where the influence of the range
where the variable of the exchange rate is clearly defined.
This acts as the channel width in the Fick-Jacobs equation
but with extra drag and relaxation terms. To give an adequate
interpretation, we rewrite that equation as an effective one-
dimensional Black-Scholes equation that contains two effec-
tive parameters for the interest rates, which include the influ-
ence of the integrated variable. If the relationship between
both variables is modeled as a power law, both rates depend
only on the corresponding exponent, thus modulating its in-
fluence. This result contrasts with the numeraire approach
or the generalized transformation where a source of risk is
reduced, while here, it remains even after integrating a vari-
able.

In Sec. 5, we solve the effective Black-Scholes equation
for the value of a European call option at expiration timeT
and strike priceKp, obtaining an effective version of the so-
called Black-Scholes formula, whose modification is due to
the different interest rates and on the exponent of the power-
law. Finally, we graphically compare both solutions for typ-
ical values of the variables, and we obtain that the relative
error between both is bounded for short times. In the last
Sec. 6, we briefly summarize the results of the work.

2. Multidimensional Black-Scholes equation
and its reduction

We focus on the well-known model in financial mathemat-
ics, the so-called Black-Scholes partial differential equation,
which is a very particular and important case of the diffu-
sion model to describe the price of the options [11, 12]. The
option prices derived from several underlying assets satisfy
the multidimensional Black-Scholes equations [1, 3, 5]. The
(n + 1)-dimensional Black-Scholes equation is given in the
following way:

∂V

∂t
+

1
2

n∑

i,j=0

aijSiSj
∂2V

∂Si∂Sj

+
n∑

i=0

(r − qi)Si
∂V

∂Si
− rV = 0, (1)

whereV (S0, . . . , Sn, t) is the option price derived form the
assetsSi, with i = 0, . . . , n, with dividend rateqi. Also,
r > 0 is the risk-free interest rate, andaij are the compo-
nents of symmetrical non-negative matrix related to volatili-
ties [1,3,5]. The solution of the Eq. (1) has been well studied,
for instance, in Refs. [1, 3, 5], so here we will focus on the
main example.

To describe the exercise price of an option when the un-
derlying stock is traded in one currency, and the exercise
price of the option is in a different one, it is possible to use
Eq. (1) in two dimensions, where one variable will be the
price S(t) of the stock and the other will be the exchange

rate between foreign currenciesX(t). At the initial time, the
exercise price is the same as the underlying stock price in the
first currency. Initially, it is converted to the second currency
and held for the life of the option. The problem is finding
the right price at the maturity date when the holder decides
whether to pay the exercise price in the second currency to
buy the underlying stock. Letrp be the corresponding rate in
the original currency,rd the rate in the new currency,Kd the
exercise price expressed in the second currency, andKp the
first one.

By considering the same assumptions as in Ref. [5],
namely,S(t) follows a geometric Brownian motion,X(t)
follows the Garman-Kohlhagen model [13], the rates are con-
sidered constants, and the Wiener scalar processes of each
variable satisfy the following

dWS(t) · dWX(t) = ρdt, |ρ| < 1, (2)

it is possible to write a Black-Scholes equation for pricing
model through the It̂o formula [14]

∂V

∂t
+

1
2

[
σ2

SS2 ∂2V

∂S2
+ 2ρσSσXSX

∂2V

∂S∂X

+ σ2
XX2 ∂2V

∂X2

]
+ (rp − ρσSσX)S

∂V

∂S

+ (rd − rp)X
∂V

∂X
− rdV = 0, (3)

V (S, X, T ) = max(SX −Kd, 0), (4)

whereV (S, X, T ) is the payoff function at expiry date, and
the strike priceKd = Kp(0)X(0) = S(0)X(0), is constant,
butKp(t) = S(0)X(0)X−1(t) varies randomly.

In Ref. [5] starting from Eq. (3) by the use of a gener-
alized transformation they could reduce problem (3)-(4) with
the introduction of the group variablez = SX, to the follow-
ing

∂V

∂t
+

1
2
σ2

zz2 ∂2V

∂z2
+ rdz

∂V

∂z
− rdV = 0, (5)

V (z, T ) = max(z −Kd, 0), (6)

whereσS , σX are the corresponding volatilities. Note that
Eq. (5) can be interpreted as a 1D Black-Scholes equation
with an effective volatilityσ2

z = σ2
S + 2ρσSσX + σ2

X . The
solution to the problem (5)-(6) when expressed in the first
currency is given by

V (S, X, t) = SN(d1)− S(0)X(0)
X

e−rd(T−t)N(d2), (7)

where

d1 =
ln

(
SX

S0X0

)
+

(
rd + σ2

z

2

)
(T − t)

σz

√
T − t

,

d2 = d1 − σz

√
T − t, (8)
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and the cumulative distribution function (CDF) of a normal
random variable is defined as

N(d) =
1√
2π

d∫

−∞
e−y2/2dy. (9)

In the last section, we will return to expressions (7)-(36) to
compare with the result obtained with the new proposal.

3. Projection method for the diffusion in con-
fined systems

In this section, we review the reduction to one dimension in-
troduced to study physical diffusion in quasi-unidimensional
asymmetric channels.

For a 2D channel with boundaries defined byA1(x) <
y(x) < A2(x), with w(x) = A2−A1 its width, Zwanzig [6],
Kalinay and Percus [7,8], Dagdug and Pineda [9], introduced
a projection method that allows to obtain corrections of a
higher order in terms of a expansion parameterλ = Dx/Dy,
which is the ratio of the diffusion constants in the longitudinal
and transverse directions. By using this scale, the transverse
modes turn out to be fast and transient and separate from the
slow longitudinal ones that can be projected by integration in
the transverse direction.

Let us start with the diffusion equation in two dimensions
for the concentrationρ(x, y, t)

∂ρ(x, y, t)
∂t

= Dx
∂2ρ(x, y, t)

∂x2
+ Dy

∂2ρ(x, y, t)
∂y2

, (10)

with initial anisotropic diffusion constantsDx 6= Dy. Let us
define the marginal integrated concentrationP (x, t) as fol-
lows

P (x, t) =

A2(x)∫

A1(x)

ρ(x, y, t)dy. (11)

The method consists of integrating into the transversal coor-
dinatey. So, when imposing the parallel-to-boundary-flux,
as a boundary condition, and by the use of the Leibniz rule,
i.e.,

A(x)∫

0

∂

∂x
ρ(x, y)dy =

∂

∂x

A(x)∫

0

ρ(x, y)dy

−A′(x)ρ(x,A(x)), (12)

it is possible to turn Eq. (10) into an equation forP (x, t).
This is the so-called Fick-Jacobs equation whenDx = Dy =
D0

∂P (x, t)
∂t

= D0
∂

∂x
w(x)

∂

∂x

P (x, t)
w(x)

. (13)

It is worth noting that for this effective 1D diffusion, a drift
and a relaxation term induced by the channel widthw(x) can
be seen when the equation is rewritten as

∂P

∂t
= D0

(
∂2P

∂x2
− ∂P

∂x

∂ ln w

∂x
− P

∂2 ln w

∂x2

)
. (14)

We will use this form of the equation later. The drift is caused
by the so-called entropic force induced by the boundaries,
also called entropic barriers [6].

The Eq. (13) is the lowest order in a projective method
that considers that the concentration also depends on the
transversal coordinate, see [7–9] for channels. We will limit
ourselves to the lowest order in this work, and the complete
treatment will be done elsewhere.

4. Projection method for the 2D Black-Scholes
equation

Let us first define the marginal option price that only depends
on the stock price by integrating what we call the transver-
sal variable, which in this case is the exchange rate between
foreign currenciesX. Thus, it is necessary to indicate the de-
pendence of the priceX onS. This will be modeled through
functionX = f(S), which is the analog of the channel width
for confined systems

U(S, t) =

f(S)∫

0

V (S, X, t)dX, (15)

where we consider that the lowest exchange rate is zero, that
is, without variation; of course, both the range and the explicit
form of f will depend on the characteristics of each market
and the different currencies. Here we will use power-law type
dependencies, only to exemplify the results.

Let us integrate Eq. (3) overX in some derivative terms
the use of Leibniz rule (12) is needed because the integration
limits depend onS so that the final form is the following

∂U

∂t
+

σ2
SS2

2

[
∂2U

∂S2
+

∂

∂S

(
f ′V (S, x(S))

)
− f ′

∂V

∂S

∣∣∣
X=f

]
+

[
∂

∂S

(
f V (S, f(S))− U

)
− f ′

(
X

∂V

∂X

∣∣∣
X=f

)]

+
σ2

X

2

[
X2 ∂V

∂X

∣∣∣
f

0
− 2XV (S, f(S)) + 2U

]
+ (rp − ρσSσX)S

[
∂V

∂S
− f ′V (S, f(S))

]

+ (rd − rp) [fV (S, f(S))− U ]− rdU = 0. (16)
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In order to simplify this equation, we need to introduce
boundary conditions in the same way as in the projection
method. This is achieved when we impose that the currency
exchange can not exceed the maximum off(S), that is, when
the following boundary condition is met

f ′σ2
SS2 ∂V

∂S

∣∣∣
X=f

= σ2
XX2 ∂V

∂X

∣∣∣
X=f

. (17)

The following is to introduce the order of approximation. At
the lowest order, priceV does not depend explicitly onX,
and from (15), we can write

V (S, X) =
U(S)
f(S)

. (18)

After these considerations and some algebra where terms are
reduced, Eq. (16) can be written in the following simplified
form

∂U

∂t
+

σ2
SS2

2
∂

∂S

[
f

∂

∂S

(
U

f

)]

+ (rp − ρσSσX)Sf
∂

∂S

(
U

f

)
− rdU = 0. (19)

This equation is similar to Fick-Jacobs Eq. (13) for diffu-
sion in channels, wheref is analogous to the channel’s width
w and induces modifications into the differential operators.
Thus,f will induce an additional drag term and also a mod-
ification to the relaxation term. This can be seen when it is
written as follows

∂U

∂t
+

σ2
SS2

2
∂2U

∂S2
+ r1S

∂U

∂S
− r2U = 0, (20)

that can be interpreted as a one-dimensional effective Black-
Scholes equation for the marginal priceU , where the effec-
tive rates are

r1 = (rd − ρσSσX)− σ2
SS

2
∂ ln f

∂S
, (21)

r2 = rd +
σ2

SS2

2
∂2 ln f

∂S2
+ (rd − ρσSσX)S

∂ ln f

∂S
. (22)

Comparing Eq. (20) with the reduced Eq. (5), we can note
that instead of effective volatility and the interest rate in the
second currency, in this case, the volatility of the stock re-
mains but two effective rates based onrd appear, with modi-
fications due not only to volatilities but now with a coupling
to the possible dependence ofX onS given byf . It is note-
worthy that sincef is a function ofS, the induced rates will
not be constant in the general case. However, if we con-
sider a simplified model wheref is a power law of the form
f = ASm with m ∈ N, therefore

S
∂ ln f

∂S
= m, S2 ∂2 ln f

∂S2
= −m, (23)

so the rates can be rewritten as

r1 = (rd − ρσSσX)− σ2
S

2
m, (24)

r2 = rd − σ2
S

2
m + (rd − ρσSσX)m, (25)

which become constants that only depend on the correspond-
ing power. Note that only in the case wherem = 0 and the
correlation is zero, the two rates will coincide.

The next step will be to obtain the corresponding effec-
tive Black-Scholes formula for this problem with the ratesr1

andr2, solving (20) and comparing with the one previously
obtained in Ref. [5].

5. Effective Black-Scholes formula

As usual for the solution of this equation, the following well-
known variable change is chosen, which also serves to scale
the variables in dimensionless quantities

t = T − τ

σ2
S/2

, S = Kpe
y, (26)

with T the maturity time and the price function given by

U(S, T ) = Kpv(y, τ). (27)

With this, Eq. (20) becomes

∂v

∂τ
=

∂2v

∂y2
+ (q1 − 1)

∂v

∂y
− q2v, (28)

where

q1 =
r1

σ2
S/2

, q2 =
r2

σ2
S/2

. (29)

with terminal conditionv(y, 0) = max(ey − 1, 0). As cus-
tomary, we can parameterize the solution by introducing two
constant parameters that are easily determined

v(y, τ) = eαy+βτu(y, τ), (30)

thus, the equation becomes

∂u

∂τ
=

∂2u

∂y2
+

∂u

∂y
(2α + q1 − 1)

+ u[α(q1 − 1)− q2 + α2 − β]. (31)

When we neglect the coefficients of the second and third
term on the right side of Eq. (31), we obtain the stan-
dard dimensionless diffusion equationuτ = uyy, satisfying
u(y, 0) = max(ey(1−α) − e−αy, 0). This set the parameters
as follows

α =
1− q1

2
, β =

−(q1 − 1)2

4
− q2. (32)

The solution to the heat equation can be written in terms
of the CDF of a normal random variable (9) as

u(y, τ) = e(y/2)(q1+1)+(τ/4)(q1+1)2N
(
d̃1

)

− e(y/2)(q1−1)+(τ/4)(q1−1)2N
(
d̃2

)
, (33)
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where

d̃1=
y√
2τ

+
√

τ

2
(q1 + 1), d̃2=

y√
2τ

+
√

τ

2
(q1 − 1). (34)

When we return to the original variables, substituting the
values ofq1 andq2, we obtain the following expression that
can be regarded as the effective Black-Scholes formula for
our problem

U(S, T ) = Se(r1−r2)(T−t)N
(
d̃1

)

−Kpe
−r2(T−t)N

(
d̃2

)
, (35)

where

d̃1 =
ln S

Kp
+ (r1 + σ2

S

2 )(T − t)

σS

√
T − t

,

d̃2 =
ln S

Kp
+ (r1 − σ2

S

2 )(T − t)

σS

√
T − t

. (36)

When comparing this solution with (7), we notice is that
(35) does not depend onX. The first term contains an addi-
tional temporal dependence that vanishes only whenr1 = r2.
Amusingly, the arguments of the normal CDF,i.e. (36), only
depend on the rater1 and the volatility ofS, while in the for-
mer, they depend on the effective volatilityσz and also onX.

In order to graphically compare both formulas, let us con-
sider the value of a call option with an exercise price of
Kp = 100 in the first currency. The expiration time will be
at, say, one yearT = 1. Taking into account the risk-free in-
terest rate in the first coin to berd = 0.12. For the volatilities
σS = 0.085 andσX = 0.045, as standard deviations per year
of both the profitability of the stock and the exchange rates,
we will also consider the correlation asρ = 0.5. The plotted
range will be around the exercise price of70 < S < 130. We
realize that since (7) is an equation of two variables, the

FIGURE 1. Value of the call option when the underlying stock price
and strike price in two different currencies, both evaluated near
initial time t = 0.1. Blue curve corresponds to effective Black-
Scholes formula (35) with m = 1. Red curve is Eq. (7) considering
X(0) = 1.3 and evaluating atXi = 1.2.

FIGURE 2. Relative diference of both solutions Eq. (7) and
Eq. (35). The green curve is close tot = 0, while going to in-
creasingly blue curves increases the time progressively.

proposed comparison must be for a fixed value ofX, so we
will choose a value in the range1.2 < X < 1.4.

The relative difference ∆U ≡ (U(S, t) −
V (S,Xi, t))/U(S, t), between both solutions is bounded as
shown in Fig. 2. It can be seen that the greater value of∆U
is reached near the expiration time of the option. However, it
never exceeds 1.

Qualitatively both solutions are very similar and do not
differ too much from one another. However, the comparison
strongly depends on the value ofX in which we are compar-
ing. Equation (35) contains the influence of the possible de-
pendence ofS on X modeled through the functionf , which
is still to be established.

For instance, by varyingm, it is possible to change the
behavior of the price. Indeed, for a fixed value of the correla-
tion, the variation of the exponent can be seen in Figs. 3 and
4. Asm grows from 0 to 4, the growth ofU becomes slower.
This difference decreases as we get closer to the expiration
date of the option Fig. 4. It must be determined if this can
be observed in the actual behavior of the market. This will
indicate the further need to obtain suitable models forf .

FIGURE 3. Call option value from Eq. (35) at t = 0.1. The black
dot-dashed line is the caseρ = 0 andm = 0, which is the usual
one-dimensional soliution and is only drawn as a guide to com-
pare the complete solution. Price curves decrease as the exponent
increases from yellowm = 0, to redm = 4.

Rev. Mex. Fis.68011401
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FIGURE 4. Call option value from Eq. (35) att = 0.8. Colors as in
Fig. 3. The effect ofm decreases when approaching the expiration
date of the option.

6. Conclusions

In this paper, we apply Zwanwig’s projection method, de-
veloped to study diffusion in channels, to the bidimensional
Black-Scholes equation for the case in which the option’s
value depends, in addition to the price of the underlying
stock, on the exchange rate to a different currency. This case
had already been studied by O, Ro, and Wan in Ref. [5],
whose solution could be written in a very similar form to
a one-dimensional Black-Scholes formula but dependent on
the variable of exchange rate and of effective volatilityσz.
In the present one-dimensional projection approach, a Fick-
Jacobs equation was obtained, where the width function ap-
pears explicitly, and in this case, it bounds the relationship be-
tween the stock price and the currency exchange. We rewrite
this equation in a similar way to the one-dimensional Black-
Scholes equation. The main difference is that we have two
different effective interest rates in this case, which in addi-
tion are not necessarily constant. For the case in which the
width functionf is a power law, the rates become dependent
only on the exponentm. It is then possible to solve the re-
sulting Eq. (20) to find an effective Black-Scholes formula
for this problem. Both solutions (7) and (35) were compared,
and it is observed that the relative difference between them
is bounded, which indicates that the solution shown here is

a good approximation of the solution given in Ref. [5]. This
solution has an additional dependency that vanishes when the
effective rates are equal, and this occurs wheneverρ = 0 and
m = 0. Otherwise, the effect of the exponent is that, asm
increases, the option valueU grows increasingly slowly, as
seen in Figs. 3 and 4. It is possible to improve this behavior
by having more suitable models for widthf , perhaps similar
to how solutions are bounded in the model predictive con-
trol [16, 17]. Also, it is worth stressing that the methods de-
veloped here can be applied in other situations. For example,
when volatility is stochastic, the price of an option is given by
the Merton-Garman equation [15], which is a partial differ-
ential equation in two variables, namely, the stock price and
volatility. By bounding volatility like in this study, one could
found an effective version of the Merton-Garman equation.
This will be done elsewhere.

These results open the possibility for the study of mul-
tidimensional option pricing problems. They appear when
dealing with price options on various underlying assets, such
as finding the price of options in a basket that is a financial
instrument where the underlying asset is a portfolio of sev-
eral assets, for example, individual stocks. Most of the works
in several dimensions are mainly numerical, and only a few
present some exact solutions and approximations [5, 18], so
generalizing the present results to various dimensions would
be very useful. The projection method, either Zwanzig’s or
its generalization by Kalinay and Percus, has been success-
fully applied to reduce two and three-dimensional systems by
introducing the width or cross-sectional area function into an
effective equation and appropriate position-dependent diffu-
sion coefficient [7,8]. Inn dimensions, it would be necessary
to guarantee that the problem definition domain is such that
one of the dimensions is much larger than the othern − 1
and then project towards the longitudinal variable. An alter-
native method to find the diffusion coefficient was proposed
by Berezhkovskii and Szabo [19] for then-dimensional prob-
lem. A further projection method based on differential geom-
etry was proposed which consists of constructing the channel
from the midline and then projecting [20]. The generaliza-
tion to any dimension of this method would need to have
the domain as a function of the large coordinate and corre-
spondingly transform the diffusion tensor, this will be done
anywhere.
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