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The dynamics of an integer-order and fractional-order Lorenz-like system called Shimizu-Morioka system is investigated in this paper. It is
shown that the integer-order Shimizu-Morioka system displays monostable and bistable chaoctic attractors, as well as their coexistence. For
suitable choice of parameters, the fractional-order Shimizu-Morioka system exhibits bistable chaotic attractors, monostable chaotic attractors
metastable chaosé€. transient chaos) and spiking oscillations. The bifurcation structures reveal that the fractional-order derivative affects
considerably the dynamics of the system. The chain fractance circuit is used to design and implement the integer- and fractional-order
Shimizu-Morioka system in PSpice. A close agreement is observed between PSpice based circuit simulations and numerical simulations
analysis. The results obtained in this work were not reported previously in the interger as well as in fractional-order Shimizu-Morioka system
and thus represent an important contribution which may help us in better understanding of the dynamical behavior of this class of systems.
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1. Introduction els are more powerful than the ordinary order mathemati-
cal models [12]. Interestingly, the data fitting can be con-

Recently, there has been increasing interest in Fractional Caz—'d(_ertehd bett((ejr with fraitlor:al igjiz re;ther than orollmart)_/ or-
culus, which deals with integration/differentiation of arbi- er; the reader can refer to [13,14] for more explanations.

trary orders. It has been proved that the real phenomena |Fr>]rOV|ded thaF fractlonal-o_rder derivative plgys an |mp9rtant
le, the nonlinear dynamical systems that involve fractional-

majority systems can be more adequately described by tHE der derivati | Furth th
fractional-order differential equations [1]. For instance, theOrder derivative are weicome. Furinermore, there are many
capacitors, which are one of the most important element aterial differences between the integer-order systems and

in integrated circuits, are used extensively in many eIec:[ eir equivalent fractional-order models. Most of the prop-

tronic circuits as the ideal components. It has been foun@rties or considerations of the integer-order system cannot

by Jonscher [2] and many other authors that the ideal ca2® s?mply extended fo the case of.the fractional-order one.
pacitor cannot exist in nature, because an impedance of t A this regard, several chaotic fractional-order systems have

; . : - ted including Duffing system [15], Chua circuit
form 1/jCw would violate causality. So, the realistic mod- een repor ; -
els of capacitors integrate the fractional-order form. There[16]' Chen system [17], L system [18], unified system [19],

fore, the integration of the notion of fractional-order in the threnz sygtem [20], .Bssle.r syst(:]m d[21] a.nd S]? OC - In
modelling and simulation process of systems is of great im{NiS contribution, we investigate the dynamics of a Lorenz-

portance. The fractional-order derivative is useful for the delike system called fractional-order Shimizu-Morioka system.

scription of memory and hereditary properties of various ma_Before fO_CL!S'ng our attention on t_he_ proposed fractional-
rder Shimizu-Morioka system, it is important to make a

terials and processes [1]. The list of applications of fractiona[ . ) i .
calculus has been overgrowing and includes control thef rief recall on some interesting works related to the orig-

ory, viscoelasticity, diffusion, turbulence, electromagnetismInal Shimizu-Morioka system [22]. In the latter literature,

and many other physical processes [3-7]. More recentlySh|m|zu and Morioka used the perturbation theory to calcu-

fractional-order derivative has been used to develop mathé‘:"te the analytic form of the limit cycles. Computer simula-

matical models of several diseases including the novel corot-'ons have been able to confirm the occurrence of limit cy-

navirus (2019-nCOV) and Human Immunodeficiency VirusCIeS predicted by the theoretical results. In Ref. [23], the dy-
(HIV) [8-12]. It is proved that the fractional-order mod- namics of the Shimizu-Morioka is further investigated with
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concept of delayed feedback. They used the delay as a bi- Using the Caputo fractional-order derivative given in
furcation parameter and proved the existence of local HopEq. 1, the fractional-order form of the original Shimizu-
bifurcation in the system. Furthermore, the authors used th®lorioka system [22] is constructed as follows:

normal form theory and the center manifold theorem to de- "
x

rive the explicit formulae for determining the stability and di- 22y, (1a)
rection of bifurcated periodic solutions. They finally showed dtd

by the numerical simulations that the delayed feedback con- dly

trol plays an important role in control of chaos. In addition, qa P TS (1b)
in Ref. [24], the control of chaos in Shimizu-Morioka sys- dis )

tem is investigated by using Lie algebraic exact linearization P + 7, (1c)

method. The authors designed suitable controller and derived

a necessary and sufficient conditions for stabilization of thewvherez, y andz are state variables;ando are positive con-
system to a point as well as onto a limit cycle. Numericalstant parameters;is the derivative order satisfyimy < ¢ <
simulations were performed to show the effectiveness of thé. The model involves six terms of which two are nonlinear.
proposed control method. However, these interesting work$he nonlinear terms are responsible of the complex behav-
are restricted to the integer-order form of the system andors exhibited by the whole system. For background theory
make no mention of the fractional-order model counterparton fractional-order calculus, the readers should be referred
The aim of the present work is to consider the dynamics ofo Refs. [27-31].This model received great attention due to
the Shimizu-Morioka system with fractional-order derivative. its ability to describe bifurcation of the associated Lorenz-
We wish to inspect the effect of the fractional-order derivativelike attractors. It is easy to prove that the fractional-order
on the dynamical behavior of the original Shimizu-Morioka Shimizu-Morioka system has a natural symmefrgboutz-
system. axis since the transformatiost:(z,y, z) < (—z,—y,z) Is
invariant for a specific set of the system parameters. The

dThIe refs';]of thle papefr_|s organlged asdf(;llowg. Slec'[('jonequilibrium points of the fractional-order Shimizu-Morioka
Shimizu-Morioka System. In Seo. 3, the electronis croutS/S1e 1 calculated by solvingla/dt — 0, diy/dt,
: . ' o . andd?z/dt? = 0. Therefore, we found that the fractional-
deS|gn of the fra}cthna!-order_ Shlmlzu—Moinoka sy_stem andorder Shimizu-Morioka system has three equilibrium points
PSpice-based circuit simulations are carried out in order t

; , . ' Uefined byEy(0,0,0) and E; 5(++/a,0,1) whena > 0
verify the numerical analysis. The results obtained are com; - only one equilibrium point defined (0,0, 0) when
pared with numerical ones and a qualitative agreement is ob- <0
served. Finally, we summarize our contributions and draw '

the conclusions of this work in Sec. 4. o o ) o
2.1. Numerical investigations of integer-order Shimizu-

Morioka system

Here, the dynamical behavior of integer-order Shimizu-

. . . Morioka system is investigated. In order to select the values

2. An_aIYS'S of _mteger- and fractional-order of parameters accordingly, the two-parameter phase diagram
Shimizu-Morioka system showing the regions of different dynamical behaviors in the
(v, @) plane is computed as shown in Fig. 1 with initial con-

. ditions (z(0 0 0)) =(0.1,0.2,0.3).
There are several methods to study fractional calculus [25]. Frogrgf(Fi)g; yi )iif:(arz)be éeer; thét th)e chaotic and periodic

In this work, we adopt Caputo fractional calculus, which al'regions intertwined intricately. The periodic and chaotic be-

lows the traditional initial and boundary condition assump-, > . ; e .
) ) 2 haviors are identified by the cyan and red regions, respec-
tions. The Caputo fractional-order derivative [26] of a func- . . : ; L
. . ' tively. This diagram is of great importance for a practical im-
tion z(t) is defined by . . - )
plementation of integer-order Shimizu-Morioka system. In-
deed, it can help to choose the parameters of the system ac-
. t . cordingly.
mtf(t — 7)) (r)dr, To analyze the effect of parameteion the dynamics of
o . .y . 7
chom(t) = m-1<qg<m . ) mteger-or.der Sh|m|zg-Mor|oka system, we fix= 0.2 and
plot the bifurcation diagram and the largest Lyapunov expo-
%x(t), g=m nent (LLE) versus the parametervarying from 0.2 to 0.35
as provided in Fig. 2. Note that the largest Lyapunov expo-
nent is computed using the algorithm proposed by Wolf and

whereCDg0 is the Caputo derivative operator of ordgrm — colleagues [32]. The LLE helps to characterize the dynamics
1) < ¢ <m,m € N ¢ty andT'(-) are the initial time and the of a system. The system is periodic or chaotickdrE < 0
gamma function, respectively. andLLE > 0, respectively.
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FIGURE 1. (Color on line) Two-parameter phase diagram showing
different dynamical behaviors of integer-order Shimizu-Morioka 1.6
system in the4, ) plane. The periodic dynamics is represented
with cyan regions, while chaotic dynamics is associated to red ones. 1.4
The initial conditions aréx(0), y(0), z(0)) = (0.1,0.2,0.3).
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FIGURE 2. Forward (blue) and backward (red) bifurcation diagram Ficure 3. Bistable chaotic attractors of integer-order Shimizu-
a) showing the local maxima of the state variableand corre- Morioka system in(z, y), (z, z) and(y, z) planes computed with

sponding graph ofL L EAmax b) versus the control parameter a = 0.2, v = 0.305 and initial conditions(z(0), y(0), z(0)) =
varying from 0.2 to 0.35 forx = 0.2. The initial conditions are (0.1,40.2,0.3).

(z(0),y(0),2(0)) = (0.1,0.2,0.3). The acronym SB means sym-
metry breaking. 0.306, the system displays bistable chaotic attractors. And
The plot of Fig. 2 has two sets of data correspond-for v > 0.306 the bistable chaotic attractors merge to form
ing to increasing (blue) and decreasing (red) the values ghonostable ones via the common symmetry breaking phe-
control bifurcation parametey. The chaotic behavior ap- nomenon. The illustrations of such bistable and monostable
pears in integer-order Shimizu-Morioka system via well-Chaotic attractors are shown in Figs. 3 and 4 for respectively,
kwon period-doubling routes. From Fig. 2, it is noticed thattwo specific values of anda = 0.2. The initial conditions
when the value of the bifurcation parameteris less than are chosen a&e(0),y(0), 2(0)) = (0.1,+0.2,0.3).

Rev. Mex. Fis67 061401
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FIGURE 4. Monostable chaotic attractors of integer-order Shimizu-Morioka syste(n:,ip), (z,z) and (y, z) planes computed with
a = 0.2,y = 0.315 and initial conditiongz(0), y(0), z(0)) = (0.1,0.2,0.3).
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FIGURE 5. Coexistence of two asymetric chaotic attractors (red and blue) with one double-band chaotic attractors (green)Far
and~y = 0.3012 in different planes. The initial conditions afe(0), y(0),z(0)) = (0.1, £0.2,0.3) for attractors in red and blue and
(z(0),y(0),2(0)) = (1,2, 3). for the one in green.

Itis clearly observed from Figs. 3 and 4 that the integer- Ep(0,0,0) : Ay = —1.477032, Ao = —0.065,
order Shimizu-Morioka system exhibits bistable and monos-
table chaotic attractors. Ag = 0.67703, (2a)
When we fixa = 0.2 andy = 0.3012, the integer-  E, ,(4+0.44721,0,1) : \; = —0.933378,
order Shimizu-Morioka system experiences the coexistence
of three different chaotic attractors (two with single band and A1,2 = 0.19189 £ 062573, (2b)
one with double-band) for different initial conditions as dis-

played in Fig. 5. Now according to Ref. [34], the equilibrium poinks; »

are saddle points of index 2 art, is saddle point of in-
2.2. Numerical investigations of commensurate dex 1. From Ref. [34], we can get the following inequality

fractionnal-order Shimizu-Morioka system in order to determine the stability condition: &gl9189 +
0.625735) > qm/2 = q < 0.81056. Therefore, the nec-

The numerical simulations of commensurate fractional-ordeessary condition for appearance of chaos in commensurate
Shimizu-Morioka system is carried out by using the mod-fractional-order Shimizu-Morioka system s > 0.81056.

ified Adams-Bashforth-Moulton algorithm proposed by Di- Since the aforementioned condition is a necessary but not
ethelm and collaborators [33]. The time grid is always keptsufficient condition, it does not warrant chaos itself. The
At = 1072. The transient is totally suppressed after thebifurcation diagram showing the local maxima of the state
sufficient long time integration of commensurate fractionnal-variablex and the graph of. LE with respect to the com-

order Shimizu-Morioka system. mensurate fractional-ordervarying from 0.81 to 1 are pro-
For v = 035 and o = 0.2, the integer-order vided in Fig. 6 withy = 0.35, a = 0.2 and initial conditions

form of Shimizu-Morioka system exhibits chaotic be- (x(0),y(0), 2(0)) = (0.1,0.2,0.3).

haviour (see Fig. 3) and has three equilibfig(0, 0,0) and The bifurcation diagram of the fractional-order Shimizu-

F4 2(+0.44721,0,1) as well. The equilibrium points and Morioka system with respect to the commensurate fractional-

their eigenvalues are given as: order varying from 0.81 to 1 presents a large zone of chaotic

Rev. Mex. Fis67 061401
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FIGURE 6. Bifurcation diagram a) showing the local maxima of the state varialled L L E b) with respect to the commensurate fractional-
order varying from 0.81 to 1. The parameters are setting @s0.35 anda = 0.2. The initial conditions are keep @s(0), y(0), 2(0)) =
(0.1,0.2,0.3).
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FIGURE 7. Bifurcation diagram of the commensurate fractional-order Shimizu-Morioka system showing the local maxima of the state vari-
able in terms of control parametewvarying from 0.2 to 0.35 foee = 0.2 andg = 0.9. The initial conditions are keep &8(0), y(0), 2(0)) =
(0.1,0.2,0.3).

1 25 25
0.5
> 0
05
-1 0 0
45 -1 05 0 05 1 15 45 4 05 0 05 1 15 A 0.5 05 1

FIGURE 8. Bistable chaotic attractors of fractional-order form of Shimizu-Morioka systémip), (x, z) and(y, z) planes computed with
a =0.2,v = 0.21 andg = 0.9 and initial conditiongz(0), y(0), 2(0)) = (0.1, £0.2,0.3).

bahavior with a tiny window of periodic orbits around From Fig. 7, we can observe that the commensurate
g=0.95. This diagram helps to investigate the influence offractional-order affect considerably the dynamics of the com-
the fractional-order on the dynamics of the original Shimizu-mensurate fractional-order model of Shimizu-Morioka sys-
Morioka system. tem. The route to chaos has been modified and the new win-
In order to examine the effect of the fractional-order ondows of periodic and chaotic dynamics have appeared. One
the dynamical behavior of the Shimizu-Morioka system, wecan see that the chaotic behavior is more abundant in com-
selectg = 0.9, @ = 0.2 and plot the bifurcation diagram mensurate fractional-order model of Shimizu-Morioka sys-
of fractional-order Shimizu-Morioka system versus varyingtem.
from 0.2 to 0.35 as depicted in Fig. 7.

Rev. Mex. Fis67 061401
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FIGURE 9. Monostable chaotic attractors of fractional-order form of Shimizu-Morioka systegm, i), (z, z) and(y, z) planes computed
with & = 0.2,y = 0.35 andg = 0.9 and initial conditiongz(0), y(0), z(0)) = (0.1,40.2,0.3).

15 T T
a)

1 " E
0.5(

< o

0.5 |

£ 1 A

T
0.5 c)|
> 0
-0.5 : : ;
-0.5 0 05
X X

FIGURE 10. Time series of the state variabieillustrating the phenomenon of metastable chaos in the commensurate fractional-order
Shimizu-Morioka system a); metastable chaotic attractor b) and periodic orbit in the steady state a)for a2, v = 0.253 andg = 0.9.
The initial conditions aréx(0), y(0), z(0)) = (0.1,0.2,0.3).

As mentioned above in Sec. 2 the fractional-order It is clearly observed from Figs. 8 and 9 that the
Shimizu-Morioka system possesses a symmetry with respeftactional-order Shimizu-Morioka system exhibits bistable
to the z-axis. This property induces the bistability phe- and monostable chaotic attractors. The bistable chaotic at-
nomenon in the system. The bistable and monostable chaotitactors have been reported in many other systems with the
attractors of the fractional-order form of Shimizu-Morioka symmetry properties.
system are shown in Figs. 8 and 9, respectively,fer 0.21 During numerical investigations, by varying the control
andy = 0.35. The other parameters ake= 0.2andg = 0.9.  parameter in the range).253 < v < 0.256, we found that

commensurate fractionnal-order Shimizu-Morioka displays a

Rev. Mex. Fis67 061401
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provisional chaotic attractorge. the chaotic attractor evolves Detail notes on transient dynamics can be found in Ref. [35].
into a periodic orbit in a finite time as shown in Fig. 10. The transient chaos phenomenon possesses a however, hardly
In Fig. 10a), we show the time series of state variableobserved in real laboratory experimental measurements due
illustrating the metastable chaotic behavior in the systemto its relatively short lifetime and sensitivity to noise. This
while Fig. 10b) and 10c) show respectively, the transientunusual phenomenon of transient chaos has been observed in
chaotic attractorife. chaotic saddle) and the periodic orbit many physical and engineering systems [35-39].It ought to
formed after transient has been decayedifer 0.253. We  be stressed that, to the best of authors’ knowledge, there are
see (Fig. 10a) that the signal appears chaotic up to certaimo similar results in reported Shimizu-Morioka system and
time and then becomes periodic for all the rest of the signaltherefore represents an enriching contribution concerning the
It should be stressed that the period of time that the systerfflynamical analysis of this type of system.
response takes to move from chaotic to periodic motion de-  Furthermore, our numerical analysis reveals also the oc-
pends, of course, on the values of system parameters, ar@rrence of the periodic and chaotic spiking oscillations in
changes from orbit to orbit.€. depends on the initial states). the commensurate fractionnal-order Shimizu-Morioka sys-
tem. This kind of dynamics is illustrated in Figs. 11 and 12.
The periodic spiking oscillations are depicted in Fig. 11

1 0.2
- T W B where panel (1) presents the time traces of the state vari-
ablesz, y andz and panel (2) the periodic phase portraits in
oo om0 w0 % 0 05 planes(z, _y); _(27‘”) af?q(z,y) fory = 0.8, @ = 0.008, ¢ =
T X 0.98 and initial conditions chosen &s:(0), y(0),2(0)) =
e (0.1,0.2,0.3).
: 05
. M\MN\/\DMNUV % O The system exhibits chaotic spiking oscillations as shown
i in Fig. 12 fory = 0.8, a = 0.065, ¢ = 0.98 and initial con-
%0 w0 70 780 6o 08 1 12 14 ditions chosen a¢z(0),y(0), 2(0)) = (0.1,0.2,0.3). The
B z panel (1) presents the time traces of the state variahlgs

andz while panel (2) displays the chaotic phase portraits in

2
MMM = planes.), () and( )
b >
From Figs. 11 and 12, it is found that the state vari-

02 ) :
Q0 0 700 720 & 08 1 12 14 ablesx andy model the dynamics of relatively fast chang-

1 z ing processes, while the state variable describes the rela-
tively slowly changing quantity that modulatesandy. The

FIGURE 11. Periodic spiking: panel (1) time traces of the state spiking dvhamics has been observed in manv fields. includ-
variablesz, y, and z; panel (2) phase portraits in planés, y), piKing dy y '

(2, 2) and(z, ) for v = 0.8, a — 0.008 andg — 0.98. The initial ing neuroscience [40-43], mathematical biology and bio-
conditions argz(0), y(0), 2(0)) = (0.1,0.2,0.3). physics [44,45], chemical physics [46,47]; see also refer-
ences therein.

x 0
1W e’ 3. PSpice-based circuit simulations
BOO 650 700 750 800 -05 0 05
K Our motivation in this section is to verify the numerical re-
0s ; sults obtained previously by performing some PSpice-based
N g N e PN I P circuit simulations of system under study. Futhermore, it is
o i . important to evalute the effects of fractional-order derivative
GO0 BS0 700 750 800 05 1 15 taken into account in the mathematical model, on the real
T F4 behavior of a hardware prototype of the Shimizu-Morioka

system. To this end, we design and simulate the circuit dia-
gram of the proposed electronic simulator of fractonal-order

w N
Shimizu-Morioka system provided in Fig. 13.

B0 w0 70 70 e This circuit consists of resistors, capacitors, operational
T z amplifiers (TL084), analog multiplier chips (AD633JN) and

FIGURE 12. Chaotic spiking: panel (1) time traces of the state vari- three cha_in fractances _circ_ui_t represented by a} block F [4_8]'
ablesz, y andz; panel (2) phase portraits in planes y), (z, z) Each chain fractance circuit includes three resistor-capacitor

and(z,y) for y = 0.8, « = 0.065 andq = 0.98. and initial condi- pairs connected in series. By using the Kirchhoff’s electric
tion ((0), y(0), 2(0)) = (0.1,0.2,0.3). The state variables and laws on circuit of Fig. 13, the following set of three coupled
y while z is slow. first-order nonlinear differential equations are obtained:

Rev. Mex. Fis67 061401
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1. OV

S
D
S -1.0V
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2
S R %
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1 z
1
R, R, R
AN
b) P B C, C. .
L e S S T
FIGURE 13. Electronic circuit realization of the fractional-order
Shimizu-Morioka system a). The block F is a chain fractance cir-
cuit includes three resistor-capacitor pairs connected in series b). B 5V1 5
The values of electronic elements of the chain fractance circuit de- Lty
fined as in [38] forg = 0.9 are R, = 62.84 MQ, R, = 250 k2,
Ra =25k, Co = 1.232 uF, andC, = 1.1 puF. 5. O
diV, 1
=V 1.5v
dt1 — RCy ¥’
dV, 1 1 0.1
= = Ve — Vy - VZVZ7
dtd RCy R.1Cy RCy
div; 1 0.1 paed
z = - VZ - _ Vx2a
dtd? R5Cy RCy
whereV,, V,, andV, are the output voltages of the opera- 0.5V
tional amplifiersU, Uy, andUs. The capacitor’y replaces -1.0V ov 1.0V
the chain fractance circuit. In order to use the same sets of o V(Z)
parameters for both numerical and electronic circuit simu- v

lations, the values of electronic components in Fig. 13 arericure 14. Chaotic phase portraits in plag&, V), (Vz, V2)
selected asR = 1 k2, Ry = 2.851 k2, and R, = 5 k€. and(V,, V) obtained from the PSpice-based circuit simulations of
The values of the electronic components of chain fractancénteger-order Shimizu-Morioka system fr= 1k, R1 = 2.851
circuit [38] are selected aB, = 62.84 MQ), R, = 250 k2, k2, andR; = 5 k2. The initial voltages argV.,V,,Vz) =

R, = 2.5kQ, C, = 1.232 uF, C, = 1.84 uF, C, = 1.84  (0.1V,0.2V,0.3V).

uF, andC, = 1.1 uF in order to realize the commensu- PSpice-based circuit simulation results for integer-order
rable fractional-orde; = 0.9. The monostable chaotic as well as for fractional-order models (see Figs. 14 and 15)
phase portraits of respectively, integer and fractional-ordeconfirm that the chaotic portraits obtained numerically (see
form of the circuit in planegV,,V,), (V;,V.) and(V,,, V) Figs. 4 and 9), can be generated by the proposed electronic
are shown in Figs. 14 and 15 with the above given values o€ircuit. This serves to validate the numerical results. The
electronic elements. The initial voltages &fé,,V,,V,) = other dynamical behaviors are verified in PSpice and omitted
(0.1v,0.2V,0.3V). here for brevity.

Rev. Mex. Fis67 061401
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2.0V 2.0V 5
.......... "\\ V//-'-Q Pt e aa
500mv S ) = \\
0v+ 1.0V // 1.0V \\
o
~500mv e e
ov ov
-1.0V ov 1.0V -1.0V ov 1.0 —500mV ov 500mV
o V(Y) o V(Z) o V(Z)
v (X) V (X) V(YY)

FIGURE 15. Monostable chaotic phase portraits in pldhg, V), (Vz, V>) and(V,,, V) obtained from the PSpice-based circuit simulations
of fractional-order Shimizu-Morioka system f& = 1 k2, R; = 2.851 k2, Rz = 5 k2. The values of the electronic components of chain
fractance circuit fog = 0.9 are R, = 62.84 MQ, R, = 250 k2, R, = 2.5k, C, = 1.232 uF, C, = 1.84 uF, andC. = 1.1 uF. The
initial voltages ardV,, V,,, V.) = (0.1V, 0.2V, 0.3V).

4. Conclusion was observed between PSpice-based circuit simulations and
numerical simulations.
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