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1. Introduction In Sec. 2, the set of MHD equations is linearized, leading
to two independent cases where each matrix generates a dis-

In recent years analytical as well as numerical tools for work{€rsion relation whose roots for the case of Affvvaves are

ing out nonlinear partial differential equation and, in particu-& complex equation.

lar, those governing general fluids have been enormously im- In Sec. 3, for the linear approximation both modes are
proved. Nonetheless the linear problem resulting from anastudied for the thermal and magneto-acoustic cases. They are
lyzing these equations remains to be very important for manamped by thermal conduction, viscosity and the influence of
reasons: the cooling-heating function. The complex eigen-equation is
both described in the case where only one dissipative process

is considered and where only the magnetic diffusion t&
e The associated eigenvalue problem describes the be: y g teqm

§ present.
havior of magnetohydrodynamic waves (MHD) and P

other waves, for example, thermal and radiation waves. N- S€c. 4, the energy equation is used without any dissi-
pative terms but preserving the effects of the heat/loss given

its importance in astrophysical and laboratory plasma appli-
e Understanding the behavior of linear waves allows tocations.

understand many physical aspects of nonlinear prob-
lems like the onset of the turbulence as well as itsfiel
closed relation with it [1-5].

Finally, in Sec. 5, the kinetic coefficients in a magnetic
d, for the case of a recombining hydrogen plasma are dis-
cussed.

e The linear approach is closely related to the problem of
stability of different flows and gas structures in differ-
ent physical fields such as in astrophysical problems2. General set of magnetohydrodynamic equa-
planetary atmospheres, Earth’s oceans, stellar interiors  tions
[3,6,7] stellar atmospheres.(, the solar atmosphere),

interstellar medium, and intracluster media [8,9]. If dissipative effects are accounted for a recombining gas, for

an optically thin and heat conducting plasma, the well known
However, the present work is limited to the analysis ofP@sic MHD equations can be written as [16, 20, 25, 28]
some aspects of MHD wave propagation in optically thin

plasmas of interest in astrophysics. Extensive efforts have 9Hx —0 @

been put into practice for the solar atmosphere [10-24] and  Oxy, ’

the interstellar and intracluster media [14,25-27]. oH, 9 2 O°H,
We.cons@er several aspectg in the /@hfwvav_e damping ot —Gijkaij (vjHi — v Hj) +maTz’ 2

analysis and in the magnetosonic wave analysis and the asso- ’

ciated eigenvalue problem for optically thin plasmas, as will 9% O(pvi) _ 0, 3)

be seen and discussed at the present work. ot Ox;
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d& Js B
E+X(p,T,§)—O, 4 §+V Vs =0. (12)
dv; op 1 0 | 0’y For small disturbances superposed to an steady flow with
Pat ox; +47r oz ( ) k) + oxy, ©) velocity V5, magnetic field, pressure, and mass density
ds ) oT po [16,32]
PTE =—pL(p,T,&) + 90 \Hikg— ) ) )
T Tk v=Vo+vVv, H=Ho+h, p=po+p, p=po+/r,
62 3Hj 2 , (91)1' / / ! i
Tor2o | ki, + Tik g (6) wherev’ h, p’ andp’ are functions of, y, z, t). Therefore,
167%0 Tk Tk Eqgs. 0)-(12), up to the first order, become
and
Nokg V-h=0, (13)
= T, (7)
o~ oh V x (V' xHg) =V x (Vyxh) =0 (14)
. v v - =0,
where H; andv; are thei-th components of the magnetic ot 0 0
field and velocity, respectively;; is the permutation sym- op' , ) ,
bol 4,;, is Kronecker delta symbat, the light speed ang, p, 57 T VoVP £ pougV v =0, (15)

T, &, ¢y, No, kp and u(€) are mass density, pressure, tem-
perature, ionization degree, specific heat at constant volume,
the Avogadro number, the Boltzmann constant and the mean

molecular weight of the gas, respectively. wherey’ = o /u2 / 2 _ ;
; o . o =p /ui + (0p/0s),s’ andul = (Op/dp)s is the
X(p,T,€) is the net ionization rate and(p,,€) IS square of the adiabatic sound speed, and
the heat-loss function defined as energy losses minus en-

ergy gains per unit mass and time, which can be written as os’' ,
— 4+ V- =0. 17
L(pa Ta 5) = L(pa Ta §)output—L(Pa Ta g)input- 875 + 0 VS 0 ( )

Additionally, s, ando;y are the thermal conduction and
the viscous stress tensor, respectively. : )

The thermal conduction coefficient;; is generally pendgnce of the perturbed variables~agxpli(k - r—uwt)].
weakly dependent on density but strongly dependent on temlgquatIOS (13)-(16) reduce to
perature [19,29-31].

Strictly speaking the induction equation becomes rather
complicated, in particular, the electrical conductivitis also —wh —k x (v x Hg) =k x (Vg x h) =0, (19)
a tensor, however, for sake of simplicity and taking into ac- , 9 ;
count thato /o, = 1.96, this quantity will be assumed as (Vo'k —w)p' + pougk - v =0, (20)
a scalar of magnitude and the induction equation will be Vo k , 1 ” 1
assumed in the simplified form given by E@) (30]. (Vo k—w)v'+ ooF T

This set of equations reduces to the known MHD equa-
tions [16] when the heat/loss term is neglected. an

ov’

1
+ (VO-V)V’+p—Vp’ + H, x curl(h), (16)
0

4 po

By Fourier analysis one can write the space and time de-

k-h=0, (18)

Hox(k xh) =0, (21
47Tp[) Ox( X ) 7( )

(Vok—w)s =0. (22)

3. Eigenvalue analysis of the type of magneto Equation|1L8) implies thath is perpendicular td, there-
hydrodynamic waves fore, from Eq. 1) if p’ = 0, Egs. R0) and 22) reduce to

_ / /
For an inert plasma, if all dissipative processes are neglected, (Vok=w) =0, s #0, kxv #0. (23)
Egs. @), (3) and [7) hold and Egs.2)-(6) simplify, i.e the set

) X . Without loss of generalityyV, andH, are assumed to be
of ideal MHD equations can be written as

on thex—y plane. The above relations define an entropy vor-
tex wave which is carried along with the flow and is indepen-

v-H=0, ®) dent of other linear modes which correspond to the solutions
OH
W:V><(v><H), 9 (Vok—w)#0, =0, k-v' =0. (24)
% +V-(pv) =0, (10) These modes are defined by the eigenequations
dv 1 1 U — Va: Ha: ) ( hz )
=Y e IVUp—— =0, 25
7 pr 47rpH x curl(H), (11) ( ooy v, (25)
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and
In conclusion, as far as the linear approximation con-
u ;Vy —H, He hy, cerns, there are three kind of waves in a plasma flow, and
np 0 u vy | =0, (26)  which are independent each other:
—Hy (u—V,) — u 0 Uy
mp u=Va e The entropy-vortex modes.
wherew = w/k is the phase velocityHerein after, the e The Alfvén modes.
subindex zero indicating equilibrium values will be omitted,
except for the adiabatic sound spegd k is taken here to be e The magnetosonic waves.

along thez-axis.

In the particular case of a plasma initially at rest, the com-__ 11€ entropy entropy-vortex modes were worked out in

patibility conditions for the Eqs26) and 26) become [31,33].
2 . . . .
W2 - e , 27y 4. Dissipative processes in magneto hydrody-
dmp namic waves with a given ionization and
and heat/loss effects
2 2
u' — (477p + Ug) u® + Kmpug =0. (28)  For a plasma with a given ionization and taking into account

dissipative and heat/loss effects, the linearization of Eljs. (

As it is well known, Egs.25) and 27) define the Alfién  (7) give, as in the ideal case, two sets of equations indepen-
modes, and Eqs2€) and £8) define the fast and slow mag- gent from each other, that is [34]

netosonic modes (Al&n suggested the existence of hydro-
magnetic waves in 1942) [16,32]. ( w Sk H,k ) ( h, ) o 29)

In the general case of a plasma flowing with an initial i L v,
constant velocityV, the dispersion relations are modified ac- e ’
cordingly but the nature of the wave modes remains. wherec is the light velocitys is the conductivity coefficient,
| andn is the kinematic viscosity.

w(—iw+ Q) 0 (iudpw +T) k 0 /

p
0 wHiSE —kH, kH, hy,

]C Hyk . (4n 2 ’ = 07 (30)
- — pw—&—z(?—FC)k 0 Vg

0 Hok 0 pw + ink? Uy

where~ is the ratio of specific heats,/c,, « is the thermal
conductivity,( is the bulk (second) viscosity, ailandI” are scalars of magnitude and(, respectively, in Eqs20) and

given by (30).
1 [ kk2 Additionally, the strong anisotropy inherent in the ther-
Q= - <p + LT) , mal conduction tensot;; (n./n) ~ 10~'2) has been taken
Y into account assuming the heat flux vector to be
kk?
r=pt=0)or, -7 (4 1r)] @ or or
p q=-— HHTHH + /ﬁ_ainj_ ) (32)
SH S|

with the derivatives of the heat-loss functién, = 9L/0p,

andLr = 9L/OT. wheren;; andn ; are unit vectors along and perpendicular to
We should notice that the coefficients of viscosity ap-,, respectively.

pearing into the viscous stress tensor, are tensors due to the Therefore,

anisotropy introduced by the magnetic field, in this case the

ratio between the parallel and perpendicular kinematic vis- k= [I{” cos? 0 + k| sin® 6} , (33)

cosity becomes /. ~ 1.98 [19], therefore, the kinematic

viscosity as well as the bulk viscosity can be assumed awheref = cos™' (H,/Hj).
| In dimensionless form Eq30) can be written as

1+i(Rk?+ Ly) 0 14 iy YL, — L — #k?)k 0 P
.~ ~2 _ . 7 7 g
O2~ 1 +'wmk~ ' 21{1(9)19 ~2 cos(0)k ffy _ 0 (34)
—3%k —sin(0)k 1+i(304+m)k 0 Oy
0 cos(0)k 0 1+ ivk? Uy
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FIGURE 1. The velocity modesy) a), the damping coefficienk() b), the damping per unit wave lengthy (A = k.. /27k;) c), and the ratio
\hz/uz\ /71'p| d) have been plotted in Fig. 1 as functionsxdbr three different values of of the ratig, /v (= 0.1 blue line,1 black line and
10 red line)

where Due to the fact tha? as well as’,, (x~ l_/)\ < 1, wherel
P ’iH‘*’2 cos?(0) + "L sin2(0) | (35) is the mean free path andthe Alfvén wave length [16], the
peva K| quartic term of Eq./36) can be neglected and the resulting
and £k = akjw, a = Hy/\/4mp, Ly = Ly /cow, quadratic equation has the solution sought.
f/p = pLy/c,Tw, v = wn/pa®, By = w(/pa®,
Uy, = w02/47r0a2' B = wy/a, p = p/pug, hy = hy/Ho, ];i ~ % (T + D) - (37)

Uy = vz /a, andd, = v, /a.

Because the disturbance has been taken in the form
exp(k - r—iwt), thereforek; = wk;/a, becomes the absorp-

The corresponding dimensionless secular equation of the syfion coefficient.

4.1. Numerical results for the Alfven wave damping

tem of equations29) becomes equal to One must remark that the expressi@nholds as far as
s e g the damping per wave length is very small. This expression
Pk 4 (1= (7 + D) K* = 1 =0, (36) is obtained by [16] in a different way.
where = wn/pa2, by = we?/dnoa2, k = ayk/w and Strictly speaking if both coefficients and,,, are differ-
ay = |Hz| /v/4mp. ent fromzerq Eq. [36) has two roots fork2, however only
The roots of Eq..36) are complex, that is; = &, + ik;  one of the roots fulfils the conditioh; < 1 for which the
wherek, andk; are real quantities. present approximation holds.

Rev. Mex. Fis67 061502
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For this physical meaningful mode, the velocitiey the

damping coefficientk;), the damping per unit wave length

(la/\ = kr/27k;) and the ratidh. /v./7p| have been plot-
ted in Fig. 1 as functions aof for three different values of of

the ratiov,,, /v (= 0.1 blue line, 1 black line and 10 red line).

Additionally, for the §;), the damping per unit wave
length, the Landau approximation f@4) has been plotted
(3 pointed lines in Fig. 1b)).

4.2. Numerical results for the magnetosonic and ther-

mal waves

The condition of compatibility of the system of E¢84] can
be written as

(aor + i aoi) K + (arr +1 a15) k® + (age + i ag:) k*
+ (ag, + 17 asz;) k2 41+ i[N/T =0, (38)

the coefficients;; are defined as

R [17 (1 + %0082 (9)) + 7y cos? (0)] + Uiy, [52 + (§D+z7b> .Z/T:| ;

4 7 4
ay = % 7! [kcos2 (0) + Dy, (LT — LP)} — R [9 (3 D4y + Dm> + Dbﬁm} -5 (3& T 91,) T,

3

- ~ 1 ~
azy = B2y (5 + i) (LT - Lp) - (; D+ 7y + ,,) n {D <1 + 5 cos” (9)) + b cos? (9)} T

4
— [17 <17+17b - 7Dm) +17b17m] + 3% cos? (0) ,

3 3

ag; = B2yt [(iT - Lp) cos? () — R} — k-

- [f/ (ﬁQ +1+ 1cos2 (9)) + 7 cos? (0) + 62%4 ,

3
[ 2
gy = — §V+Vb+1/m LT+1+5 y

and

- - - 7.
as; :/62«771 (LprT)+I$7LT+§V+Vb+VnL~ (39)

lthe undamped fast and slow magnetosonic wéwes) [16]
but whend = /2 only the fast magnetosonic mode remains.
If the only dissipative process taken into account is the

Generally speaking, the parameters defining the coeffithérmal conductivity and # /2, Eq. 38) reduces to a cu-

cients of the fourth order polynomial ik? (38) depend on
two thermodynamic quantities, sgy,and7” and two quan-
tities defining the magnetic field,e. H andf. Therefore,

bic polynomial the roots of which correspond to two damped
magnetosonic wavesy and a thermal wavé'huw.
When# = 0 a root becomeg¢ = 1 for whichp’ = 0

these parameters define the corresponding four wave mod@§dv. = 0, corresponding to an undamped AfvwaveAw

resulting from the Eq/39).

The square roaotk represents two waves propagating in

with values of‘ hy /Ty

=1.
The other two roots withk # 1 are a damped magne-

opposite directions each other. The angle ranges betweadsonic wavesw and an over damped thermal waligw for

0 < 6 < 7/2, but the ranges fop, T and H where the
dispersion relatiorni3g) holds is rather wide.

whichp = |pwv, /K|, all of which are plotted in Fig. 2.
In Fig. 2, the phase velocity a), the damping coefficient b)

Therefore, here only a few asymptotic cases will be dis-and the damping per unit wave length c) are plotted for three

cussed and the solution of the full polynom|(a8) will serve
only for specific applications.

If all dissipative mechanisms as well as the heat/input ef-

fects are neglected arfd# 7/2, the dispersion relation re-
duces to a quadratic polynomial f&f (28) corresponding to

different values off = 0.2 (red lines), 1 (blue lines), 2 (green
lines) as function of, .

Note that the maximum damping of the magnetosonic
wave (redmw line, occurs at the same value f at which

the maximum damping of the thermal wave occurs for the
three Thw values in Fig. 2b) [10, 12].

Rev. Mex. Fis67 061502
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FIGURE 2. For thef # = /2 case the phase velocity a) is plotted 10! L L
for three different values of = 0.2 (red lines),1 (blue lines),2 P 0 2 . 4

pe

(green lines) are shown in the case of a thermal niolle and the
sw mode, also the undamped Akfa modeAw is the solid black 5 re 3. For the dispersion Eq36) using the thermal conduc-
line for the three cases. The damping coefficient b) and the damptivity with 6 = 7 /2, the two wave modesiw andThw are plotted

ing per unit wave length c) are plotted for three different values of ¢, 3 = 0.2 (red lines),3 = 1 (blue lines),3 = 2 (green lines).

f = 0.2 (red lines),1 (blue lines),2 (green lines). In this figure however, the wave parameters have been plotted as

. . . _function of & = »a?) instead of%|.
If & = 7/2 the dispersion equation reduces to a quadratic R = (kaw/pend) il

equation, one root becomes a damped thermal wave and titee above two wave modes are plotted/for 0.2 (red lines),
another one a damped magnetosonic wave for whjck 0, 6 =1 (bluelines),8 = 2 (green lines) for botlw andT hw
|hy /02| = |K|, and|p/5,| = B?|(1—k?)/k|, see Fig. 3where modes.
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fmw mode

Th.w mode

10-1 " T | N b1 aaal i L
10? 10 10’ 10"

c) a d)

FIGURE 4. Solution for the dispersion E¢38) using the thermal conductivity with = 7/4. a) Here the phase velocity, b) the damping
coefficient, c) the damping per unit wavelength and d) the ampliide. |, are plotted for the two slow and fastw modes, and the thermal
Thw mode with3 = 0.2 (red lines),5 = 1 (blue lines), angs = 2 (green lines), it can be observed a small jump in the phase velocity a) for

the case 0ff = 1, which is reflected also in the amplitude d).

Here one must emphasize that in the figures above the
wave parameters have been plotted as functio® of =
(kiw/peya?) instead ofi), i.e. the scales involved here are
quite different (by a factor of the order af)*2) from those
involved in Fig. 2.

For an anglé # 0 andd # 7/2 there are three modes,
one thermal and two magnetosonic waves (the fast and slow)
modes, for which the amplitudes are related by

Rev. Mex. Fis67 061502
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10" 10° 10"
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10" s PR | . MRS A | 107 10 10"

) " c) v

FIGURE 6. a) The phase velocity, b) the damping coefficient, and

FIGURE 5. a) The phase velocity, b) the damping coefficient, and ¢) the damping per unit wavelength for the magnetosonic fast and
¢) the damping per unit wavelength for the magnetosonic fast andslow modes are plotted fgi = 0.2 (red lines),8 = 1 (blue lines),
slow modes are plotted fgt = 0.2 (red lines),3 = 1 (blue lines), B = 2 (green lines), for the dispersion E@8] as function of the

3 = 2 (green lines), for the dispersion E&8] as function of the ~ magnetic diffusivity withd = /2, for 3 = 1 (blue line), a cross-
magnetic diffusivity withd = /4, for 3 = 1 (blue line), a cross-  ing of slow and fast magnetosonic modes is observed.

ing of slow and fast magnetosonic modes is observed. . . .
g g (green lines). It can be observed a small jump in the phase

Figure 4 corresponds to an angle= 7/4 and the same velocity Fig. 4a) for the case gf = 1, which is reflected
values off3, i.e. 3 = 0.2 (red lines),3 = 1 (blue lines),5=2 also in the amplitude Fig. 4d).
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For this particular value of = 7 /4, h, = #, = 0, and
/82| = |(1+~2&k3) /(1 + &k2)|.
The thermal waves show a minimum {f/v,| at the

9

The case when only thermal conduction and heat/loss ef-
fects are accounted for in the equations, but neglecting the
viscosities and the magnetic diffusion as well as the above

value of iy at which the maximum damping per unit wave asymptotic cases, but neglecting the anisotropy effects of the

lengthl, /A occurs.
The magnetosonic wave showing its minimumigf\
at lower value ofi, presents an increasing value |90, |

thermal conduction coefficient, have been analyzed in a pre-
vious work [12].

whengg increases, but the magnetosonic wave with its mini-4.3.  Numerical analysis of the effect of the heat/loss

mum occurring at a larger value 8§ has a decreasing ratio
|p/ .| whenkg increases.
If only the magnetic diffusioni,,,) is accounted for, there

function in the magnetosonic modes

The case when in the energy equation the dissipative terms

should be no thermal waves because only the magnetic tern¥€ neglected but the effects of the heat/loss are considered

are considered. In this case the dispersion B8) feduces
to a quadratic equation far for which|p/v,| = 1. Further-

more, ford = 0, a root becomes = 1/, i.e. an undamped
mode for whichh, = 0 andv, = 0, and the other root be-
comesk = +/i/(i + ).

Figures 5 and 6 show the results fbr= =/4 and /2
respectively, and three different valuesiof 0.2 (red lines),
0 =1 (blue lines),s = 2 (green lines). The the amplitude in
these cases i$/v,| = 1.

When the magnetic energy density is of the order or largef, =

than the kinetic energy in the wayk< 1, there is no cross-

deserves further analysis, because this particular case is of
great importance in many astrophysical as well as laboratory
plasma.

In this case the Eq38) reduces to a quadratic equation
in k2 (if 0 # m/2) corresponding to two magnetosonic waves
modified by the heat loss input.

For 0 = 0 one root becomes = 1 corresponding to
an undamped Alfén wave for whichh, /5,| = 1 and the
other root corresponding to the magnetosonic wave becomes
Vi = Lo) li7 = (Lr — Lp)l.
For 6 = x/2, this is the only one root, but in this case,

ing of slow and fast modes, but mode crossing occurs whethe magnetosonic wave hag = 0.

8 =1, see Figs. 5a) and 6a) for two examples.

As a first approximation, the heat/loss function can be pa-

The damping coefficient for the slow mode is a decreasrameterized by the form

ing function of7,,, (~ w) but that for the fast mode shows
a maximum at a value af,, depending on the value ¢f

(Figs. 5b) and 6b)) and for the damping per wavelength there
is a corresponding minimum (Figs. 5c¢) and 6c¢)). This mini-

mum occurs at the mode crossing point whies 1.
_ Furthermore, ford /2, oy = 0 and|h, /0, |=
|k/(1+ i mk?)|.

18x10%
1,6x10%
14x10%
1,2¢10%

1,0x10%

(T/T)"

8,0x10%
6,0x10%
4,0x10%

20x10% | |

0oL
10

10°
a)

(T
Lo D) =pm -G (1) @)
¢:(T) being the piece-wise functiop;(T') = A; (T/T;)",
whereT; andn are parameters depending on the interval of

temperature under consideration (see Table I, [22]).

1024
1023
1022
1021
102]

wla

Jollml,. (™)

10I5

10|T

1OI5

1OI5
10

10° 107 10°

T

10°
b)

FIGURE 7. For gases with solar abundances (a completely ionizedégas1() and a particle density = pNou = 1) the cooling function

#:(T)) has been plotted as a function of temperature in a) in magenta color, the derijaiive, T')| (red thick line) andu L, (p, T') (blue
thin line) as function ofl” have been plotted in b) for a constant heating per unit volume (case 1).
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:—-. 73
K
: -

=l |
1

a) T b)

a=7/6, b=7/6

B %
_-:J: _J—‘
3 3

c) T d) T

FIGURE 8. The heat/loss function derivatives L+ (p, T')| (red thick line) andv L, (p, T') (blue thin line) as function of’, that correspond
to cases (2) to (5) are shown in a) to d) for a completely ionizedgas1) and a particle density(pNo/p) = 1.

Additionally, the parameter€),, a andb depend on the From Eqg. @41) it follows that
heating processes considered. In particular: (2 ).
= —a
. . Ly(p,T) = LT, (42)
1. For a constant per unit volume heating= 0 and
b=0 n—1
N b =00 (22) ()7 w
2. For a constant per unit mass heating heatirrg 1 and Cow
b=0. The cooling functiory; (T") has been plotted as a function

of temperature in Fig. 7a) in magenta color.

The derivatives |wLy(p,T)| (red thick line) and
wip(p, T) (blue thin line) as function df" have been plotted
in Fig. 7b) for a constant heating per unit volume (case 1),
for a completely ionized gag (= 1) and a particle density

3. Heating by coronal current dissipatian = 1 and
b=1.

4. Heating by Alfiven mode/mode conversian= b =

7/6.
n=pNo/p=1. )
5. Heating by Alfen mode/anomalous conduction damp-  The intervals of temperature wheke-(p, 7)) > 0 are in-
inga = 1/2andb = —a. dicated with the red labe}, elsewherd.r(p, T') < 0.
The plots corresponding to the cases (2) to (5) also
See for instance [18, 22] and references therein. are shown: Fig. 8a) for a constant per unit mass heating,
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Fig. 8b) shows the heating by coronal current dissipation, Finally, the kinematic viscosity coefficient is given by
Fig. 8c) plots the heating by AlBn mode/mode conversion,
. N . . T5/2
the heating by Alfén mode/anomalous conduction damping n =221 %1071 (47)
is shown in Fig. 8d). InA’
Due to the fact that the cooling term in Edlj aswellas  gnq the kinematic viscosity is expressed as [35]

its derivatives with respect to temperature and density~are

p, for other densities, the corresponding values simply must y=1 (48)

be multiplied by the facton. p

The logarithmic coefficientdn A are for temperatures
5. Kinetic coefficients for a Hydrogen ioniza- 7 <4.2x10°K

tion plasma

1 —4T 3\ 1/2
A =23.24+In ((0))
At this Section the kinetic/dissipation coefficients in a mag-

n
3
ngtlc field, for the case pf a rgcombmmg hydrogen plasm%r when the temperatuf > 4.2 x 10° K
will be quoted out and briefly discussed.
According [16,19,30,35,36], for a hydrogen gas with ion- 1067
ization¢ the two electric conductivity tensors are respectively InA =29.71 +In <(”5)1/2) :
given by
T3/2 On the other hand and as a first approximation, the total
TnA’ (44) dissipative coefficient for magnetosonic waves can be written

and as

4
o =1.960; Va = §V+(7_1)X+Vma (49)

The thermal conduction coefficients are expressed as Wherex = x/pc, is the thermometric conductivity ang,
the magnetic diffusion [35-37].

o, =6.97x 107

T5/2 Note that in the present a imati T),and
B 301 1/2 _5 p pproximatiofil’), v,,(T), an
= 2:50 x 10°(1 = T~ +1.84 x 10 InA’ (45) x(n, T, &) explicitly depend on the particular form of the rate
and function X (n, T, ¢) and the wave frequency [25, 37, 38]. In
L €22 Ref. [38] the problem of reacting gases and the bulk viscosity
KL =148 x 107" ——"p | (46)  has been discussed to some extent.
z2r/
10!4 A2 B T 7 A IR V3, R LY L 2 B Lo
1012 -r
2 1U1ni“
i
sl i oo
" ] i
N N 10
5 S
X 10° XAt
] 8 L
& | H=2x10°G, n=1 E !
y s
1015 3 Vv !E ..
Ty
3 3: £
W el il il 1 1f
2 3 4 6] 6 7 .
a) log T b)

FIGURE 9. In a) (without magnetic diffusion) and b) (witlv(,)), the quantitiest /3 (black solid line) andy — 1)x have been plotted as
functions on temperature for four values of the ionizatjos 10~° (blue colour),10~2 (red colour),10~* (brown colour), and, 99 (green
colour).
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In Fig. 9a) the quantitiedr /3 (black solid line) and e The case when the only dissipative process taken into
(v — 1)x have been plotted as functions on temperature for account is the thermal conductivity was discussed for
n = 1 and four values of the ionizatio = 10~% (blue several values of in Eq. (38). We found eigenvalues
colour), 10~ (red colour),10~!(brown colour), and).99 corresponding to two damped magnetosonic waves,
(green colour). and a thermal wave. We also found a small jump in the

Note thaty ~ n?, therefore, the effect of increasing (de- phase velocity for magnetosonic modes for the case of

creasing) the density is to increase (decrease) the respective 3 = 1 which is reflected also in the amplitude.
values ofy. The value ofy,,, < 10'° cm~2s~! in the range
of T" under consideration has not been plotted.

However,v,,, parallel and perpendicular to the magnetic
field can become of the order or greater thar{4f3)r and
(v — 1)x for high densities® > 10'° cm~3) and strong
magnetic fieldd7 > 1 G, for instance, in the solar low atmo-
sphere and photosphere.

For context, in Fig. 9b) all dissipation coefficients are

shown forff = 1 G andn = 10'°cm™?; from where it is In Sec. 4, in the energy equation the dissipative terms
apparent that the magnetic dissipation paraligl)(as well  were neglected, but the effects of the heat/loss were ac-
as perpendiculanf, ) to the magnetic field becomes dom- ¢oynted, because of its great importance in many astrophysi-
inant in range of temperatures depending on the particulaty| as well as laboratory plasma applications. In this case the
values of the ionization degree as well as the particle densit)Eq_ (38) reduces to a quadratic equationl;j%corresponding

In Fig. 9b) the quantitieslv/3 (black solid line) and o two magnetosonic waves modified by the heat loss input.
(v — 1)x have been plotted as functions on temperature fofye described in this section five heating processes for a thin
n = 1 and four values of the ionizatio = 10=% (blue optical plasma.
colour), 10~ (red colour),10~"(brown colour), and 0.99 Finally, in Sec. 5, the kinetic coefficients in a magnetic
(green colour). field, for the case of a recombining hydrogen plasma were

The perpendicular magnetic diffusion,(.) is plotted is  priefly discussed. It was found that the magnetic dissipation
Fig. 9b) for four values of the ionizatiod = 107° (gray  parallel ¢,,) as well as perpendicular,, | ) to the magnetic
point line), 10~* (black point line),10~" (brown point line),  field become dominant in a range of temperatures depending

and0.99 (magenta point line). The parallel magnetic diffu- on the particular values of the ionization degéeas well as
sion ) is also plotted is Fig. 9b) (dash black line). the particle density..

e Inthe case with only the magnetic diffusion terix,|,
the dispersion Eq38) reduces to a quadratic equation
for k2 for which |p/o,| = 1 and lacks the thermal
mode. It was found that if the magnetic energy den-
sity is of the order or larger than the kinetic energy in
the wave forg = 1, a crossing of slow and fast magne-
tosonic modes was observed.
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