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The classical master-slave configuration allows synchronizing pairs of unidirectionally coupled systems in a relatively simple manner. How-
ever, it has been found that this scheme has a limitation: for certain systems including those with chaotic dynamics, the scheme fails at
inducing synchronization. In this work a modified master-slave scheme, based on the combination of elastic and dissipative couplings, is
presented. We focus on a possible solution for this limitation by illustrating our method through the van der Pol and Duffing oscillators and
analyzing three different ways of coupling. We obtain, synchronization in both oscillators.
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1. Introduction states of different attractors is of current interest and it could
originate important information. A model of coupled oscilla-
Due to numerous works on chaos in recent years, currenbrs, each being in its own attractor regime, could be useful to
research on this topic comprises chaotic systems in divers@present hysteresis or resonant phenomena founded in bio-
areas such as lasers, chemical reactions, electronic circuitggical or electromechanical systems [9]. Some applications
biological systems, among others. The work of Pecora andf the van der Pol and Duffing oscillators go from physics
Carroll on synchronization [1] and experiments with circuitsto biology, electronics, chemistry and many other fields. For
operating in a chaotic regime give a great impulse to the studjnstance, a possible application of synchronization in chaotic
of chaotic systems. Particularly, low-dimensionality systemssignals, is for implementing secure communication systems,
have been of interest in order to understand the synchronizaince chaotic signals are usually broadband, noise-like, and
tion and chaotic behavior in nature. The most studied andiifficult to predict their behavior [10-12]. In robotics, the os-
representative systems are the Lorenz, ChiagasRr, van der cillators have been included to control hip joints and knees
Pol and Duffing ones [2—-7]. of human-like robots to synchronizing the mechanical sys-
The van der Pol and Duffing oscillators are thetem, giving approximate paths to the robot legs. The sig-
paradigmatic circuits to study chaos in systems of low-nals generated can also be used as trajectories of reference
dimensionality. These systems give rise to limit cycles andor the feedback control [13, 14]. Other applications are in
prototypes of strange attractors. Studies focused on the vaartificial intelligence. In fact, the oscillators show usefulness
der Pol oscillator reveal that the system possess an interest training neuronal network and recognition of chaotic sys-
ing dynamical structure when the oscillator is under an extems [15, 16].
ternal forcing. In fact, the system exhibits complex bifurca-
tion structures with an important number of periodic states, The synchronization is observed in several natural and
a chaotic region and islands of periodic states, showing, itechnical systems, going from cardiac cells to coupled lasers
addition, transitions from chaos to stable states [8]. On th¢17,18]. Thus, the comprehension of mutual interactions be-
other hand, the Duffing oscillator presents damping oscillatween coupled oscillators and their synchronization results
tions when the system is autonomous. In the presence @n important issue. As far as the coupling between the van
an external harmonic forcing, the system leads to hysteresigler Pol and Duffing oscillators is concerned, we can men-
multistability, period-doubling, and intermittent scenarios oftion three different couplings, namely: gyroscopic, dissipa-
chaos. In addition, we can mention that two coupled van detive and elastic [19—-24]. Among the diverse way of coupling,
Pol oscillators give a rich fractal structure. Moreover, otherthe most used are the elastic and dissipative ones [25,26]. In a
systems based on this oscillator, such as identical oscillatorprevious work [24], itis analyzed a different approach of syn-
have also been analyzed. The dynamics based on identical ohronizing two distinct oscillators of low-dimensionality, by
distinct linear oscillators presenting the same kind of attracusing the aforementioned couplings. In this work, we study
tors is still under study [8]. The dynamics of these systems irand compare three types of couplings by using the van der
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Pol-Duffing system; the elastic, the dissipative and the usedhinimum located at: = 0. In order to express Eql) as
previously by Uriosteguét al. [24], in order to achieve syn- a dynamical system and to analyze the fixed points, we set
chronization in a master-slave system. It is important to re< = u and drop the forcing to obtain
mark that the studies in the literature on this kind of synchro-
nization is based only on one coupling. T =u,

An outline of this work is as follows. In Sec. 2, it = p(l—22)u—z (4)
is briefly studied the main features of the van der Pol and '

Duffing oscillators. In Sec. 3, we study and compare thrées it js well known, for a dynamical system withdegrees of
types of couplings using the van der Pol-Duffing system iNreedom x = f(x), the fixed pointsx* = (%, 5, ...2%),
the master-slave configuration to achieve synchronization. 18,6 getermined by the relation= f(x*) = 0. In the case of

Sec. 4, the final remarks and an outlook are presented. Eq. @) the only fixed point is located dt:* = 0,u* = 0).
For the A, = 0 case, the van der Pol system satisfies the
2. Dynamics of the systems Liénard theorem, giving a limit cycle around the origin in the

phase space [25].
As a dynamical system, the van der Pol oscillator is one with  On the other hand, the Duffing oscillator is a nonlinear
nonlinear damping. The evolution is governed by dynamical system governed by

& —p(l = 2%)i +x = Az cos(wat), 1) i+ oy —y+ey® = Ap cos(wit), 5)

where, as usual, the variable denotes the position,the wherea is the damping parameter,is a positive constant

time, f”md’“‘ is a parameter that governs thg ngnlinearity andthat controls the nonlinearity of the syster, andw; are the
dampmg of the_ syste_m. The _external forcing is given by theamplitude and frequency, respectively, of the external forc-
harmonic function, with amplitudd, and frequencyws. In

X X . ing. As before, we can identify a potentfd] (y) in the Duff-
order to identify the potential, we cast Ed) és ing system given by

. . OUs(x)
— (1l —2?)i = Ay cos 2 1 1
x /J'( xr )-T + or QCOS(WQt)a ( ) Ul(y) — _§y2 =+ 151/4- (6)
where we have defined the function i .
The potential represents a double well shown in Fig. 1b). The
Us(z) = lx{ (3) local minima of this potential are locatedgn= +1/,/c and

2 the local maximum is located at = 0. As a dynamical
as the energy potential of the van der Pol oscillator, whichsystem the Duffing equation in E)((no forcing) can be
represents a simple well (see Fig. 1a)). The potential has waritten as

2.0R : ! ? i 2.0f
1.5} ] s
o~ o~
e 3 1.0
<% )
0.5
0.5
0.0
0.0L, ]
-2 -1 0 1 2 —2 =1 0 1 2

FIGURE 1. The potentiald/>(x) andU: (y). a) The potential corresponds to the van der Pol oscillator. b) The Duffing osciltaton §.
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Uy =, rise to strange attractors. In particular, chaotic behavior arises
only in continuous dynamical systems of three dimensions or
higher. Most of the research on synchronization is based on

The fixed points for this system are located in the phase Spa@eutonomous systems that satisfy the Poiédendixson the-
at(0,0) and(+1/+/¢,0). The(0,0) is a saddle point, while
the others, depending on the parameigethe points can be
stable or unstable. For the > 0 case the points result sta-
bles. Fora = 0, the resulting dynamics is of type center and
finally, for a < 0 case, the points result unstable. In partic-
ular, when the damping is positive: > 0), the trajectory of . . -
the system is a spiral stable, conversely, when the dampin'&"tIal conditionsz(0) = 0.8, y(0) = 2.0, u(0) = 1 and

is negative ¢ < 0), the trajectory is a spiral unstable at the ;}h(O)d'fT _1t.' Iln ad(tj_ltlon, we WOUl_d I|II|<e tol m;gtlon _tha:[[h
fixed points(+1/4/¢,0) in both cases. e differential equations are numerically solved by using the

Runge-Kutta method of fourth order.
S In the configuration master-slave, the Duffing oscillator
3. Master-slave synchronization in the van der acts as master and the van der Pol oscillator as slave. For this

Pol-Duffing system case we have

V= —av+y—ey’ (7

The dynamics of the oscillators under study is described
by Egs. i) and 6). The values of the parameters we use
to carry out the numerical study are as follows: = 0.8,
a=025e=1,A41 =03, w; =1, Ay = 1 andw, = 0.4.

In Fig. 2 it is displayed the respective trajectories with the

In this section, three different couplings for the van der Pol- y=v,
: . Master : ¢ 7 (8)
Duffing system are studied and compared among themselves, 0= —av+y — ey + Aj cos(wit),

namely: the elastic, the dissipative and the one that combines

an elastic and dissipative couplings employed by Uriostegui Slave - T = u,
et al.,[24]. Let us stress that most of the research on syn- >#V¢* t=p(1—22)u—x4As cos(wat)+K (y — ).
chronization is based on autonomous systems of three di- )

mensional or higher [27-29]. It is important to mention that

the synchronization between coupled forced systems of lowin this instance, the coupling corresponds to an elastic one
dimensionality has been hardly studied [30, 31] since therand it is represented hi (y — x), being K a coupling pa-

are few low-dimension chaotic systems with forcing knownrameter to be varied. For thi€ = 0 case, the system decou-

in the literature. Three of the most studied nonautonomousples. The coupling is a lineal feedback to the slave oscillator
systems of low-dimensionality with forcing are the Duffing, and it can be seen as a perturbation for each oscillator in the
van der Pol, and Rayleigh, since much of the dynamical feasystem, proportional to the difference of the position, what is
tures embedded in the physical systems can be realized aalled in literature an elastic coupling. We are interested in to
these systems [32—-34]. One important implication is that astudy how the dynamics of the system evolves as the constant
two dimensional continuous dynamical system cannot giveoupling X' changes.

0.5} 4

Y 00}

FIGURE 2. a) Duffing oscillator. b) van der Pol oscillator.
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In particular, let us consider th€ > u case. Hence, the channelgy — x andv — u (see Figs. 3a) and b)). As it is ob-

Eq. (9) can be approximated as served, there is not synchronization in this kind of coupling,
) since the error functions for the channgls x andv — « do
&4 (1+ K)z ~ Ay cos(wat) + Ky, (10)  not vanish. This can be explained in terms of EXD)( In

. ) ) ) ) order to see this, let us observe that the ereprs y — a2 and
which represents a simple harmonic oscillator with an exter, _ ., can be calculated from Eq@)(and ©) as:

nal forcing. The solutions to the equation are harmonic func-
tions, whose amplitudes can be as large as the corresponding ¢, =y — 4 = ¢,,
to the particular solution provided by the forcing, particularly ) 5
by the termKy due to the master oscillator. This implies that €2 = —av +y —ey’ + Ay cos(wit)
total synchronization could not be possible for valueg<of ~ (1 = 2?)u + z — Ag cos(wat) — K(e1) (14)
large enough. '
In general, the synchronization problem reduces to findyhose behavior is displayed in Fig. 3 as a function,dér a
ing a suitable value of the coupling strength (denoted as  y5jye of K = 200.
K) being in the rangés’ > K™ > 0, such that the master In order to numerically corroborate that there is not syn-
and slave systems synchromze_. Thus, for a coupling Stref}g@hronization in any of the channels under study, let us analyze
K*, when the synchronization is reached, the error functionpe phase space in the— = andv — u channels for a partic-
goes to zero: ular valueK = 200. For which, the master system (Duffing
. . oscillator) is working in the chaotic regime and the dynamics
tllglo [ y(t) —=(t) |= tliglo | o(t) —u(t) |=0. (11) of the van der Pol oscillator is not being controlled by Duff-
. . . . ing oscillator as it can be observed from Figs. 5c) and d). If
Whenthe system is p_artlally s_,ynchronlzed, for a certain valu%ve had have synchronization we could observe a straight line
of K, the error functions satisfy at45° on both channels, but it is not the case.
Let us now discuss the synchronization when the oscil-

li t) —x(t) |< 0, 12 . s L .
s y(t) —(t) I< (12) lators are interacting through a dissipative coupling, repre-
Jim | o(t) - u(t) |< T, (13) sented by
— 00
for given positive valueg, = > 0. In some cases, it can be o Jy=w,
S .. Master: <~ (15)
reached total synchronization in only one channel while in = —av+y —ey® + Aj cos(wit),
the other, it can be only obtained partial or null synchroniza-
tion. Slave : z=u,
The bifurcation diagrams are achieved by means of the er- " a=p(1—2?)u—x+As cos(wot)+H (v—u).
ror functions| y(¢t) —z(t) | and| v(t) —u(t) | by taking K as (16)

a control parameter to be varied in small steps, from 0 to 200.

As it is well known, the way of corroborating whether two whereH (v — u) represents the dissipative coupling, befig
coupled systems are synchronized or not is through the errarsed as a parameter. As before, for the case in wHich 0,
functions, they must go to zero as the time goes to infinitythe oscillators become to be decoupled. Similar to the elastic
For our case, the bifurcation diagrams of the error functiongoupling, the termH (v — w), used in this case, is a lineal

| y(t)—(t) | and] v(t) —u(t) |, allow us to find the range of feedback to the slave oscillator. Physically, the dissipative
values forK in which the synchronization is reached in the coupling H (v — w) drives the two interacting systems to a

2.0
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- ; e
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0.0E . \ : 4 (12 ; . : 3
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2) K b) K

FIGURE 3. Bifurcation diagrams for the error functions: in (a) it is represemted) — z(¢) |, and in (b)| v(¢) — u(t) |, both as a function
of the parameteK.
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FIGURE 4. Error functionsle; | and|ez| as a function of, for a valueK = 200.
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FIGURE 5. Elastic coupling, for a parameter control &f = 200. In a) the Duffing oscillator. In b) the van der Pol oscillator. In c) and d)
the phase space for the— x andv — « channels.
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FIGURE 6. Bifurcation diagrams for the error functions: In a) it is displayedt) — =(¢) |, and in b)| v(t) — u(t) |, both as a function of
the parameteH.
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FIGURE 7. Error functions|es| and|es4|, for H = 200.

more homogeneous regime where their states coincide. A&gs. (L5) and (L6), given
a result, this coupling directly favors synchronization of the ) o
oscillators. In order to get more insight in the solution, let ~ €3 =Y =% = €4,
us consider the case d¢f large enough such thadl > p. 61= —av+y —ey® + A, cos(wit)
Thus, we can neglect the nonlinear contribution in HEd) (

to obtain — (1 — 2®)u + x — Ay cos(wat) — H(é3). 17)
i+ Hi+x~ Ay cos(wat) + Hy. Tfhe behavior of these functions is shown in Fig. 7 for a value
of H = 200.

This equation represents a damped harmonic oscillator with Let us analyze the space phase for ghe x andv — u
forcing, where the ternf{ g, is due to the master oscillator. channels for a specific value éf = 200. In this case, the
Clearly, for larget, the transient solution can be neglected Duffing oscillator is in a chaotic regime. In Fig. 8c) we can
and the behavior of the slave oscillator is dominated by theppreciate the fact that in the— 2 channel there is no syn-
particular solution, that is to say by the master oscillator.  chronization, while inv — » channel there is total synchro-
We study the evolution of the system by varying tHe nization (Fig. 8d)).
parameter. The bifurcation diagrams are obtained by means For certain systems, it is not possible to reach synchro-
of the error functiong y(¢t) — z(¢) | and| v(t) — u(t) |,  nization when the classical master-slave scheme is used.
with H varied from 0 to 200 in small steps. These diagramsSpecifically, there are cases where it is impossible to find a
enable us to find the range of values férin which the syn-  coupling constantX’ such that the systems reach synchro-
chronization could be reached as it is shown in Figs. 6a) andization, as it occurs for the systems described by ER)s. (
b). Notice that in the/— = channel no synchronization exists, and 9). In some cases, the systems reach partial or total syn-
since the error functiohy(t) — z(¢) | results too large. For chronization in only one channel as it occurs for the dynam-
thewv — u channel, the synchronization could be reached foiics contained in Eqs16) and (L6), depending of the valuH .
rather large values dff . For the dissipative coupling, the er- Variations to the master-slave scheme for some systems have
rorses = y—x andey, = v—u, are determined by subtracting been proposed to solve certain kind of problems [35-38].

Rev. Mex. Fis68011402
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FIGURE 8. Dissipative coupling case, fdi = 200. In a) The Duffing oscillator (master) and in b) the van der Pol oscillator (slave). In c)
and d) the phase space for the- x andv — u channels respectively.

In particular, in Ref. [24] a modified master-slave scheme
is considered that leads to synchronization even in the cases {

y=v, (18)

where the classical master-slave scheme fails. The approachy,ter-
0= —av+y — ey’ + Aj cos(wit),

used in Ref. [24] uses a non conventional coupling, where a
linear feedback occurs. The coupling can be seen as a per-
turbation to each oscillator proportional to the difference of Slave: {90 =u+G(y—x),

the position (elastic couplingd7(y — x), which is introduced u=p(l—z?)u—z+As cos(wat)+G(v—u).

in the velocity of the slave system. The coupling also uses (19)
another linear feedback, that can be seen as perturbation to

each oscillator proportional to the difference of the velocityNotice, again, that fo& = 0, the equations decouple. In or-
(dissipative coupling)iZ(v — u), introduced in the accelera- der to get more insight in the physical meaning of this case,
tion in the slave system. For the van der Pol-Duffing systemlet us assume thdt > . Thus, Eq./L9) can be cast as

the equations read as . ) ] )
&+ 2Gi + (14 G%)x = Az cos(wat) + 2Gy + Gy. (20)

Rev. Mex. Fis68011402
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FIGURE 9. Bifurcation diagrams for the error functions. In a) it is representgd) — x(¢) |, and in b)| v(¢) — u(¢) |, both as a function of
the parametet.
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FIGURE 10. Error functionsles| and|es| for G = 200.

The left hand side of the equation depends only ormithe by taking the difference of Eqsl8) and (19), giving
while the right hand side depends only gnexcept for the
external harmonic forcing. Thus, the oscillators synchronize
in both channelg —  andv — w. In the last case, we have e6 =v —u = és + Ges,

€5 =y—&=v—u— Ges,

b—i—G—u) -G (y—x)=ij—i~0, (21) e = —av +y — ey’ + A cos(wit)
2

that is, if there is synchronization in the— = channel (both —pl—aTutz = Ay cos(wat) — Gleg).  (22)
oscillators follow the same dynamics) then in the v chan-  The plots of|e;| and|eg| as a function of, for a value of
nel there is also synchronization. We should emphasize tha; = 200, are depicted in Fig. 10.
by comparing with the former cases, in the dissipative cou- Let us now analyze the phase space fonther andv—u
pling only was possible to reach synchronization intheu  channels for the valu@ = 200. In Figs. 11c) and d) it can be
channel, and in the elastic coupling no synchonization existssbserved that total synchronization is reached since the error

We study the dynamics of the system varying the coufunction in the phase space is represented by a straight line at
pling constantG. In order to analyze the bifurcation dia- 45° in both channels.
grams, let us consider the error functidngt) — =(¢) | and By comparing the three different coupling above men-
| v(t) —wu(t) |, by varyingG from 0 to 200. The error func- tioned, we observed that the coupling used by Uriostegui
tions allow us to find the range @f for which the synchro- al. gives the best results. In fact, by using the former cou-
nization is produced in thge— 2 andv —u channels. Asitcan pling, we observed that total synchronization in bgth z
be observed in Figs. 9a) and b), we obtain total synchronizeandv — u channels is achieved.
tion in they — = andv — « channels, since the error function In order to analyze the case of two different values in the
tends to zero as the value Gfis increased. For the coupling couplings its is convenient, for our discussion, to express the
proposed in Ref. [24], that combines elastic and dissipativeouplings in terms of the errors: for the elastic coupling we
couplings, the errors; = y — x andeg = v —w are obtained haveG(y — ) = G(es), whilst for the dissipative coupling

Rev. Mex. Fis68011402
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FIGURE 11. Elastic and dissipative couplings fa = 200. In a) the Duffing oscillator (master). In b) the van der Pol oscillator (slave). In
¢) and d) the phase space for the- + andv — u channels.

G(v—u) = G(é5 + Ges). In Figs. 9a) and b), we can appre- reduces to
ciate that synchronization in the— = channel is obtained for i )
values ofG smaller than those in the — u channel. Let us &4 (G1+ Go)d + (14 GiGa)x = Aj cos(wat)
now apalyze the case of two diﬁerer\t constaiisandGs. + (G4 + Go)y + G1Gay.
For this, the evolution of the system is governed by
Once again, by comparing with Ec2Q), we observe that,
to obtain synchronization, we must assude ~ G; or
g =, ) G2 > (4. In what follows we analyze the last case.
Master : b= —av+y—ey® + A1 cos(wrt), (23) The erore; =y —x andeg = v—u, are determined by
subtracting Eqs23) and 24), obtaining

Slave : a.czu—i—G;l(y—x), er=9—d=v—u—Gier,
t=p(l—2?)u—x+Ag cos(wat)+Ga(v—u).
(24) es=v—u=¢e7+ Gier,

€g = —av +y — ey® + Ay cos(wit)
As before, let us assume th@g > p. In this case, Eq24) — (1 — 2*)u+ 2 — Ay cos(wat) — Go(es).  (25)

Rev. Mex. Fis68011402
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FIGURE 12. Bifurcation diagrams for the error functions. In (a) it is represemtg¢t) — x(t) |, with G2 = 100 and varyingG:. In (b)
| v(t) — u(t) |, with G1 = 10 and varyingGs.
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FIGURE 13. Error functions forlez| and|es| with respective values @f, = 2 andG; = 150.

The constan&; corresponds to the elastic coupling aig, ~ which contains the coupling we propose. Notice that the
to the dissipative coupling. Heno&; (y — ) = G1(e7) and  control depends on the error and its derivative. For the case
Go(v — u) = Ga(ér + Gier). Let us express Eqe28) and  G; = G2 = 0 de system decouples. In order to study the dy-

(24) in a matrix form namics of the system, we vary the coupligs or G2 keep-
g 0 1 y ing one constant. To analyze the bifurcation diagrams, let us
( o ) = ( 1 —a ) ( v ) consider the error functiorjg(¢t) — z(¢) | and| v(t) —u(t) |.
We calculate y(t) — «(t) | keepingG2 = 100 and vary-
N ( 0 > < 0 ) (26) ing G; from 0 to 10. In a similar way, we obtain the bi-
—ey’ Ajcos(wit) )’ furcation diagram for the error functignv(¢) — w(t) | with
i 0 1 . G1 = 10 and varyingGs from 0 to 200. As it can appreci-
( . ) = ( > ( ) ated in Figs. 12a) and b), we obtain total synchronization in
U -1 pw U . .
they — x andv — u channels, since the error functions go to
0 0 zero as the values @f; andG, are increased. The plots of
+ ( —px’u ) ( Ay cos(wat) ) lez| and|es| as a function of, for the values of7; = 2 and

G = 150, are depicted in Fig. 13.

G1€7
T\ Gaér + G1Gaer ) (27)
267 1hr2e7 Let us now analyze the phase space fonthe: andv—u
The first vectors in the right hand side of Ed@6)and 27) channels, for values a¥; = 2 andGs = 150. In Figs. 14c)
contain the nonlinearity information of the system, while theand d), we can observe that total synchronization is reached,
second ones contain the information of the external forcingsince the error functions in the phase space is represented by
The last vector in Eq.27) is the so-called control vector, a straight line at 45in both channels.
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FIGURE 14. Elastic and dissipative couplings féf; = 2 andG> = 150. In a) the Duffing oscillator (master). In b) the van der Pol oscillator
(slave). In ¢) and d) the phase spaceifor x andv — u channels.

4. Final remarks and outlook We also observed that, the coupling that blend the elas-
tic and dissipative, leds to total synchronization in the x

The van der Pol and Duffing are nonautonomous systems efnd v — u channels. In this case the synchronization was

low-dimensionality that present chaos and have been webbtained for values of! large enough (in our numerical sim-

studied. One of the conclusions presented in the literature resations, we tookG' = 200). For small values, we obtained

lated to these systems is that the elastic coupling does not legdrtial synchronization. For the general case, when two con-

to synchronization. For this same system, when the dissipatants coupling are used;; (elastic) andG, (dissipative),

tive coupling is used, only synchronization in one channelwith G; < G,, we get again synchronization in both chan-

can be obtained. In this paper, we have analyzed the synchraels. Whethel7, is small and comparable wiifi; the sys-

nization in the van der Pol-Duffing system based on two dif-tem presents partial synchronization in the u channel and

ferent couplings simultaneously employed, namely the elastotal synchronization in thg — 2 channel. The behavior of

tic and dissipative. We used the error function by varyingthe system in the mentioned cases were explained analyti-

the control parameterds, H,G or G; and G2 (depending  cally and numerically corroborated, for the case large values

on the coupling used), which enabled us to obtain the rangef the parameters.

for which the synchronization takes place. We found that

the synchronization was favored for rather large values of the  The possibility of using two coupling constant instead of

control parameter. only one, allows the system a more interesting dynamics and

Rev. Mex. Fis68011402
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a broad range for the control parameters.

U. URIOSTEGUI-LEGORRETA AND E.S. TUTUTI

It is well knowndimensionality that do not present synchronization through

that synchronization in communication systems needs a largle classical master-slave configuration.
range for the control parameter, such as the obtained, for

the van Pol-Duffing system, by employing our approach 0
coupling. Consequently, the system studied could be of use-
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