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We investigate the connection between the London superconductor and a mesoscopic RLC circuit in both classical and quantum contexts. W
show that the mathematical framework to describe the dynamics of these two different systems is identical. Based on the Lewis-Riesenfeld
invariant method together with the Fock states, we solve the time-dependeatiBger equation for this problem and evaluate some of its
important physical properties, such as coherent states, expectation values of the charge and magnetic flux, their quantum fluctuations and tt
corresponding uncertainty principle.
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1. Introduction by Bardeen, Cooper and Schrieffer [9]. Since then, many
physicists have contributed to the study of superconductor

The understanding of classical and quantum systems in difnaterials [13-18]. In this work we investigate the classical
ferent areas of physics that can be described by the san@nd quantum electromagnetic dynamics of a conventional su-
mathematical formalism is a relevant topic of study and hagerconductor based on the phenomenological London equa-
always attracted the attention of physicists. This study is rections [12].
ognized to be of great utility because solutions of problems  Over the last decades, a great deal of attention has been
in different branches of physics that present similar behaviopaid to the study of quantum effects of mesoscopic circuits
and properties help us understand more about others. [17-23]. This interest is mainly motivated by the fact that

It is well known that superconductors are materials thatheir applications in nanoscience and specially in nanoelec-
exhibit no electrical resistance below a temperature that i§onics seem endless. In this context an LC (inductance L
known as its critical temperature. Their unusual propertie@nd capacitance C) represents a typical and fundamental cir-
have made them key components in many areas of physicgUit. In history, Louisell [24] was the first physicits who pro-
such as quantum computation, quantum optical systems, nRosed a quantization scheme for this circuit. Another, more
noelectronic devices, particle accelerators and NMR magcomplicated, mesoscopic electromagnetic oscillation system
nets [1-9]. The main advantages of devices made from sus the RLC circuit. For this case, one has to consider the
perconductors are low power dissipation, high-speed opegffect of the resistance R on the circuit, that is, the dissipa-
ation, and high sensitivity. The superconductivity was dis-tion. The quantization scheme and quantum properties of the
covered by Onnes in 1911 [10], and for many years afterRLC circuit are certainly of great theoretical and experimen-
wards, it was thought to consist simply of a complete dis-tal physical interest. In fact, in recent years, many works on
appearance of its electrical resistance below the its criticaihe quantum behavior of this circuit have been published in
temperature [9]. A major advance for the study of suprconthe literature [19, 22,23, 25, 26, 26-28].
ductors was given, twenty years after its discovery, by Meis- The main purpose of this paper is to discuss the connec-
sener and Ochsenfeld [11]. These researchers showed tHign between the London superconductor and a mesoscopic
when a magnetic field is applied to a superconductor, th&LC circuit. We demonstrate that the classical and quan-
applied field is excluded from its interior, except in a thin tum dynamics of these two different systems are similar and
penetration region near the surface [9]. This is the so-calle@oth can be described by similar Hamiltonians. Based on the
Meissener-Ochsenfeld. Shortly after the discovery that magquantum invariant theory introduced by Lewis and Riesen-
netic fields are expelled from superconductors the brotherteld [29], together with Fock states, we easily solve the time-
Fritz and Heinz London in 1935 [12] proposed a phenomenodependent Schdinger equation for our problem and use its
logical theory to describe the electromagnetic dynamics ofolutions to construct coherent states for the quantized RLC
superconductivity. Their proposed equations are consistergircuit. Finally, we evaluate various quantum properties of
with the Meissner-Ochsenfeld effect and can be used witlihese systems, such as the expectation values of the charge
Maxwell's equations to predict how the magnetic field andand magnetic flux, their quantum fluctuations and the uncer-
surface current vary with distance from the surface of a sutainty principle.
perconductor. Further, a microscopic theory of supercon- We organize this paper in the following order. In Sec. 2
ductivity, the famous BCS theory, was presented in 195%ve discuss the classical dynamics of the London supercon-
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ductor and of the mesoscopic RLC circuit. In Sec. 3, wewhere.J,, ando are, respectively, the current density due to
present the quantum dynamics of the RLC circuit. In Sec. 4the normal electrons and the electric conductivity. If we now
we construct coherent states for the quantized RLC circuitake the time-derivative of Eq. (8) and use the Maxwell and
and calculate some physical properties of this system. Weondon equations together with the continuity Eq. (3) we find

conclude the paper with a short summary in Sec. 5.

2. Classical dynamics analysis

2.1. London Superconductor

With the objective of discussing the classical electromagneti
behavior of the London superconductor, we first need to loo
at Maxwell's equations. The classical electromagnetic fiel
with charge and current sources is described by the set of

equations
. . 0B
.D= E=_"" 1
V-D=p, Vx = (1)
. . 9D -

with the total charge and current densities, respectiyeind

J satisfying the the continuity equation (charge conservation)

- 9p
and the fields being related by
5 = EE» g = ,U,ﬁ, (4)

C

that -
(1) + Z4(0) + () = 0, (10)

where the dots indicate differentiation with respect to time,
w?=c?/)\? is the frequency and = 1/, /zz is the velocity of

the light within the superconductor. The Eq. (10) represents
the equation of motion for the total charge inside a certain
volume of the superconductor. As everybody knows, the so-

ution of this equation is
q(t) = Ae=7t/%¢ sin(Qt + ), (11)

wheref2 is given by

o2
o=y ()"
@ 2e
with A andé being arbitrary constants . Here we have only
considered oscillatory solutions, that is, the > 0 case.
Now, it is easy to verify that the classical Hamiltonian

(12)

H —ot/e P2 1 ot/e ., 2 2
(t)=¢e —+ 5e7ew e, (13)

2e
leads to the Eq. (10), where the dynamical variablespre-
sents the magnetic flux. The Hamiltonian (13) is the famous
Caldirola-Kanai Hamiltonian, which has been employed by
many authors to study time-dependent Hamiltonian systems
in many branches of physics [22,30-38]. At this point, it is

wheree andy are, respectively, the electric permittivity and worth noticing that the Hamiltonian (13) that describes the

the magnetic permeability.

dynamics of the London superconductor is time-dependent

Now, to analyze the electromagnetic behavior of a conas long as the conductivity exists ¢ # 0). It can also
ventional superconductor we must take in account the Lonbe helpful to remark that the Eq. (10) is formally identical

don’s equations. These equations can be written as [12]

aJ, 1 -
- = ) E, (5)
ot pAL
- nse% —
VxJg=——"2B, (6)
m
where
e 1/2
AL = ( ‘2) | (7)
/u‘nses

to that describing the behavior of the mode amplitudes of
the propagation of electromagnetic waves in conducting me-
dia [36—38]. For this case, the classical and quantum dynam-
ics of electromagnetic waves are, of course, also described by
the Caldirola-Kanai Hamiltonian [36—38].

In what follows, we calculate some properties of the Lon-
don superconductor. By using Eg. (13) together with the
Hamilton’s equations we find the magnetic flux as

P = e/ (14)

The length\;,, which is associated with the decay of the mag-We can rewrite this flux in a more convenient form as

netic field at the surface of the superconductor, is the London
penetration depth. Hergl, is the supercurrent density and

d = L'(t)i, (15)

ns, ms andeg are, respectively, the density of electrons in ayith

superconducting state, the mass and the charge of the super-

conducting electrons.
Consider next, the total current density. It is given by

with

Jp = UE, ()]

) (16)

whereL'(t) andi = ¢ are, respectively, the time-dependent
inductance the current in the superconductor. Further, by
making use of(15) we find the Faraday’s law for the Lon-
don superconductor as

do

e=——r = ee?tf W2 (t)g = L' (t)w?q.

_ 5@01‘//57

(17)
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ON THE LONDON SUPERCONDUCTORS AND MESOSCOPIC RLC CIRCUITS 3

Therefore, the previous results represent the classical ele@his analogy can be carried still further by making the fol-
tromagnetic dynamics of the London superconductor. In thdowing correspondences < R ande < L. However, it
following subsection, we discuss the classical mesoscopic as worth mentioning that the equivalence of these two com-

nanoscale RLC circuit. pletely different systems is not fully complete. As a matter of
fact, the dispersion relations [Eq4.2] and 20)], which are
2.2. Mesoscopic RLC Circuit intrinsic to each physical system, are not identical and con-

. . ) ) ~_ sequently the electromagnetic dynamics of these systems is
In this subsection, we consider the classical RLC circuit. Ityifferent.

consists of a resistande, inductancel., and capacitanc€'.
In this mesoscopic circuit the resistance is given by Ohm'’s i )
law Ri, wherei; — qj is the current in the circuit. The in- 3. Quantum dynamics analysis
ductance induces a magnetic flli and the capacitance en-
ters in the total voltage ag /C. For this circuit, the equation
of motion for the charge; is

In order to obtain the quantum description of the mesoscopic
RLC circuit (or, equivalently, of the London superconductor)
we must solve the Scidinger equation associated with the

. R . ) Hamiltonian(21) which is given by
G1(t) + Ta(t) +wia(t) =0, (18)

0
Hy|V,t) = ih—|¥,1), 26
with w?=1/LC being the frequency of the circuit in the ab- ¥ =i 8t| ) (26)

sence of the resistanée The solution of Eq. (18) is whereq; and®; are now operators withy;, ®;] = i% and

_ po—Rt/2L o, = —ihd/dq:1. In this paper we use the invariant theory
a(t) = Be sin( + ), (19 introduced by Lewis and Riesenfeld [29] to find the solutions

whereB and¢ are arbitrary constants aiit is given by of the time-dependent Sdinger (26). Thus, if the system

described by the Hamiltonig21) admits an exact dynamical

2 invariant operator (¢) that satisfies the relation
O =4 |w? — e (20)
to\2L)’ d]_l[IHHaI_O 27
dt TN e

with £2; > 0. Eq.(18) can be generated from the Hamiltonian
the solutions of the equatidf26) can be written in terms of

o2 1 the eigenstates df(¢) and a time-dependent phase. Then, we
_ —Rt/L*1 |t Rt/Ly 2 2 )
H(t) = e 57 T 3¢ Loy, (21) can write the solutions df26) in the form
with the magnetic flux [, ) = €07, 1), (28)
Oy = L Lq;. (22)  with

I(t)|¢n7 t> = )‘n|¢na t> ,  Ap = const, (29)

where the |¢,,t) form a complete orthonormal set

We can rewrite this relation as

b = L1(t)iq, (23) (s t|&n, t) = 5. The phase functions, (¢) are obtained
from
with Ly (t) given b
) gnenty p o) _ <¢ tinl — g (t)’¢ t> (30)
Ly(t) = Lef/E, (24) e\ | TR T
By using Eq(23) we get that Now, it is known that the Hamiltonia(21) admits an invari-
ant of the form [22, 37-39]
dd
€1 = 7d7tl = Ll(t)wlqu, (25) 1 a1 2 ) 9
=5 | (%) 4wzl Gy
which represents the Faraday’s law for the RLC circuit. p

Here, we can confirm, from the results above, that th‘?Nherep(t)

X ) ’ is a real function satisfying the equation [38—41]
mathematical framework to study the classical dynamics of

the London superconductor and of the mesoscopic RLC cir- . R, 2 1

cuit is identical. In fact, these systems are described in terms Pl + Lp(t) Ferp(t) = Z2p3’ (32)
of bona fidedamped harmonic oscillators [Eq&0j and (L8)] with

which are derived from similar Hamiltonians [Eq43f and Z(t) = LeP/E — L, (1). (33)

(21)]. They also share amazing similarities in the expres-
sions for the magnetic flux [Eqsl%) and 23)], inductance In what follows, let us now return to the eigenvalue equa-
[Egs. (16) and R4)] and Faraday’s law [Eqsll) and 25)].  tion (29). To obtain the solutions of this equation we will use
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4 I. A. PEDROSA AND L. NASCIMENTO

the Fock states. For this purpose, we define annihilation anethence

creation-type operatorgt) anda’ (t) as [22,29, 37]

o= (55) - D - 2] @Y
af(t) = (21,1) - ﬁj —i(p®y — qun} . (35)
. lat),a’ (£)] = 1. (36)

If we perform the inverse transformations of Eq84) and
(35), it can be shown that the invariaf#l) can be written in
the form

I(t)=h [aT(t)a(t) + ﬂ . (37)

Hence, using(36) and (37) we can solve the eigenvalue

(A1) = (q}) — (q1)* = hp” (n + ;) ., (48)

(A®1)? = (D7) — (Dy)?

1 o 1
|4+ @] (1),
From the above relations we see that the expectation values
of the charge and the magnetic flux are zero, but their quan-

tum fluctuations are not zero. Further, it follows from (48)
and (49) that

(49)

a8 =1+ ZP) " (w4 3). 60

equation forl(t) just as for the time-independent mechani- which, by making use of (33) and (42), becomes

cal harmonic oscillator by employing the Fock stafest).
Then, writing the Hermitian number operatdr = a'a and
N|n,t) = n|n,t), we get

I(t)n,t>—h<n+;) In, t), )\n—ﬁ<n+;>, (38)

(Aq)(Ad) = 11 (n (51)

[N

L1

5 )
Here, it is worth noticing that the uncertainty principle (51)
depends on the electric resistari¢eYet, if the usual dissipa-

a(t)|n, t) = n'?n — 1,t), (39) tion effect due to the electric resistance is null, thafiss 0
the Eq. (51) is converted into
af(t)|n,t) = (n+1)Y2n +1,1). (40)
Consider next, the pha;e functions (30). By making (Aq)(A®y) =h (n + 1) 7 (52)
|on, t)=|n, t) we find, after a little of algebra, that 2
1 f 1 which represents the uncertainty principle of a time-
Bu(t) = — <” + 2) /Z(T)PQ(T)dT' (41) independent mechanical harmonic oscillator with frequency
0 w1 (see Egs. (18) and (21)) with playing the role of the

Notice that a particular solution of (32) can be written as

e—Rt/2L
p(t) = [T (42)
for which Eq. (41) reduces to
1

Then, the solutions of the Sdidinger Eq. (26) are (see

Eq. (28)) 4
[thn, t) = e ®|n, 1), (44)

with 3,,(t) given by(43). Therefore, the general Sétinger
state can be written a¥,¢) = 3 ¢, |4, t), where the:,, are

time-independent.

massm. We also notice that for this caseg., R = 0, the
particular solution (42) becomgs = 1/(Lw;)'/? and the
Hamiltonian (21) and the annihilation and creation operators
(34) and (35) are reduced to that of the standard harmonic
oscillator.

We end this section remarking that we can proceed in the
same way to discuss the quantum behavior of the London
superconductor, since, as we have proved in the previous sec-
tion, from a mathematical point of view the analysis of the
electromagnetic dynamics of these two different systems is
identical.

4. Coherent states for the RLC circuit

If we now calculate the expectation values and quantum

fluctuations ofy; and®, in the Fock states, we obtain

(q1) = (®1) =0, (45)
)= (n+3). (46)
@ =]+ @|(nry). @D

In this section, we are going to construct coherent states for
the mesoscopic RLC circuit. It is well-known that coher-
ent states for time-dependent quantum systems described by
Hamiltonians-like (21) are given by [42]

al? a)”
0.ty =exp (- 15°) ¥ A5 el 0] ),
' (53)
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ON THE LONDON SUPERCONDUCTORS AND MESOSCOPIC RLC CIRCUITS 5

where o« is an arbitrary complex constant. Of course, exponentially with time is equivalent to the time-independent
the statega, t) are eigenstates of the annihilation operatorRLC circuit. For this case, the time differentiation of the in-

a(t)with eigenvaluere?%0(®) beingBy(t) = —(Q1t/2). ductancel, produces a dissipation similar to that produced
The calculation of the expectation value@fin the co- by the resistancé?. Now, in the present paper, we have
herent stategy, t) yields demonstrated that the London superconductor and the time-

o\ 1/2 independent RLC circuit are equivalent and can be described

(@) = <2h|0¢| ) o—Rt/2L sin(Q +6),  (54) through the same mathematical formalism, in both the clas-

Ly sical and quantum contexts. Therefore, we can confirm that

where¢ is the phase of: [42]. Here, we observe that this these three complete!y different systems, .that. is, the Lor_ldon
result does indeed agree with that of @), so that it is  Superconductor, the time-dependent LC circuit and the time-
according to the Scbdinger quantum-classical correspon- independent RLC circuit share amazing similarities so that

dence for the coherent states [43]. their electromagnetic dynamics can be analyzed in the same
The quantum fluctuations ip and®, in the statda,¢) ~ Mathematical framework. This result is interesting and im-

are given by portant since, as we have already mentioned previously, the

study of classical and quantum dynamics of physical systems

(Aq)? = () — (@)% = SPQ’ (55) that present similar behavior and properties is a topic of spe-

cial interest in the context of theoretical physics. Finally, it

h is worth mentioning that, to the best of our knowledge, the
2 _ g2\ 2 _ N L -\ 2 g ) ge,
(A01)" = (21) — (®1)" = 2 [;;2 +(2p) } ’ (56) mathematical equivalence between the London superconduc-
whence tor and the time-independent mesoscopic RLC circuit has not
Fun reported in the literature yet.
(Aq1)(ADy) = ﬂ’ (57)

where we have used the Eq. (33) and the solution (42).
By comparing Egs. (51) and (57) we see that the uncerS. Summary
tainty principle in the coherent states is exactly the same
as the minimum value of that in the Fock states. It mayln this work, we have established a simple and elegant con-
be helpful, at this point, to note that these uncertainty prinnection between the London superconductor and the meso-
ciples do not depend on time and that their values becomscopic RLC circuit. We have demonstrated that they share
larger when the resistance increases. We also observe thanilar behavior, both classically and quantum mechanically
the uncertainty principle (57), in general, does not attain itsand can be described in terms of genuine damped harmonic
minimum value. This occurs because the stdteg) are  oscillators which are generated by similar Hamiltonians. Fur-
not minimum-uncertainty states and correspond to the wellther, by using the invariant method, appropriated annihilation
known squeezed states [44—47]. Further, it is worth noticingand creation-type operators and Fock states, we have easily
that when the resistance is null, thatis= 0 the uncertainty  solved the time-dependent Sodinger equation for the RLC
principle attains its minimum value because in this case theircuit (the same procedure can be made for the London su-
stategq, t) reduce to the coherent states of the ordinary meperconductor) and employ its solutions to construct coher-
chanical harmonic oscillator model. In short, we observe thaent states for the quantized RLC circuit. Yet, we have cal-
one can follow the same steps of this section to construct cazulated expectation values of the charge and magnetic flux,
herent states for the London superconductor. their quantum fluctuations as well as the uncertainty princi-
To end this section, let us make some comments. Iple in both states, namely, Fock and coherent states. We also
Ref. [48] we have demonstrated that the electromagnetic dyRave seen that the uncertainty principle in the coherent states
namics of a London superconductor and a time-dependent L& equal to the minimum value of that in the Fock states. In
circuit with inductance and capacitance modulated exponeraddition, we have found that the uncertainty principle in the
tially at a constant rate are equivalent and both can be desoherent states does not attain its minimum value. This lat-
scribed in the same mathematical framework. In this case, thier result occurs because the coherent state constructed in this
time-derivative of the inductanck, causes a damping simi- work correspond to the well-known squeezed states. Finally,
lar to that produced by the conductivity What is more, in  we would like to observe that Sabdinger states for a London
Refs. [22, 23] have been shown that a time-dependent messuperconductor with time-dependent conductivity has been
scopic LC circuit with inductance and capacitance increasin@btained in Ref. [49].
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