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1. Introduction

The understanding of classical and quantum systems in dif-
ferent areas of physics that can be described by the same
mathematical formalism is a relevant topic of study and has
always attracted the attention of physicists. This study is rec-
ognized to be of great utility because solutions of problems
in different branches of physics that present similar behavior
and properties help us understand more about others.

It is well known that superconductors are materials that
exhibit no electrical resistance below a temperature that is
known as its critical temperature. Their unusual properties
have made them key components in many areas of physics,
such as quantum computation, quantum optical systems, na-
noelectronic devices, particle accelerators and NMR mag-
nets [1–9]. The main advantages of devices made from su-
perconductors are low power dissipation, high-speed oper-
ation, and high sensitivity. The superconductivity was dis-
covered by Onnes in 1911 [10], and for many years after-
wards, it was thought to consist simply of a complete dis-
appearance of its electrical resistance below the its critical
temperature [9]. A major advance for the study of suprcon-
ductors was given, twenty years after its discovery, by Meis-
sener and Ochsenfeld [11]. These researchers showed that
when a magnetic field is applied to a superconductor, the
applied field is excluded from its interior, except in a thin
penetration region near the surface [9]. This is the so-called
Meissener-Ochsenfeld. Shortly after the discovery that mag-
netic fields are expelled from superconductors the brothers
Fritz and Heinz London in 1935 [12] proposed a phenomeno-
logical theory to describe the electromagnetic dynamics of
superconductivity. Their proposed equations are consistent
with the Meissner-Ochsenfeld effect and can be used with
Maxwell’s equations to predict how the magnetic field and
surface current vary with distance from the surface of a su-
perconductor. Further, a microscopic theory of supercon-
ductivity, the famous BCS theory, was presented in 1957

by Bardeen, Cooper and Schrieffer [9]. Since then, many
physicists have contributed to the study of superconductor
materials [13–18]. In this work we investigate the classical
and quantum electromagnetic dynamics of a conventional su-
perconductor based on the phenomenological London equa-
tions [12].

Over the last decades, a great deal of attention has been
paid to the study of quantum effects of mesoscopic circuits
[17–23]. This interest is mainly motivated by the fact that
their applications in nanoscience and specially in nanoelec-
tronics seem endless. In this context an LC (inductance L
and capacitance C) represents a typical and fundamental cir-
cuit. In history, Louisell [24] was the first physicits who pro-
posed a quantization scheme for this circuit. Another, more
complicated, mesoscopic electromagnetic oscillation system
is the RLC circuit. For this case, one has to consider the
effect of the resistance R on the circuit, that is, the dissipa-
tion. The quantization scheme and quantum properties of the
RLC circuit are certainly of great theoretical and experimen-
tal physical interest. In fact, in recent years, many works on
the quantum behavior of this circuit have been published in
the literature [19,22,23,25,26,26–28].

The main purpose of this paper is to discuss the connec-
tion between the London superconductor and a mesoscopic
RLC circuit. We demonstrate that the classical and quan-
tum dynamics of these two different systems are similar and
both can be described by similar Hamiltonians. Based on the
quantum invariant theory introduced by Lewis and Riesen-
feld [29], together with Fock states, we easily solve the time-
dependent Schrödinger equation for our problem and use its
solutions to construct coherent states for the quantized RLC
circuit. Finally, we evaluate various quantum properties of
these systems, such as the expectation values of the charge
and magnetic flux, their quantum fluctuations and the uncer-
tainty principle.

We organize this paper in the following order. In Sec. 2
we discuss the classical dynamics of the London supercon-
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ductor and of the mesoscopic RLC circuit. In Sec. 3, we
present the quantum dynamics of the RLC circuit. In Sec. 4,
we construct coherent states for the quantized RLC circuit
and calculate some physical properties of this system. We
conclude the paper with a short summary in Sec. 5.

2. Classical dynamics analysis

2.1. London Superconductor

With the objective of discussing the classical electromagnetic
behavior of the London superconductor, we first need to look
at Maxwell’s equations. The classical electromagnetic field
with charge and current sources is described by the set of
equations

∇ · ~D = ρ, ∇× ~E = −∂ ~B

∂t
, (1)

∇ · ~B = 0, ∇× ~H =
∂ ~D

∂t
+ ~J, (2)

with the total charge and current densities, respectively,ρ and
~J satisfying the the continuity equation (charge conservation)

∇ · ~J = −∂ρ

∂t
, (3)

and the fields being related by

~D = ε ~E, ~B = µ ~H, (4)

whereε andµ are, respectively, the electric permittivity and
the magnetic permeability.

Now, to analyze the electromagnetic behavior of a con-
ventional superconductor we must take in account the Lon-
don’s equations. These equations can be written as [12]

∂ ~Js

∂t
=

1
µλ2

L

~E, (5)

∇× ~Js = −nse
2
s

ms

~B, (6)

where

λL =
(

ms

µnse2
s

)1/2

. (7)

The lengthλL, which is associated with the decay of the mag-
netic field at the surface of the superconductor, is the London
penetration depth. Here,~Js is the supercurrent density and
ns, ms andes are, respectively, the density of electrons in a
superconducting state, the mass and the charge of the super-
conducting electrons.

Consider next, the total current density. It is given by

~J = ~Jn + ~Js, (8)

with
~Jn = σ ~E, (9)

where ~Jn andσ are, respectively, the current density due to
the normal electrons and the electric conductivity. If we now
take the time-derivative of Eq. (8) and use the Maxwell and
London equations together with the continuity Eq. (3) we find
that

q̈(t) +
σ

ε
q̇(t) + ω2q(t) = 0, (10)

where the dots indicate differentiation with respect to time,
ω2=c2/λ2

L is the frequency andc = 1/
√

µε is the velocity of
the light within the superconductor. The Eq. (10) represents
the equation of motion for the total charge inside a certain
volume of the superconductor. As everybody knows, the so-
lution of this equation is

q(t) = Ae−σt/2ε sin(Ωt + δ), (11)

whereΩ is given by

Ω =

√
ω2 −

( σ

2ε

)2

, (12)

with A andδ being arbitrary constants . Here we have only
considered oscillatory solutions, that is, theΩ > 0 case.
Now, it is easy to verify that the classical Hamiltonian

H(t) = e−σt/ε Φ2

2ε
+

1
2
eσt/εεω2q2, (13)

leads to the Eq. (10), where the dynamical variableΦ repre-
sents the magnetic flux. The Hamiltonian (13) is the famous
Caldirola-Kanai Hamiltonian, which has been employed by
many authors to study time-dependent Hamiltonian systems
in many branches of physics [22, 30–38]. At this point, it is
worth noticing that the Hamiltonian (13) that describes the
dynamics of the London superconductor is time-dependent
as long as the conductivityσ exists (σ 6= 0). It can also
be helpful to remark that the Eq. (10) is formally identical
to that describing the behavior of the mode amplitudes of
the propagation of electromagnetic waves in conducting me-
dia [36–38]. For this case, the classical and quantum dynam-
ics of electromagnetic waves are, of course, also described by
the Caldirola-Kanai Hamiltonian [36–38].

In what follows, we calculate some properties of the Lon-
don superconductor. By using Eq. (13) together with the
Hamilton’s equations we find the magnetic flux as

Φ = εeσt/εq̇. (14)

We can rewrite this flux in a more convenient form as

Φ = L′(t)i, (15)

with
L′(t) = εeσt/ε, (16)

whereL′(t) andi = q̇ are, respectively, the time-dependent
inductance the current in the superconductor. Further, by
making use of(15) we find the Faraday’s law for the Lon-
don superconductor as

ε = −dΦ
dt

= εeσt/εω2(t)q = L′(t)ω2q. (17)
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Therefore, the previous results represent the classical elec-
tromagnetic dynamics of the London superconductor. In the
following subsection, we discuss the classical mesoscopic or
nanoscale RLC circuit.

2.2. Mesoscopic RLC Circuit

In this subsection, we consider the classical RLC circuit. It
consists of a resistanceR, inductanceL, and capacitanceC.
In this mesoscopic circuit the resistance is given by Ohm’s
law Ri1 wherei1 = q̇1 is the current in the circuit. The in-
ductance induces a magnetic fluxLi1 and the capacitance en-
ters in the total voltage asq1/C. For this circuit, the equation
of motion for the chargeq1 is

q̈1(t) +
R

L
q̇1(t) + ω2

1q1(t) = 0, (18)

with ω2
1=1/LC being the frequency of the circuit in the ab-

sence of the resistanceR. The solution of Eq. (18) is

q1(t) = Be−Rt/2L sin(Ω1t + ξ), (19)

whereB andξ are arbitrary constants andΩ1 is given by

Ω1 =

√
ω2

1 −
(

R

2L

)2

, (20)

with Ω1 > 0. Eq.(18) can be generated from the Hamiltonian

H1(t) = e−Rt/L Φ2
1

2L
+

1
2
eRt/LLω2

1q2
1 , (21)

with the magnetic flux

Φ1 = LeRt/Lq̇1. (22)

We can rewrite this relation as

Φ1 = L1(t)i1, (23)

with L1(t) given by

L1(t) = LeRt/L. (24)

By using Eq.(23) we get that

ε1 = −dΦ1

dt
= L1(t)ω1

2q1, (25)

which represents the Faraday’s law for the RLC circuit.
Here, we can confirm, from the results above, that the

mathematical framework to study the classical dynamics of
the London superconductor and of the mesoscopic RLC cir-
cuit is identical. In fact, these systems are described in terms
of bona fidedamped harmonic oscillators [Eqs. (10) and (18)]
which are derived from similar Hamiltonians [Eqs. (13) and
(21)]. They also share amazing similarities in the expres-
sions for the magnetic flux [Eqs. (15) and (23)], inductance
[Eqs. (16) and (24)] and Faraday’s law [Eqs. (17) and (25)].

This analogy can be carried still further by making the fol-
lowing correspondence:σ ⇔ R andε ⇔ L. However, it
is worth mentioning that the equivalence of these two com-
pletely different systems is not fully complete. As a matter of
fact, the dispersion relations [Eqs. (12) and (20)], which are
intrinsic to each physical system, are not identical and con-
sequently the electromagnetic dynamics of these systems is
different.

3. Quantum dynamics analysis

In order to obtain the quantum description of the mesoscopic
RLC circuit (or, equivalently, of the London superconductor)
we must solve the Schrödinger equation associated with the
Hamiltonian(21) which is given by

H1|Ψ, t〉 = i~
∂

∂t
|Ψ, t〉, (26)

whereq1 andΦ1 are now operators with[q1, Φ1] = i~ and
Φ1 = −i~∂/∂q1. In this paper we use the invariant theory
introduced by Lewis and Riesenfeld [29] to find the solutions
of the time-dependent Schrödinger (26). Thus, if the system
described by the Hamiltonian(21) admits an exact dynamical
invariant operatorI(t) that satisfies the relation

dI

dt
=

1
i~

[I, H1] +
∂I

∂t
= 0. (27)

the solutions of the equation(26) can be written in terms of
the eigenstates ofI(t) and a time-dependent phase. Then, we
can write the solutions of(26) in the form

|ψn, t〉 = eiβn(t)|φn, t〉, (28)

with
I(t)|φn, t〉 = λn|φn, t〉 , λn = const, (29)

where the |φn, t〉 form a complete orthonormal set
〈φn′ , t|φn, t〉 = δn′n. The phase functionsβn(t) are obtained
from

~
dβn(t)

dt
=

〈
φn, t

∣∣∣∣i~
∂

∂t
−H1(t)

∣∣∣∣ φn, t

〉
. (30)

Now, it is known that the Hamiltonian(21) admits an invari-
ant of the form [22,37–39]

I(t) =
1
2

[(
q1

ρ

)2

+ [ρΦ1 − Z(t)ρ̇q1]
2

]
, (31)

whereρ(t) is a real function satisfying the equation [38–41]

ρ̈(t) +
R

L
ρ̇(t) + ω2

1ρ(t) =
1

Z2ρ3
, (32)

with
Z(t) = LeRt/L = L1(t). (33)

In what follows, let us now return to the eigenvalue equa-
tion (29). To obtain the solutions of this equation we will use
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the Fock states. For this purpose, we define annihilation and
creation-type operatorsa(t) anda†(t) as [22,29,37]

a(t) =
(

1
2~

)1/2 [
q1

ρ
+ i(ρΦ1 − Zρ̇q1)

]
, (34)

a†(t) =
(

1
2~

)1/2 [
q1

ρ
− i(ρΦ1 − Zρ̇q1)

]
, (35)

with
[a(t), a†(t)] = 1. (36)

If we perform the inverse transformations of Eqs.(34) and
(35), it can be shown that the invariant(31) can be written in
the form

I(t) = ~
[
a†(t)a(t) +

1
2

]
. (37)

Hence, using(36) and (37) we can solve the eigenvalue
equation forI(t) just as for the time-independent mechani-
cal harmonic oscillator by employing the Fock states|n, t〉.
Then, writing the Hermitian number operatorN = a†a and
N |n, t〉 = n|n, t〉, we get

I(t)|n, t〉 = ~
(

n +
1
2

)
|n, t〉, λn = ~

(
n +

1
2

)
, (38)

a(t)|n, t〉 = n1/2|n− 1, t〉, (39)

a†(t)|n, t〉 = (n + 1)1/2|n + 1, t〉. (40)

Consider next, the phase functions (30). By making
|φn, t〉=|n, t〉 we find, after a little of algebra, that

βn(t) = −
(

n +
1
2

) t∫

0

1
Z(τ)ρ2(τ)

dτ. (41)

Notice that a particular solution of (32) can be written as

ρ(t) =
e−Rt/2L

(LΩ1)1/2
, (42)

for which Eq. (41) reduces to

βn(t) = −Ω1

(
n +

1
2

)
t. (43)

Then, the solutions of the Schrödinger Eq. (26) are (see
Eq. (28))

|ψn, t〉 = eiβn(t)|n, t〉, (44)

with βn(t) given by(43). Therefore, the general Schrödinger
state can be written as|Ψ, t〉 =

∑
n

cn|ψn, t〉, where thecn are

time-independent.
If we now calculate the expectation values and quantum

fluctuations ofq1 andΦ1 in the Fock states, we obtain

〈q1〉 = 〈Φ1〉 = 0, (45)

〈q2
1〉 = ~ρ2

(
n +

1
2

)
, (46)

〈Φ2
1〉 = ~

[
1
ρ2

+ (Zρ̇)2
](

n +
1
2

)
, (47)

whence

(∆q1)2 = 〈q2
1〉 − 〈q1〉2 = ~ρ2

(
n +

1
2

)
, (48)

(∆Φ1)2 = 〈Φ2
1〉 − 〈Φ1〉2

= ~
[

1
ρ2

+ (Zρ̇)2
](

n +
1
2

)
. (49)

From the above relations we see that the expectation values
of the charge and the magnetic flux are zero, but their quan-
tum fluctuations are not zero. Further, it follows from (48)
and (49) that

(∆q1)(∆Φ1) = ~
[
1 + (Zρρ̇)2

]1/2
(

n +
1
2

)
, (50)

which, by making use of (33) and (42), becomes

(∆q1)(∆Φ1) =
~ω1

Ω1

(
n +

1
2

)
. (51)

Here, it is worth noticing that the uncertainty principle (51)
depends on the electric resistanceR. Yet, if the usual dissipa-
tion effect due to the electric resistance is null, that is,R = 0
the Eq. (51) is converted into

(∆q1)(∆Φ1) = ~
(

n +
1
2

)
, (52)

which represents the uncertainty principle of a time-
independent mechanical harmonic oscillator with frequency
ω1 (see Eqs. (18) and (21)) withL playing the role of the
massm. We also notice that for this case,i.e., R = 0, the
particular solution (42) becomesρ = 1/(Lω1)1/2 and the
Hamiltonian (21) and the annihilation and creation operators
(34) and (35) are reduced to that of the standard harmonic
oscillator.

We end this section remarking that we can proceed in the
same way to discuss the quantum behavior of the London
superconductor, since, as we have proved in the previous sec-
tion, from a mathematical point of view the analysis of the
electromagnetic dynamics of these two different systems is
identical.

4. Coherent states for the RLC circuit

In this section, we are going to construct coherent states for
the mesoscopic RLC circuit. It is well-known that coher-
ent states for time-dependent quantum systems described by
Hamiltonians-like (21) are given by [42]

|α, t〉 = exp
(
−|α|

2

2

) ∑
n

(α)n

(n!)1/2
exp [iβn(t)] |n, t〉,

(53)
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where α is an arbitrary complex constant. Of course,
the states|α, t〉 are eigenstates of the annihilation operator
a(t)with eigenvalueαe2iβ0(t) beingβ0(t) = −(Ω1t/2).

The calculation of the expectation value ofq1 in the co-
herent states|α, t〉 yields

〈q1〉 =
(

2~|α|2
LΩ1

)1/2

e−Rt/2L sin(Ω1 + ξ), (54)

whereξ is the phase ofα [42]. Here, we observe that this
result does indeed agree with that of Eq.(19), so that it is
according to the Schrödinger quantum-classical correspon-
dence for the coherent states [43].

The quantum fluctuations inq1 andΦ1 in the state|α, t〉
are given by

〈∆q1〉2 = 〈q2
1〉 − 〈q1〉2 =

~
2
ρ2, (55)

〈∆Φ1〉2 = 〈Φ2
1〉 − 〈Φ1〉2 =

~
2

[
1
ρ2

+ (Zρ̇)2
]

, (56)

whence
(∆q1)(∆Φ1) =

~ω1

2Ω1
, (57)

where we have used the Eq. (33) and the solution (42).
By comparing Eqs. (51) and (57) we see that the uncer-
tainty principle in the coherent states is exactly the same
as the minimum value of that in the Fock states. It may
be helpful, at this point, to note that these uncertainty prin-
ciples do not depend on time and that their values become
larger when the resistance increases. We also observe that
the uncertainty principle (57), in general, does not attain its
minimum value. This occurs because the states|α, t〉 are
not minimum-uncertainty states and correspond to the well-
known squeezed states [44–47]. Further, it is worth noticing
that when the resistance is null, that is,R = 0 the uncertainty
principle attains its minimum value because in this case the
states|α, t〉 reduce to the coherent states of the ordinary me-
chanical harmonic oscillator model. In short, we observe that
one can follow the same steps of this section to construct co-
herent states for the London superconductor.

To end this section, let us make some comments. In
Ref. [48] we have demonstrated that the electromagnetic dy-
namics of a London superconductor and a time-dependent LC
circuit with inductance and capacitance modulated exponen-
tially at a constant rate are equivalent and both can be de-
scribed in the same mathematical framework. In this case, the
time-derivative of the inductancėL, causes a damping simi-
lar to that produced by the conductivityσ. What is more, in
Refs. [22, 23] have been shown that a time-dependent meso-
scopic LC circuit with inductance and capacitance increasing

exponentially with time is equivalent to the time-independent
RLC circuit. For this case, the time differentiation of the in-
ductanceL̇, produces a dissipation similar to that produced
by the resistanceR. Now, in the present paper, we have
demonstrated that the London superconductor and the time-
independent RLC circuit are equivalent and can be described
through the same mathematical formalism, in both the clas-
sical and quantum contexts. Therefore, we can confirm that
these three completely different systems, that is, the London
superconductor, the time-dependent LC circuit and the time-
independent RLC circuit share amazing similarities so that
their electromagnetic dynamics can be analyzed in the same
mathematical framework. This result is interesting and im-
portant since, as we have already mentioned previously, the
study of classical and quantum dynamics of physical systems
that present similar behavior and properties is a topic of spe-
cial interest in the context of theoretical physics. Finally, it
is worth mentioning that, to the best of our knowledge, the
mathematical equivalence between the London superconduc-
tor and the time-independent mesoscopic RLC circuit has not
reported in the literature yet.

5. Summary

In this work, we have established a simple and elegant con-
nection between the London superconductor and the meso-
scopic RLC circuit. We have demonstrated that they share
similar behavior, both classically and quantum mechanically
and can be described in terms of genuine damped harmonic
oscillators which are generated by similar Hamiltonians. Fur-
ther, by using the invariant method, appropriated annihilation
and creation-type operators and Fock states, we have easily
solved the time-dependent Schrödinger equation for the RLC
circuit (the same procedure can be made for the London su-
perconductor) and employ its solutions to construct coher-
ent states for the quantized RLC circuit. Yet, we have cal-
culated expectation values of the charge and magnetic flux,
their quantum fluctuations as well as the uncertainty princi-
ple in both states, namely, Fock and coherent states. We also
have seen that the uncertainty principle in the coherent states
is equal to the minimum value of that in the Fock states. In
addition, we have found that the uncertainty principle in the
coherent states does not attain its minimum value. This lat-
ter result occurs because the coherent state constructed in this
work correspond to the well-known squeezed states. Finally,
we would like to observe that Schrödinger states for a London
superconductor with time-dependent conductivity has been
obtained in Ref. [49].
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