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In this paper, we investigate the new approximate bound state solution of deformed Klein—Gordon, Dirac adéih@ahequations in

the symmetries of extended relativistic quantum mechanics ERQM and extended nonrelativistic quantum mechanics ENRQM have been
obtained with a newly proposed potential called improved Hellmann-generalized Morse potential (IHGMP, for short). To the best of our
knowledge, this problem is examined in literature in the usual RQM and NRQM with Hellmann-generalized Morse potential. The potential
is a superposition of Hellmann potential, generalized Morse or Deng-Fan potential, and some other exponential terms. By employing the
improved approximation to deal with the centrifugal term, Bopp’s shift and standard perturbation theory method. The new approximate
analytical energy shift and the corrections of bound state energy eigenvalues in ERQM and ENRQM are obtained for some selected diatomic
molecules such as (HCI, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF). The new values that we get are sensitive to the
quantum number§j, I, s, m), the potential depths of the improved Hellmann-generalized Morse potenttd) the range of the potential,

the dissociation energd., the equilibrium bond length., and noncommutativity parameté@ o, x ). We have highlighted three physical
phenomena that automatically generate a result of the topological properties of honcommutativity, the first physical phenomena are the
perturbative spin-orbit coupling, the second the magnetic induction while the third corresponds to the rotational proper phenomena. In both
relativistic and nonrelativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary
cases of quantum field theory and quantum mechanics. In the new symmetries of NCQM, it is not possible to get the exact analytical solutions
for I = 0 andl # 0, the approximate solutions are available. Four special cased,wave are investigated in the context of deformed
Klein-Gordon and Sclidinger theories. The relativistic energy equations and the new nonrelativistic energy for some potentials such as
improved Hellmann potential and improved generalized Morse potential have also been obtained by varying some potential parameters. We
have clearly shown that the Sélinger and Klein Gordon equations in the new symmetries can physically describe each of the two Dirac
equations and the Duffin-Kemmer equation under the effect of IHGMP.
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1. Introduction the problem being studied. Exponential potentials have been,

and still are, the tool through which researchers have sought
Two scientific revolutions took place at the beginning of theto study molecules. We will devote our current study to two
last century; the first was embodied by the general and specitypes of potentials of great importance in this field, the Hell-
theories of relativity and the second was the development ofnann and generalized Morse potential. Many researchers
guantum mechanics. The Sédinger equation was the first have previously studied them in different energy levels, ei-
used to probe matter at the smallest scales [1], after whicther separately for each of them or in combination, but it was
came the Klein-Gordon, Duffin-Kemmer, and Dirac equa-in the framework of usual nonrelativistic quantum mechan-
tions. For the case of neutral or charged particles with spirics (NRQM) and relativistic quantum mechanics (RQM). Our
zero, one can deal with the Klein-Gordon equation [2, 3]. Instudy will be the focus of a case for combining them in the
contrast, for the case of a particle with spin-1, the Duffin-framework of a large quantum symmetry that is known by
Kemmer equation [4] is necessary for mesons. As for thenonrelativistic noncommutative quantum mechanics (or ex-
case in the case of spin-1/2 as electrons and their antagonigended nonrelativistic quantum mechanics, ENRQM) and rel-
(positron), the Dirac equation [5] is the tool used to accesstivistic noncommutative quantum mechanics (ERQM) sym-
the physical and chemical information of the system. Allmetries (or extended relativistic quantum mechanics) using
fundamental equations that we have referred to are normallgeformed Sclidinger, Klein-Gordon, and Dirac equations.
solved using different potentials, depending on the nature of
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Itis well known that the Hellmann potential [6—8], is a su- nonrelativistic Schdinger equation; this combination can be
perposition of the attractive Coulomb potential and a Yukawaapplied in different branches of physics, including molecular
potential [9]. Ikhdairet al. [10] have studied the bound state and atomic physics [34, 35].

energies of the Hellmann potential by using the SUSY pertur-  |n recent work, we combine Hellmann-generalized Morse
bation formalism. In 2007, Koncadt al. [11] studied the ra-  potentials and explore the corresponding deformed Klein-
dial Schidinger equation for the Hellmann potential within Gordon, Dirac, and Schdinger equations in the symmetries
the framework of the asymptotic iteration method and ob-of ERQM and ENRQM. The idea of non-commutative quan-
tained the bound state energy eigenvalues. This potential hégm mechanics is old and dates to the early years of ordi-
many important applications; we mention one of the solid-nary quantum mechanics, originally from Snyder [36] and
state physics [12-14], alkali hydride molecules [15], inner-jater developed. The non-commutative quantum theory con-
shell ionization problem [16], nuclear physics [17], amongtributed positively to overcoming many problems that ordi-
other applications. Furthermore, it was studied in both relmary quantum mechanics could not solve. Quantum grav-
ativistic and non-relativistic quantum mechanics (s&@, ity, string theory, and the divergence problem of the standard
[17-20]). model new data made this new quantum theory a refuge for

Deng-Fan potential originally appeared many decadeghysicists to find solutions and discoveries hoped for on the
ago. This potential was proposed by Deng and Fan [21pther hand [38-48]. In recent years, a lot attention has been
as a molecular potential, which improved the Morse potendrawn to this development [49-59].

tial [22], is known as the generalized Morse potential. Dong  Concerning the combination of Hellmann and general-
has used this potential as a suitable alternative potential tged Morse potentials, the subject of the current study, |
the Morse potential in the study of diatomic molecules to de-have previously dealt with the non-specific study of each of
scribe the vibrational spectrum and electromagnetic transithem separately, but | have not dealt with them in a com-
tions [23, 24]. Moreover, it can be used to study the diatomitined way, and neither has any other researcher done so far.
molecular and obtain their energy spectra [25]. In 2008\We have treated the generalized Hellmann potential in the
Dong and Gu [26] obtained a bound state solution of thesymmetries of NERQM [60]. Moreover, we have applied
Schiddinger equation with the Deng-Fan molecular potentialthe Hellmann potential on the Mirror NucléfO and'"F
Dong [27] trained the relativistic of spinless particles subjectin the symmetries of NERQM [61]. Moreover, we have
to a rotating Deng-Fan Oscillator. Oluwadateal. [24] ob-  studied the deformed Sdbdinger equation with the gen-
tained the exack-wave solutions of the Klein-Gordon and eralized Hellmann—Kratzer potential model in the symme-
Dirac equations with equally mixed scalar and vector Dengtries of ENRQM [62]. Very recently, we have investigated
Fan molecular potentials, the normalized wave function, anghe bound-state solutions of the deformed Klein—-Gordon and
the corresponding energy equations. Hassanaadi ana-  Schidinger equations for arbitrary I-states with the modified
lyzed the relativistic spinless particles under Deng-Fan potenvorse potential in the symmetries of noncommutative quan-
tial [28]. By using the asymptotic iteration method, Ortakayatum mechanics [54]. From what we have seen so far that most
et al. [29] obtained the approximate analytical solutions ofof the studies concerning improved Hellmann-generalized
the Dirac equation with the Deng-Fan potential including amorse potential were within the framework of ordinary quan-
Coulomb tensor interaction in the presence of spin symmetum mechanics. The above works motivated us to investigate
try and pseudo-spin symmetry. In 2009, Zhatgal. [30]  the approximate solutions of the 3-dimensional deformed
obtained the approximate analytical solutions of the Dirac|ein-Gordon equation, Dirac and Sdlinger equations for
equation with the generalized Morse potential model in thémproved Hellmann-generalized Morse potential offered in
presence of spin symmetry and pseudo-spin symmetry by uRefs. [34, 35] in RQM and NRQM. The potential focus of
ing the supersymmetric shape invariance formalism. Alsostudy and interest can be applied for some selected diatomic
Daif [31] obtained-state solutions of the Feynman propaga-molecules such as (HCI, LiH, H2, ScH, TiH, VH, CrH, CulLi,
tor with the Deng-Fan molecular potential. Moreover, Magh-TiC, NiC, ScN and ScF) in ERQM and ENRQM symmetries.
soodiet al. obtained. By employing the Pekeris-type approx-The research reported in the present article was motivated by
imation, Oyewumiet al. [32] obtained bound state solutions the fact that the study of the MHGPs in the ERQM and EN-
of the Deng—Fan molecular potential using the Nikiforov—RQM symmetries has not been reported in the available lit-

Uvarov method for diatomic molecules (HCI, LiH, H2, ScH, erature. Here, our focus was on the MHGPs, which has the
TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF). Very recently, following form in the new symmetry:

Ekwevugbe [33] obtained a nonrelativistic energy spectrum

of the Deng-Fan Oscillator via the WKB approximation. Cur-

rently, the idea of combining more than two potentials has

attracted interest. This combination expands the application (V;S)ymp (1) = (D, Se)

scope to include new fields. And as a successful model for

this combination, Okoi&t al. and Ebomwonyet al. stud- core _ 1 core _ 1\ 2
—2(S=)+ (. )] (L.1)

—a + be™ "

]_ -
D5y

ied the Hellmanngeneralized and Morse potentials in the case

of the relativistic Klein-Gordon equation, Dirac equation, and err—1

e — 1
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star productf(x) = h(z) in the symmetries of NCQM as
follows 6, = €,.,0 (0 is the non-commutative parameter)
(V2 S)hmp (Tne) = (Vo) pmp (1) which is an infinitesimal parameter if compared to the en-
a(v, S)hmp (1) LO , ergy values a_nd eIgmen'Fs of an_tisymmeffi& 3 real ma-
- —+0 (G) ) , (1.2) trices andy,, is the identity matrix. The symba! denotes
or 2r the Weyl Moyal star product, which is generalized between
where(D,, S.) are the dissociations energies,is the equi-  two ordinary functionsA(z) B(z) to the new deformed form
librium bond length, ¢ andbd) are the potential strengths,is A(:L'nc)f?(:rnc) which expressed with the Weyl Moyal star
the screening parametey,. andr is the distance betweenthe product A(z) = B(x) in the symmetries of NCQM as fol-
two particles in EQM a_r)1d_> QM symmetries, respectively. Thelows [37-43]:
coupling equald.© = L © equalsL,, ©12 + L, O3+ L,
©13 with L,, L, and L, are present the usual components
of the angular momentum operathr while the new non- (Ax B) (z) = exp (ie"00507;) (AB) (x) = (fh) (z)
commutativity paramete®,, equalsd;;/2. The new alge- i€
braic structure of noncommutative covariant canonical com- - 85 AT B gu=yr + O (62) . (4)
mutations relations NCNCCRs in the three representations

of Schivdinger, Heisenberg, and interactions pictures, as fol-  The indiceq(y, v = 1,2, 3) andO (6?) stand for the sec-
lows (It should be noted that, in our calculation, we have use@énd and higher-order terms of the NC parameter. Physically,

the natural unité = ¢ = 1) [63-70]: the second term in Eq. (4) presents the effects of space-
space noncommutativity. Furthermore, it is possible to unify
{x(S,H,I) p(S,H,I)} i the operators)([j’.(t) = (qf,ﬁfcu VplL,) (t) an_d X/ (t_) =
# v v 2.1) (2f, V Phe,) (t) in the Heisenberg and the interaction pic-
’ : tures using the following projection relations, respectively:
N [xnCI(LS,H,I)TpnCI(/S,H,I)} = i, 9 g proj p y
[a:ELS,HJ),xl(,S,HJ)} =0 02 X1 (t) = exp(iHWPT) X5 exp(—iHWPT)  (5.9)
N {xncLS’H’I)fﬂfncz(/S’H’I)} _ iHW QM-symmetry

While the uncertainty relations will be changed into the
following formula in the new symmetries as follows:

rnc rnc

= X! (t) = exp(iH"PT) X5 exp(—iHPT),  (5.2)

NCQM-symmetry

oy
‘AxLS,H,I)ApE/S,H,I)’ > 2; and
AafSHD AP > herghs ) — oo AP S e BT
— { ’A:C(S’H’I)A (S,H,I)) S |ﬁ29;w| . 3) Xu (t) = eXP(ZHor pT)XM exp( 1H,, pT) (6.1)
" Py = 2 QM-symmetry
With 2D = (zpepzL,, 2l,,) are the general-
ized coordinates in NCQM symmetries apd;;i") = = X1 (t) = exp(iH i, T) X5 exp(—iHMP,, T). (6.2)

(e PE,. pL.,,) are the corresponding generalizing coor-
dinates in the usual QM symmetries. It is important to note

that Eq. (2.2) is a covariant equation (the same behavior Moreover, the dynamics of new systemgl{ (t)/dt can

/,(SvHvl) 1 1 1 . . . . .
of a ) under Lorentz transformation, which includes e gescribed by the following motion equations in the de-
boosts and/or rotations of the observer’s inertial frame. W8ormed Heisenberg picture as follows:

are generalizing the NCNCCRs to include Heisenberg and
interaction pictures. Herg.;s = h is the effective Planck

NCQM-symmetry

constantf,,, = ¢,,0 (0 is the non-commutative parameter) dX(t) I ~ OX [T (t)

which is an infinitesimal parameter if compared to the en- dat [XM (t)’Hhmp} T o (7.1)
ergy values and elements of antisymme8ix 3 real ma- QM-symmetry

trices andé,, is the identity matrix. The symbot de- R R

notes the Weyl Moyal star product, which is generalized be- ax; @ ST () +fjhmp X, (t) 79
tween two ordinary functiong(z)h(z) to the new deformed dt { w (D) He } i ot (7.2

form f(zne)h(zne) Which expressed with the Weyl Moyal Extended OM-symmetry
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Here HIM™ and "™ ) are the free and total Hamiltonian operators for equal vector scalar of the Hellmann-generalized
Morse potential in QM and EQM symmetries, whilﬁrﬁnp andﬁﬂ’fp) the Hamiltonians in QM and EQM symmetries. The
purpose of this paper is to investigate the I-state solution of the deformed Klein-Gordon aidiSgér equations within

Bopp’s shift and standard perturbation theory methods to generate an accurate new energy spectrum in ERQM and ENRQM
symmetries. Our current work is structured in eight sections. The first one includes the scope and purpose of our investiga-
tion, while the remaining parts of the paper are structured as follows. A review of the Klein-Gordon, Dirac andirgym
equations with Hellmann-generalized Morse potential is presented in Sec. 2. Section 3 is devoted to studying the deformed
Klein-Gordon equation by applying the ordinary Bopp’s shift method and the Greene and Aldrich approximation for the cen-
trifugal term to obtain the effective potential of the improved Hellmann-generalized Morse potential in RNCQM symmetries.
Besides, via perturbation theory, we find the expectation values of some radial terms to calculate the energy shift produced by
the effect of the perturbed effective potential of the improved Hellmann-generalized Morse potential. Section 4 is devoted to
present the global energy shift and the global energy spectra produced by improved Hellmann-generalized Morse potential in
the deformed Klein-Gordon symmetries. In Sec. 5, we examine some particular relativistic important cases in the context of
the deformed Klein-Gordon theory. In the next section, we derive the global energy shift and the global energy spectra pro-
duced with improved Hellmann-generalized Morse potential in the deformed Dirac symmetries. In Sec. 7, we apply our study
for determining the energy spectra of some selected diatomic molecules such as (HCl,LBtH TiH, VH, CrH, CulLi,

TiC, NiC, ScN and ScF) in the ENRQM under improved Hellmann-generalized Morse potential, also, to study the composite
systems. In Sec. 8, our conclusive remarks and future directions are given.

2. Revised of Klein-Gordon, Dirac and Schibdinger equations under Hellmann-generalized Morse
potential

Before we start constructing the new solutions of the deformed Klein-Gordon, Dirac, anadBgar equations under the
improved Hellmann-generalized Morse potential MGHPs, we give a summary of the corresponding usual solutions in ordinary
relativistic quantum mechanics and nonrelativistic quantum mechanics. The Hellmann-generalized Morse potential in the
symmetries of RQM and NRQM is given by [34, 35]:

[ —atbeor e —1 eore — 1\ 7]
=D, |1+ ———— —2 ;
Vi (r) * rD, ( e —1 ) + ( e —1 ) ®)
and
[ —a + be™ " e*e — 1 e*e — 1 2]
Shmp(r)—Se 1+7°Se_2(60”—1>+<60‘7‘—1> . (9)

The 3-dimensional Klein-Gordon equation, Dirac equation with a scalar pot&hfig(r) and a vector potentiafmp (),
and the Sctidinger equation with the vector potentiahn, () for the diatomic molecule (or fermionic particles) with reduced
massM and wave function?,,;. (r, ) are given as:

(—A + (M + Shnp (r))? = (Bt — thp(r)f) U (r,Q) =0, (10.1)
(ap + B (M + Shmp (7)) Wi (r,2) = (Enke — Vamp (1)) Y (1,92) (10.2)
(_ﬁw + thp(r)> U (r,Q) = E"T (r,) . (10.3)

HereA is the ordinary 3-dimensional Laplacian operator, the vector potéfitigl(r) due to the four-vector linear momen-
tum operatod” (Vamp (1) , A = 0) and space-time scalar potentiah,, (r) due to the mas$F,,; E,x) andE]] are represents
the relativistic and nonrelativistic energy eigenvalues/) are the principal and orbital quantum numbers, respectively.

o 0 ag; o IQXQ 0
al(ai O)’ 6( 0 Ik )’

ando; are the usual Pauli matrices. Since the Hellmann-generalized Morse potential has spherical symmetry, allowing the solu-
tions of the time-independent Klein-Gordon equation and&tihger equation of the known forii (r, Q) = (¢, (r)/m)Y;™ (Q)
to separate the radidl,; (r) and angular part®;™ (£2) of the wave functionl' (r, 2). For the Dirac equation,

W (1) = < iG ()Y, (9) ) ’

r jm
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where F,,; (r) and G, (r) represent the upper and lower components of the Dirac spibgggr, 2) while lem () and
v (Q) are the spin and pseudospin spherical harmonicsraiglthe projection on the z-axis. Thus, Egs. (10.1), (10.2) and

jm

(10.3) can be expressed as:

2
(2 = 12 = B2 = 2 BtV {7} + MSmo 1] + Vi1 = Shop 1] = 50 ) e () =0, (12.)
AA(r) [d K
@ klk+1] ar [drﬂ—w{f}}
ar2 ) —[M + Epp — A{r}][M — Epp. + X {r}] + F,r(r) =0, (11.2)

sy [d k
EEEN B A} (M= B 45 & [dr_rﬂb{ﬂ}
a7~ g M B MM = B+ S+ — s

G-(r)=0, (11.3)

[M + Epe — A{r}] )

(522—1—2M[ " Vimp{r} — Z{QZA;;}DW(@:& (11.4)

Using the shorthand notatldﬂh?’? = M? — E?, and:

1(1+1)

Vehfn}p (r) = 2 (EntVomp (r) + M Snmp(r)) — Visnp (1) + Shimp (1) + R (12.2)
—ar are are 2 ;
B(r) =Dl =t 2 (5t + () and BP=0=a0) =0,
For Spin Symmetry Limit
(12.2)
Car are are 2 .
A=D1+ = o (5 4+ (552) ] and B0 — )=,
For Pseudospin Symmetry Limit
h I(1+1)
Vert e (1) = Vamp (r) + =—5— (12.3)

We obtain the following second-order Sodinger-like equation in RQM and NRQM symmetries, respectively:

(;’:2 - { R )D Yu(r) =0,  (13.1)

a be?" q 2
M-pgs, - ¢ Dd14+—4
dr? r2 nkoy + r + { + e—or — 1}

(‘P_’M_[M+Esk—cs]

) Fu(r)=0, (13.2)

be™ " 2
M+Epk+—— De{l_q}
r e~ —1

2 k(k—1) .
(W,a[MEﬁk+Ec]

) G (r)=0, (13.3)

d2 hmp
<d 2 + 2M |: nl - eff nr {T}i|> wnl (T) =0. (134)

With & (k — 1) = I(I — 1) andk (k + 1) = [ (I + 1). When the vector potential is equal to the scalar poteltigl (r) =
Smp (r) the effective potential leads to the following simple form

Vehfn}"( ) =2(Eni + M) Vamp (1) + l(%l) a

The authors of Refs. [34, 35] using both Nikiforov-Uvarov method and the Greene and Aldrich approximation for the
centrifugal term to obtain the expressions for the wave function as hypergeometric polynomials and the corresponding energy
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6 A. MAIRECHE
values for improved Hellmann-generalized Morse potential, in RQM and NRQM symmetries as,

n!l (n + Anl =+ 1) Ny SAM/Q

1
\II(T,Q) - F(2A +1) (I_S)Wll—i_??Fl (_nan+v7zl+Anl+1;1+Anl;s)}/l
nl
N (2wnp + 1 1
Fuy (r) = %sw (1= )2 5 F (=1, 0+ 2wk + 2k + 11+ Wi 8) V™ (Q)
nk (2Qnk + 1 1 m
GnE (T) = k( n|k )n Q (1 _S)BM_F; 2F1 (_nan+2an+2ﬁnl +171+an55)}/l (Q)7

and

1
— M? = (D. — aa) (By + M) +al(1+1) — ~

(15.1)

(15.2)

(15.3)

D
an+3+6u — [Eu+ M] a—b+2;€{e‘”f’~—1}

4 n+ 4100 +1]

D, 1
(Bt + M] | == {eom = 1V 4+al{l+1}

1 )
2l(1+1) o [(An,d)—2Mn(D)\>
ni =De—oat = _8M< A(n,1) )

For the spin symmetry, the equation of energy is given by:
(M+EL —Cy)(M—E&L+D.)=(M+E?Y —Cy)aa— o’k (k+1)

2 (A2 [n, k] + [M — E + D] [k]\~
+( As[n,k] ) .

4

For the pseudospin symmetry, the equation of energy is given by:

(D = M — EZ3) (M — E?, = Cpo) = (M — B, — Cy) aa — a?k (k — 1)

L0 (A3 M+ (M = B+ Do )
4 As [n, k] ’
with
1 2
\/4 5 nl+M)(eare_1) +al(l+1)v
nl—\/enl+ nl+M)+4l(l+1)a
(M + EY M —E® + D M
Wnk—\/ + nk )( nk:+ ) ( nk+ ) k(k+1),
O[ (6%
M+ E M — EP E” £ M+ C,.
an\/( + )( nk+0p5)7( ’I’Lk+ +Cp)a+k(k71)7
Oé «
1 D, S
ﬂnk\/4 P2 (M — EP} + Cps) De® +1(1 + 1),
b 2D.¢> a 2D.g
=2 @ 1(+1
M= e s T L),
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1 1 D.q?
Anln+2+\/4+ o2 +al(l+1), (17.8)
1 1 D, .
As(n,k):n+§+ Z+§(M+En,c—Cs)+/~c(/.€+1), (17.9)
1 1 D, i
Aps (n.k) =n+ 5 +\/4 =5 (M + Bl = Cpo) + k (k= 1), (17.10)
and
b 2D.g* (a2 2D.¢?
ne (k) = = — =< — (E) + el k(e 1), (18.1)
b 2D.q> a2  2D.q¢?
wy (k) = = — = —(a) + k(1) (18.2)

The Pochhammer symbol(s:),, = I [m + n]/T [m + n], ands = e~*", N/7? andN,,;, are the normalization constants,
(see Refs. [34, 35]).

3. The new solutions of DKGE under IHGMP in the EQM
3.1. Review of Bopp’s shift method

Let us begin in this subsection by finding the deformed Klein Gordon equation (DKGE) in the symmetries of relativistic
noncommutative quantum mechanics or the extended quantum mechanics under the improved Hellmann-generalized Mors
potential (IHGMP). Our goal is achieved by applying the new principles which we have seen in the introduction, Egs. (2.1),
(2.2) and (3), summarized in new relations and the notion of the Weyl-Moyal star product. These data allow us to rewrite the
usual radial Klein-Gordon equation in Eq. (13.1) in the ERQM symmetries as follows [54-57, 76—85]:

2
<C;ig - B+ %}mF’(r)D * (1) = 0. (19)
It is established extensively in the literature that star products can be simplified by Bopp’s shift method. The physicist
Fritz Bopp was the first to consider pseudo-differential operators obtained from a symbol by the quantization-sules-
(i/2)(0/0p), andp — p+(i/2)(0/0z) instead of the ordinary correspondence- x andp — (i/2)(9/dz). This is known by
Bopp's shifts and this quantization procedure is called Bopp quantization [85—-87]. Itis known to the specialists that Bopp's shift
method has been applied effectively and has succeeded in simplifying the three basic equations: the deformed Klein-Gordor
equation [54-57,76-85], deformed Dirac equation [88-91], deformedd8atger equation [92-95] and Duffin-Kemmer-Petiau
equation [81,82] with the notion of star product to the Klein-Gordon equation, the Dirac equation and tdirggrrequation
with the notion of ordinary product. Thus, Bopp’s shift method is based on reducing second order linear differential equations
of the deformed Klein-Gordon equation, the deformed Dirac equation, and the deformédiBghar equation with star product
to second-order linear differential equations of Klein-Gordon equation, Dirac equation, aidiigler equation without star
product with simultaneous translation in the space-space. The CNCCRs with star product in Egs. (2.1) and (2.2) become new
CNCCRs without the notion of star product as follows (seg, [54-57, 76—85]):

|:xnc§LS7H)I)7pncl(/S’H’I)j| - xnc,(_L&H’I)pncS/S’H’I) - pncl(/S’H’I)xncEL&H’I) = iheﬁ(;,uuv (201)
[xncLS,H,I)’xncgs,H,l)} _ wncLS’H’I)a?ncl(,S’H’I) _ xnCI(jS,H,I)mnCELS,H,I) = i0,,. (20.2)
The generalized positions and momentum coordinags’™”) = (25,2, 2L, andpl) = (DS 0o P Phes)s
in the symmetries of ERQM are defined in terms of the corresponding coordinates in the symmetries afj, M =

(z, 2l 2l) andp(> 1) = (. p, pl) via, respectively [54-57, 76-85]:

3 .
10,
xncELS,H,I) _ foS,H,I) _ ZTMP(DS,H,I) and pncLS,H,I) — pELS,H,I). (21)
v=1

This allows us to find the operatof,. equalr? — LO in NCQM symmetries [54-57, 76-85]. New effective potential for
MHGPs in ERQM symmetries
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8 A. MAIRECHE
3.2. The new effective potential of the improved Hellmann-generalized Morse potential model in DRKGT symmetries

According to the Bopp shift method, Eg. (19) with star product becomes similar to the following like thed8der equation
(without the notions of star product):

a2 2 2 I(1+1)
am —— (P —ER) = T35\ 2o, (22)
*thp (TnC) (E"l + M)

The new operatorBhmp (1) and(l (I + 1)/r2,) are expressed as in ERQM symmetries as follows:

be—ar D.qe=®"  D.q%e™27 8thp( )L@

Vimp(rae) = D o4 P - P QU - SR 067, @9
and
l(lrg;l):l(l;n+l(l+l>1‘@+0(@2) (24)
Hereq = e*" — 1. Therefore, we can rewrite:
2Wamp (me) (Bt + M) = 2Vhmp (1) (Bt + M) — (E"l : M) W“g;’ Mot o (02). (25)

Moreover, to illustrate the above equation in a simple mathematical way and attractive form, it is useful to enter the
following symbolV,"™ (), thus the radial Eq. (22) becomes:

c—eff
(j — | BSR4+ Vi <r>]) Ut (r) = 0, (26)
with:
Vil (r) = Ve (r) + VB (r). (27)
Moreover me (r) is given by the following relation:

thp( ) = L(l+1) _ Epny + M 0Vimp ()
pert 7’4 r 8r

It should be noted that wheih= 0 the Eqg. (13.1) can be exactly solved analytically for the dage0, the authors of
Refs. [34,34] approximatively solved the equation using the Greene and Aldrich approximation in relativistic and nonrelativistic
guantum mechanics symmetries. In the new form of radial like&thger equation written in Eq. (26), we have observed new
terms including (1/7), (1/r*) and other Columbia-like terms) which make this equation impossible to solve analytically for
and, it can only be solved approximately. From this point of view, we can consider the Greene and Aldrich approximation [96].
Itis also used in many other works [97-99]:

) LO + 0 (6?%). (28)

1 a? a?
2 ~ —2ar)2 = 2 (29)
(I1—e ) (1-13s)

It is important to mention here that the above approximations are valid in shortawhen 1. This allows us to obtain:

r

1 « «
F 1 ez T 1-g (30)

After straightforward calculation®Vimp (r)/0r) we obtain as follows:

OVamp (1) _a bae™ "  bae” " 2Deaqe_°”" N Deq (1 —q)e2o7 B 2Deaq26_3a’". (31)

or r2 r r2 1—ear (1- e—ar)2 (1-— e—ar)?’

Upon invoking the Greene—Aldrich approximation scheme, the expreggion+ M /r)(0Vimp (1) /0r) reduces to the

form:
) Q2 2.3
Eni4+M OVamp (r ) a bas as +2Deaq (1—¢q) s _2Deaq s > _ (32)

oy (ButM) ((1—) L TP T E T ey
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DIATOMIC MOLECULES AND FERMIONIC PARTICLES WITH IMPROVED HELLMANN-GENERALIZED. .. 9

By making the substitution Eq. (32) into Eq. (28), we find the perturbed effective potéﬁlﬂﬂ(s) generated from
noncommutativity properties of space-space that produced by the effect of IHGMP in the symmetries of ERQM as follows:

o (10Dt o tas
V;aert( )_ < (1—8)4 (Enl+M) (1—8)3 (1—8)3
B Qs D caq (1 —q) s Deaqzs‘3 9
+(2D.q —b) (175)2+ (175) (175)4 )L@JrO(@). (33)

We have replaced the ter[l + 1]/7*) with the Greene and Aldrich approximation in Eq. (28). The equal scalar
and vector improved HeIImann generallzed Morse potentlals are extended by mcluding new terms proportional to the radial
terms(1/[1 — s]*), (1/[1 — s]*), (s/[1 — 5%, (s/[1 = s]?) , (s2/[1 — s]*) and(s®/[1 — s]*) become the improved Hellmann-
generalized Morse potential in ERQM symmetries. The generated new effective pdt/éﬂlﬁals) is also proportional to the
infinitesimal vector®. This allows us to consider the new additive part of the effective poteV;ﬂﬁ?( ) as a perturbation
potential compared with the main potenﬂ@ (] (the parent potential operator in the symmetries of ERQM, that is, the
inequality has become achlevé@“e ) € Vg " (s). That is all physical justifications for applying the time-independent
perturbation theory become satlsfled This aIIows us to give a complete prescription for determining the energy level of the
generalizedh!” excited states.

3.3. The expectation values under IHGMP in the deformed Klein-Gordon symmetries

In this subsection, we want to apply the perturbative theory, in the case of ERQM symmetnes we find the expectation values of
the radial termg1/[1 — s]*), (1/[1 — s]*), (s/[1 — s]*, (s/[1 — s]%) , (s2/[1 — s]*) and(s®/[1 — s]*) taking into account the

wave function which we have seen previously in Eq. (15.1). Thus after straightforward calculations, we obtain the following
results:

<(1_15)4>(”lm) = N$,270(1 i25)45Anz (1— 5)2Vmtt [oF1 (—n,m 4 Vi + App + 1; 14 Apyg; s)]2 dr, (34.1)

< > - oo(l 15)35Anz (1— 5)2an+1 [2Fy (—nyn+ Vi + Ap + 151+ Ay s)]z dr, (34.2)

< > | N2 00(1 _Ss)ssA”l (1-— 3)2vm+1 [oF1 (=n,n 4 Vg + Ay +1;1 4 Anz;S)]2 dr, (34.3)
(nim)

< >(nlm) N °° /G js)z s (1 — )V LB (—nyn 4 Vig + A + 11+ A s)) 2 dr, (34.4)

2 T2
<( i 3>:N,y;2/ T st (1= )™ LR (i Ve + A+ L1+ Agss)Pdr, (345)

1-39) A (1—s)
<(1i5)4> = N / (1 i 5)4514”’ (1= )2 F P (—non+ Vi + A + 131+ Ay 8)]° dr, (34.6)
0

with N2 = (nIT [n + Ay + 1] Ny /T [24,; + 1])* and we have used useful abbreviati¢is) ,,;,,,) = (n,l,m X n,l,m)

to avoid the extra burden of writing equations. Furthermore, we have applied the property of the spherical harmonics, which
has the form[ Y;™ (') Y () d2Q = 61y 6mm. We haves = =", this allows us to obtaidr = —(1/a)(ds/s). From

the asymptotic behavior of = e=*" when ¢ — 0) (s — +1)and when{ — +o0) (s — 0), this allows to reformulate
Egs.(34,7 = 1,6) as follows:
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10 A. MAIRECHE

+1
1 N™2 _
1 = Ll/sA”l_l (1- S)QV"Z 3 [2F1 (—n,n+ Ap + Vi + 1,14+ Ay, s)]2 ds, (35.1)
=5/ utmy 0
1 NmZH A 2V, —2 2
3 —nl [ gAn =l (1 = g) T TE L (—nyn Ay Vi + 151+ Ay, s)]° ds, (35.2)
(1-s) (nlm) “ 0
+1
S N;ﬁQ A 2V, —2 2
3 =0 s (1—9)""" " QF (—n,n+ Ay + Vi + 1,1+ Ay, 9)]” ds, (35.3)
A
+1
S NmZ oo, . 2V, —1 2
5 = s (1 —s) F (—n,n+ Ap + Vi + 1,1+ Ay, 8)]” ds, (35.4)
C=" my @ 4
82 Nm2+1 4 9V —2 9
a )3 = ;l /s (1 = 8) T TR G B (—nyn 4 App 4 Vig + 1,1+ Ay, 8)) ds, (35.5)
-5
0
s Nm2+1 2V, -3 2
TEr A gj /SA"L“ (L—=s)"""""" [pF1 (—n,n+ An 4+ Viu + L 14 Ay, 8)]” ds. (35.6)
-5
0

We can use the method proposed by Dengl. [100] and applied by Zhang [101], we calculate the integrals in Edfs.. =
1,6). With the help of the special integral formula

+1

/5571 (1- s)g_1 [2F1 (c1, ¢2; cs; s)]st = LT ()
0

m:ﬁFQ (c1,¢2,05¢3,0 +& 1), (36.1)

heres Fy (c1, ¢2; ¢35 8) is the generalized hypergeometric function:

“+oo
3Fy (c1,¢0,05¢3,0 +&1) = Z—(Cl)n (e2), (0,

 (c3),, (0 +&)n!” (36.2)

Is obtained from the generalized hypergeometric function which has parametetge 1 and; parameters of type 2 of
the form the following formula:

+o00
pFy (a1, a0, ..., ap; B1, Ba,y .oy P13 1) = Z (a1),, - (ap),,

= (B1)y, - (Bp), (36.3)

for p = 3andl = 2 while T (o) denoting the usual Gamma function. We obtain from Eg8S,: = 1, 6) the following results:

1 I'(A,) T 2V, — 2
<(1 4> = N ( IL”()K(l g) ) .5, (=11 + Apg + Vit + 1,2V — 214 Ay, Ky — 2;1),  (37.1)
—S nl —
(nlm)

<

AT 2V, —1
> mr ( Fl()K(l _ 1l) ) 3ks (_n7n+Anl +Vu+1,2Vy — L1+ A, Ky — 1;1)7 (372)
(nlm) "

Ay +1 2V —1
:L)lw ( Lt ) ( ! ) 3F2 (7717” + Anl + an + 17 2‘/711 1 1 + Anl7 nl; 1) ) (373)
(nlm) I (Knl)
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S  rvir T (Anl + 1) T (2an)
(1—s)? i) nl I (Kp +1)

2 T (Au+2) T (2V,,;—1
87( = iz)l" ( i+ ) ( Vit ) 3Fy (—n,n+Anl+an+1,2an—1;1—|—Anl7Knl+1;1), (375)
(nim) F(K7zl+1)

by (—n,n+ Ay + Vi + 1,2V — 114+ Ay, Ky +151), - (37.4)

s3 v T (Anl+3) I (2an—2
=) iy TEutD

with N2 = (nIT (n + Ap; + 1) Ny /T (24,0 + 1))?(1/e) and K,y = Apg + 2Vi.

) 3F2 (_na n+Anl+an+17 2an - 1; ]-+Anla Knl"’_l; 1) ) (376)

3.4. The energy shift for the MHGPs in ERQM symmetries

The global relativistic energy shift for the improved Hellmann-generalized Morse potential model in ERQM symmetries is
composed of three principal parts. The first one is produced from the effect of the generated spin-orbit effective potential. This
effective potential is obtained by replacing the coupling of the angular momentum operator and the noncommutative vector
LO with the new equivalent couplin@LS (with ©% = 0%, + 03, + ©%;). This degree of freedom comes considering
that the infinitesimal noncommutative vect®ris arbitrary. We have chosen it to a parallel of the sBinf the diatomic
molecules under Hellmann-generalized Morse potentlal Furthermore, we replace the new spin-orbit éauliwgh the
corresponding physical forf® /2) G2, with G2 = — $2. Moreover, in quantum mechanics, the operatdis{’,.J2,
L2,5% and J, ) forms a complete set of conserved phy5|cs guantities, the eigenvalues of the ofErate equal to the
valuest (4,1,s) = [j(j+1) —1(l+1) —s(s+1)] /2, with |l —s] < j < |l+s|. As a direct consequence, the partial
energy shiftA Egn, (n,a,a,b,De, 7,0, 7,1, s) due to the perturbed effective potenthfl’E ) produced for thex*” excited
state, in DRKGT symmetries as follows:

AB3oo(n,a,a,b,De,1e,0,5,1,8) = O (j(j + 1) — 1L +1) = s(s + 1)) (Z) (s © (nyn,c,a,b, De,re) . (38)

(nlm)

RHMP
(nlm)

1 1
<Z>g£17%p (n,n,,a,b, De,re) = [1(I+1)a? <4> — (B + M) a[a <3>
(1 - S) (nlm) (1 B S) (nim)

s $3/2 52
—b({ —— 2D.q—b) { ——— 2aD.q (1 — R —

3
—92aD,q* (| —— . 39

The second part is obtained from the magnetic effect of the perturbative effective potéﬁﬁ’e(ls) under the improved
Hellmann-generalized Morse potential model. This effective potential is achieved when we replace®a@hd©,) by
(oXL, andoX), respectively, hereN and o) are symbolize the intensity of the magnetic field induced by the effect of the
deformation of space-space geometry and a new infinitesimal noncommutativity parameter, so that the physical unit of the
original noncommutativity paramet€;, (lengthy is the same unit ofX, we have also need to apply’,’,m’ L. n,l,m) =
MOy mO110nm (= < m/ < land—I < m < ). All of this data allows for the discovery of the new energy shift
AE,?;]‘;Q (n,a,a,b, De,r.,0,m)due to the perturbed Zeeman effect which created by the influence of the improved Hellmann-
generalized Morse potential model for thé excited state in ERQM symmetries as follows:

The global expectation val(#) (n,n,a,a,b, D.,re) is determined from the following expression:

AEmd (n,n,0,a,b, De,7e, 0, ,1,8) = oR(Z) () (n,n, ,0,b, De,e) m. (40)

Now, for our purposes, we are interested in finding a new third automatically important symmetry for the improved
Hellmann-generalized Morse potential model at zero temperature in ERQM symmetries. This physical phenomenon is in-
duced automatically from the influence of a perturbed effective potevgfﬁ[’(s) which we have seen in Eq. (33). We
discover these important physical phenomena when our studied system consists of non-interacting is considered as Fermi ga
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12 A. MAIRECHE

it is formed from all the particles in their gaseous state (HCI, LiH, HcH, TiH, VH, CrH, CulLi, TiC, NiC, ScN and ScF)
undergoing rotation with angular velocifg if we make the following two simultaneous transformations to ensure that the
previous calculations are not repeated:

0 — x2 and LO — xLQ. (41)

Herey is just infinitesimal real proportional constants. We can express the effective potéBifal™ (s) which induced
the rotational movements of the diatomic molecules as follows:

. I1(1+1)a* b
thp TO'((S) — ( ( + )OL —Oé(Enl“'M) a _ s

pert 1-s)* 1-s)° @1-s)°
B as Deaq (1 — q) s B D.ag?s®
4 (2Deq — b) e 2 Ty 2 oo D \LQ. (42)

To simplify the calculations without compromising physical content, we choose the rotational vébqbrallel to the
(Oz) axis. Then we transform the spin-orbit coupling to the new physical phenomena as follows:

A(s)LQ =xA(s)QL,. (43)

With

I1(1+1)a* a bas as D.aq(1—q)s? _D.ag*s®
As)=————— — a(Ey+M - +(2D.g—b +2 -2 . (44

T i (T T T AT a_st)

All of this data allows for the discovery of the new energy smwgn;;"t (n,n,a,a,b, D, e, x,m) due to the perturbed
Fermi gas eﬁec%lrﬂp_'Ot (r) which generated automatically by the influence of the Hellmann-generalized Morse potential for
thent” excited state in REQM symmetries as follows:

AEf ™ (n,0,0,b, De, 1o, X,m) = X (Z) (o (0,01, 0,b, D, e, Vo) Q. (45)

It is worth mentioning that the authors in Refs. [102,103] studied a rotating isotropic and anisotropic harmonically confined
ultra-cold Fermi gas in a two and three-dimensional space at zero temperature, but in this study, the rotational term was added
to the Hamiltonian operator, in contrast to our case, where this rotationy&) LQ automatically appears due to the large
symmetries resulting from the deformation of space-phase.

4. Relativistic results of IHGMP in the deformed Klien-Gordon theory symmetries

In this section of the paper, we summarize our obtained reAuli,, (n, o, a, b, De, 7e, j,1,5) , AERRH (n, o, a, b, De, 7, m)

andAEr{r;,f"t (n,a,a,b, D.,r.,m)) for the n'* excited state due to the spin-orbital coupling, modified Zeeman effect, and

perturbed Fermi gas potential induced&}g‘r}p(s) on based to the superposition principle in the deformed relativistic Klein-
Gordon theory under the improved Hellmann-generalized Morse potential model. This allows us to deduce the additive energy
shift AE;‘,’;p (n,a,a,b, De, e, j,1,s,m) under the influence of the improved Hellmann-generalized Morse potential model in
ERQM symmetries as follows

AEl(n,,0,b, De,1e, 0,0, 4,1, 8,m) = (Z) (ot (0, 0,0, b, De, 1) (O7 (4,1, 8) + o®m + xQm) . (46)

The above results present the global energy shift, which generated with the effect of noncommutativity properties of space-
space; it depended explicitly on the noncommutativity paramégers, x ), the parameters of the Hellmann-generalized Morse
potential (n, o, a, b, D., r.) in addition to the atomic quantum numbeisi, s, m). We observed that the obtained global
effective energy under the Hellmann-generalized Morse potential has a carry unit of energy because it is combined with the
carrier of energy {/% — E2,). As a direct consequence, the eneid‘mfw (n,n,a,a,b,De,re,j, 1, s,m) produced with the
improved Hellmann-generalized Morse potential model, in the symmetries of ERQM is the sum of the root quart of the shift
energyA[E,{njg’Ot (n,n, o, a,b, De,7e, x,m)]"/? and the relativist energf,,; produced by the effect due to the effect of the
Hellmann-generalized Morse potential in RQM, as follows:

EM™ (n,n,,a,b, De,re, 0,0, X, 4,1, 8,m) =Ep+ [<Z>5LIH7%P (n,n,a,a,b, De,re) (O7 (4,1, ) +0Nm+xgm)] 1/2
(47)

The relativistic energy,,; is determined from the energy Eq. (16.1).
Equation (47) describes the relativistic energy of some diatomic molecules such as HCI, o iB¢cH, TiH, VH, CrH,
CulLi, TiC, NiC, ScN and ScF under the improved Hellmann-generalized Morse potential model in the DRKGT symmetries.
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4.1. Relativistic particular cases under IHGMP in ERQM symmetries

After examining the bound state solutions of any I-state DKGE with IHGMP, our task is now to discuss some particular cases
below. By adjusting potential parameters for each case, some familiar potentials, which are useful for other physical systems,
can be obtained:

1. SettingD, to zero the potential in Eqg. (8) turns to the Hellmann potential [6—8], in RQM symmetries, as follows:

a  be™?"
‘/hmp(?ﬁ) — Vhp (T) == _; +

(48)

,

The perturbed effective potential in Eq. (33) turns to perturbed effective potential in the symmetries of RNCQM as
follows:

hp — M —a a4 — bass - @
V;?ert (S) - ( (1 _ 8)4 [Enl + M] (1 — 3)3 (1 — 5)3 b(1 — 3)2

) LO + 0 (0%). (49)

In this case, the additive energy shift under the influence of the improved equally mixed Hellmann potential in ERQM
symmetries is determined from the following formula:

B (n,0,0,0,b, De,re, x,m) = (Z) (i (nm, @0, 0) (O7 (4,1, 8) + oXm + x2m) (50)

Thus, the corresponding global expectation va(lﬂﬁfnf) (n,n, a, a,b) is determined from the following expression:

H 4 1
(Z)ﬁlmjgp (n,n,a,a,b) = | 1(l+ 1)« <(1—s)4>

(nlm)

— (B + M)« a<13> b<s3> b<83/24> - (31
(1—s) (nlm) (1-3) (nim) (1=s) (nim)

The new relativistic energy in Eq. (47) reduces to the new enEfﬁyw (n,n,a,a,b,0,0,%,71,s,m)under modified
equal scalar and vector improved Hellmann potential in ERQM symmetries, as follows:

EhP

r—nc

1/2
(n,n,0,0,0,0,0,X, 5 Ly s,m) = BN+ [(Z)(1h0) (n,m, 0,a,0) (O7 (1, 8) 4+ oXm 4+ xm)| . (52)

nl (nlm)

Making the corresponding parameter replacements in Eq. (16.1), we obtain the energy equation for the improved Hell-
mann potential in the Klein-Gordon theory with equally mixed potentials in RQM symmetries as:

EM"? — M? = (D, — aa) (Eﬁf+M) +a?l(1+1)

nl

1 Oé(ﬂ+%+5nl)—<EZf—|—M)(a—b) al(l+1)<EZf—|—M)
4 n+iti(+1) i+

(53)

2. Setting the parametetis—= b = 0, the potential in Eq. (8) turns to the equal scalar and vector generalized Morse potential
or Deng-Fan potential [21], in RQM symmetries, as follows:

Deqe—(u' Deq26—2ar
1 —ear (1 _ e,ar)Z .

Vmp (T) =D.,—-2 (54)

The perturbed effective potential in Eq. (33) turns to perturbed effective potential in the symmetries of RNCQM as
follows:
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m I+ 1]a* as Deag (1 —q)s? D.ag?s?
vt (o) = (09T ) 2D 0 4 o Pe0tlL ) :
[1-— 4] (1-y9)

(1-s9)° (1-s)

> LO+0 (0% . (55)

In this case, the additive energy shift under the influence of improved equally mixed generalized Morse potentials in
REQM symmetries is given by:

AER (n,a,De,re,0,0,x, 4,1, 8,m) = <Z>5ﬁ{£ (n,a, De,1e) (O7 (4,1, 5) + o®m + xQm) . (56)

Thus, the corresponding global expectation value is determined from the following expression:

’ 1
(2)A (n,,a,b, Do) = z(l+1)a4<(1)4> —2Deq (B + M) @
— S
(nlm)

< §3/2 > 1w < o > < s° > (57)
. + — S — — — .
(1 - 8)4 (nim) ) ! (1 - s)d (nlm) i (1 B 5)4 (nlm)

The new relativistic energy in Eq. (47) reduces to the new energy under improved equal scalar and vector Hellmann
potentials in RNCQM, as follows:

1/2
™ (0,0, Doy e, 0,0, X, L s,m) = By + [(Z)(nh (n,m, 0, Do) (O7 (3,1, 5) + oXm +x@m)| . (58)

nl (nlm)

Making the corresponding parameter replacements in Eq. (16.1), we obtain the energy equation for the generalized
Morse potential in the Klein-Gordon theory in RQM symmetries as:

1 De m
i a<n+2+5nl> —2— (e* —1)(EP + M)
B = M? = Do (Ew + M) + 0”11 +1) - 5 a

1
nt o +i(l+1)

2
(B P+ M) (l; (eore —1)* + ol (I + 1))
_ : (59)

1
nt g +l+1)

5. Fermionic massive spin 1/2 particles interacting with relativistic IHGMP model in the deformed
Dirac theory

To obtain the improved Dirac equation (IDE) for the improved Hellmann-generalized Morse potential model in the sym-
metries of deformed Dirac theory (DDT), we replace both the ordinary Hamiltonian operatdys, x;), ordinary spinors

..., (1,0, ¢), and ordinary energy,,, by NC Hamiltonian operatoH (p,..;, Tne; ), the new spinol,,;. (7 ,..), and new en-

ergy £"” . and the ordinary product will be replaced by star prodyatespectively. This allows us to write the IED for

nc—n

improved Hellmann-generalized Morse potential as follows [88—91]:

~

H (pnci7 xnci) * \I/nk (?nc) =E" \Ilnk (?nc) . (60)

nc—nk

It is worth motioning that Bopp’s shift method permutes to reduce the above equation to the simplest form:

Hmp (pnci; mnci) \Ilnk: (7)710) =E" lIjnk (?) . (61)

nc—nk

The new Hamiltonian operator for fermionic massive spi particles interacting with the relativistic improved Hellmann-
generalized Morse potential model is given by:

Hmp (pnei» mnci) = OPnec + ﬂ (M + Shmp (Tnc)) + thp (rnc) . (62)
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By applying the notion of the Weyl-Moyal star product which has been seen previously in Egs. (2)-(4), the differential
equations that are satisfied by the radial wave function in Egs. (13.2) and (13.3), for the spin symmetry solutions and pseudospit
symmetry of MDE with IHGMP, respectively, in relativistic noncommutative quantum mechanics symmetries in the deformed
Dirac theory (RNCQM-DT, in short), becomes as follows:

d? k(k+1 s o
[ = M - 01 B - ) 01 = Bt Do) | Fas (1) = 63
d? k(k—1 s s
l:d7’2 o (,],.2 ) B (M + Eﬁk - Ahmp (Tﬂc)) (M - Egk + Cps):l Gk (7‘) =0, (64)
with
a be~ATne q 2
thp (Tnc) = Ahmp (T'n,c) = De - . + T + Dp (1 + 6_(“”6—1) . (65)

The new operatorShmp (T'ne), Abmp (Tne), (k (k+1)/r2,.)and(k (k — 1)/rZ,) in the deformed Dirac theory symmetries,
are expressed as:

B a  be " q 2 OZhmp (1) LO 9
Shon(rae) = Do — £+ 24, (14 L) - Pl L0 002), (66

Ek—1) _k(k=1)  k(k-1)

= 2

LO + 0 (0?%), (67)

2
’I"nc T
and

k(k+1) k(k+1) k(k+1)
2 = 2 + 4
r2. r r

Lo +0 (©%). (68)

Substituting Egs. (65) and (66) into Egs. (63.1) and (63.2), we obtain:

2 k(k+1 . .
(dr2 _kGktD) o ) (M4 BT - C) (M~ B 4 Somp())
sp
[RGB - C)0%me™)] o g g, 0.1
r4 2r or
2 k(-1 . .
(g - S5 = r 4 B2~ A () (M — B2 4G

2r or

B [k (k=1) (M~ E% + Cpa) 9nmp(r)

b } L@) Gz (r)=0. (69.2)

By comparing (Egs. (63.1) and (63.2)) and (Egs. (69.1) and (69.2)), we get an effective deformed spin sytamétdy
and pseudospin symmetfynmp(r), similar to the perturbative effective potential of Eq. (28),

k(k+1) (M4 EX —Cs) 0hmp(r)

Shop (1) = ——— = o SrLe, (70.1)
er k(k+1) (M —E} + Cps) QAnmp(r)
Ay (1) = ——3— - ok Tl TR, (70.2)
A direct calculation gives:
azhmp (T) a bae™ " be— " e—ar 5 e—ar
ar r2 + T r2 * aq(l _ efar)2 aq (1— 6*0”)3 (71)
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16 A. MAIRECHE

We apply the Greene and Aldrich approximation to the Egs. (70.1) and (70.2) to obtain:

1 2
Zp”t(r):a2 (k[k+ o —[M+ E}} - C4]

hme [1-— 8]4
ax bas {Deq — ba/2} s . s
[2{1 S e T e ) Lo, (72.1)
o2
Ao (1) = a” (% — [M — B — Cpil
ax bas {Deq — ba/2} s . s
[2{1—3}3 oo osp Pl )L@. (72.2)

Thus, we need to find the expectation values of the radial tétris — s]*), (1/[1 — s]*), (s/[1 — s]*), (s/[1 — s]*) and
(s/[1 — s]*) taking into account the wave function which we have seen previously in Egs. (15.2) and (15.3). We have calculated
the expectation values of the radial terms of the first four terms, and but for the last term, we have not done so yet because it
did not appear in the Klein Gordon deformed theory using the wave function in Eq. (15.1). To avoid repeating the previous
work, it is sufficient to make the following changes to find the four first expectation values as follows:

Ny (2 1 1

P (r) = W‘Swnk (1- S)Anﬁé 2F1 (—n,n 4 2wk + 200k + 1 1 4 wips 5) Y (), (15.2)
Nk (2Q + 1 1 .

G (r)=—"% ( nf o (1= )42 LB (—nym+ 20 + 28 + 11+ Qi ) Y™ (Q) (15.3)

{Anl/Z — Wnk (an) and

n!l’ (n + A+ 1) N Nk (ank + 1)71, (Nnk (2an + 1)n>
n! ’

-
Then the recorded results in relations (37. i=1,2,3,4) will turn out to be appropriate to Dirac’s deformed theory:

sp

< 1 > _ i D20n) T (A —2)

=" gy TG =2)
x 3Fy (_na N+ 2wnk + Ank + 1, 2Mnk — 2; 14 2wy, giw -2 1) ) (741)
1 \” i T (2wn) T (20 — 1)
= iy TUGE 1)
X 3Fy (—n,n + 2wnk + Ak + 1,200k — 1; 1 4 2wpp, K70 — 15 1), (74.2)
s\ D @w )T @A — 1)
TR (K
X 3Fy (—n,n 4 2wpk + Ak + 1,200 — 1314 2wp, K55 1) (74.3)
s\ T Cwm + DT (200)
= gy TERHD)
X 3Fy (=n,n 4 2wpk + Ak + 1,200 — 1314 2w, K" + 151), (74.4)
psp
1 — pj/vir r (Qan) r (2ﬂnk - 2)
(1—s)* (ntm) " T (K - 2)

X 3F2 (_n7 n+ 2an: + ﬁnk + 17 2ﬁnk - 27 1 + Qanv Kgglfw - 27 1) 5 (745)
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DIATOMIC MOLECULES AND FERMIONIC PARTICLES WITH IMPROVED HELLMANN-GENERALIZED. .. 17

< ! > _ i T2 T (260 = 1)
(1-s’

nk mew __
(nlm) r (Knk 1)

X 3F2 (_n;n+29nk +ﬁnk +172ﬁnk - 171+29nk7KZ;:w - 171)7 (746)
psp
s — N/mr (Qan + 1) r (2ﬁnk - 1)
(1—s)° (nim) [ (K3)
X 3Fy ( n,n + 20k + Onk + 1,20 — 1; 1 4+ 2Q,1, K/new ) (747)

psp
< S > — Nvir I (Qan + 1) I (2ﬂnk)

(1 N 8)2 (nlm) " r (Kg]z:w + 1)

X 3F2 (—n,n + Zan + ﬁnk + 17 2ﬁnk - 17 1+ 29nk7K7/:]Lgew + 17 1) ) (748)
with

b

wir (T (04 2001 + 1) N\ 1 wir (T (0420 + 1) Noy \ 2 1
nko ( T (4wnp + 1) ) T < T (4Q,; + 1) ) o

K'Y = 2wy + 2An; and K/0¢% = 2Q,1 + 20,k. The four first results (74.1), (74.2), (74.3) and (74.4) are present
the expectation values for deformed spin symmetry while the last four terms (74.5), (74.6), (74.7) and (74.8) related to the
pseudospin symmetry. Now, the expectation value(fgfl — 5]4) deformed spin symmetry and pseudospin symmetry is
determined from the equation taking into account the wave Egs. (15.2) and (15.3) as follows:

sp +1
<S4> = :j}:/s%"’“ (1= 8) 3 [3F) (—=n,n + 2wnk + 20k + 1 1+ wog: )] ds, (75.1)
=9/ iy 0
psp +1
<(15)4> N”“‘/smnk — )R Gy (—nyn+ 2Q + 280 + 11+ Qg s)] ds. (75.2)
S nlm)

With the help of the special integral that we saw in Eq. (36), we obtain easily:

sp
T Quwpr + DT (2M 0 — 2 new new
<(18)4> = Nyi (w;(Kn)ew( 1)k )3F2( nn+ K+ 1,20 — 251 +wnr, KJY — 1;1), (76.1)
- S nk
(nlm)

pbsp

: F QQn +1 F 2 n -2 new new

<1S4> Nyt Fk(Km)mew(_ﬂJ LBy (mnin+ K 1,28, — 21+ Qe K — 1), (76.2)
( 75) (nlm) nk

Moreover, and by applying the same method that we saw in the previous section related to the deformed Klein-Gordon
theory, taking into account statistical differences between this theory and deformed Dirac theory. The global additive energy
AED " (n,a,a,b, De, e, ©,0,x. 4,1, 5,m) , which produced with effective two perturbative ter$™ (r) and AP (r)
for deformed spin symmetry and pseudospin symmetry, in RNCQM-DT symmetries, is as foIIows

AEﬁ‘r’ntp (n,a,a,b,De,7e,©,0,%,7,1,8,m) = (071 (j,1,8) + oRXm + xQm)

<Z>?Zlm) (n,n,a,a,b, De,r.)  Fordeformed spin symmetry
X , (77)

(Z>§’;lm) (n,n,a,a,b,D.,r.) Fordeformed p-spin symmetry

where(Z >(nlm) (n,n,a,a,b,D,,r.)and(Z ) (nim) (M1, @, a,b, De, re) are determined by the following relations

— M+ B - [“20‘ <(115)3>

(nlm)

sp

1
<Z>€7€lm) (TL, n,a,a,b, De, 7"6) =a?|k (k + ].) a? —
(1 N 8) (nlm)

bas s v S v S "
- — De — ba/2 _— — D 2 1 . 78
2 <(1 5>2>(nlm) et " <(1 S)3>(nlm) ! <(1 —s) >(”lm)]> "
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18 A. MAIRECHE

and

sp
1
(2 oy (o 00,8, Desre) = o7 (’“ (k—1)o? < > (M~ B~ )

ps
ao < 1 >
o) 2 \(1-9)?
(1 S) (nlm) (1 S) (nim)

bas s e s e s "
Bl — (Deq — bar/2 : -D@?( ——— : 79
2 <(1_5)2>(nlm) ( ! / )<(1 _S)3>(nlm) ! <(1_8)4>(nlm)‘|> ( )

We have seen that in the previous section that the eigenvalues of the o@taterJ2—L>—S? are equal to the values
7,1, 8) = [j(7+1) =1l +1) = 3/4] /2 and7(j,1,5) = [j(j + 1) — I(I + 1) — 3/4]/2, thus, for the case of spin-1/2, the
possible values of arel + 1/2 andl + 1/2 for spin symmetryr (4, [, s) and pseudospin symmetryj, [, s), which allows us
to get and as follows:

é For up polarity j =1+ 1/2
T(j=14+1/2,l,s=1/2) = : (80.1)
il For dawn polarityj = [ —1/2

and

N N % For up polarity j =1+ 1/2
T(j:z11/2,z,§:1/2) - . (80.2)

I+1 . ~
—% For dawn polarity j = 1 — 1/2

The new relativistic energ¥.,? ... (n, o, a,b, De, 1,0, 0,x,7,1,5,m) and EL® (n,a, a,b,De,7¢,0,0,%, 4,1, 3, mg
for the case of spin-1/2 with improved Hellmann-generalized Morse potential, in the symmetries of the deformed Dirac sym-
metries, corresponding to the generalizétl excited states:

S

ESP (n’a7a7b7 D67T676507Xaj7l5 Sam) = Efbk + <Z>(;l:lm) nan7a7aabaD€77ﬁe)

r—nc

l .
3 For up polarity j =1+ 1/2

; (81.1)
[+1 Lo
- For dawn polarityj = 1 —1/2
and
Efinc(n7 «, a, b) Dm Te, 87 g, X7j7z g? m) = Egi + <Z>€75le) (n7 n,o,a, bv D€7 Te)

i L =
3 For up polarity j=1+1/2

X ~ ; (81.2)
I+1

~—5— Fordawn polarity j = 1—1/2

whereE:, andE?; are usual relativistic energies within the Dirac theory obtained from Egs. (16.3) and (16.47cv91ni41%
are determined from the following relations:

ks :_(l+1):l+1/2 For 81/2,p3/2...etc.
j=1l+1/2 Aligned spin k<0

k= : (82)
kl :_(l+1):l+1/2 For 51/2,p3/2...etc.

j=1-1/2 Aligned spin k>0

Rev. Mex. Fis68 020801



DIATOMIC MOLECULES AND FERMIONIC PARTICLES WITH IMPROVED HELLMANN-GENERALIZED. .. 19
and
by =—]=— (j+1/2 ) For sy9,p3/2...€tC.
_ j=1-1/2 Alignedspink <0

I — : (83)
ky=—(1+1)=1+1/2 For sy, p3s...€tC.

j=1-1/2 Un aligned spink > 0

6. Nonrelativistic study of improved Hellmann-generalized Morse potential
6.1. Nonrelativistic improved Hellmann-generalized Morse potential

In this subsection section, we want to derive the nonrelativistic spectrum, which is produced by the effect of the IHGMP for
some diatomic molecules such as HCI, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN, and ScF by applying the notion of
the Weyl Moyal star product which have seen previously in Egs. (2.1), (2.2), and (4) to the differential equation that satisfied
by the radial wave function,, (r) in Eq. (13.4), the radial wave function in extended nonrelativistic quantum mechanics
(ENRQM, for short) symmetries becomes as follows:

2
<jrg +2M [Eﬁf — Vomp{r} — l;ﬂ;ﬁ]) % 1bpy (r) = 0. (84)

According to Bopp’s shift method, Eqg. (84) becomes similar to the following like thed8atger equation (without the
notion of the Weyl-Moyal star product):

d2 Hi+1}
(2 + 200 [ B2 = Voo (1) = Sz | ) s (0 =0 @)
From Egs. (1.2) and (23) we can write this potential in the ENRQM symmetries as follows:
a be—ar be—or e—ar —ar hm
Vamp (Tne) = De — — — 2D,g————— + D> — + VP , 86
hmp (T ) r + r r2 + q(l _ e—ar)z + q (1 _ e—ar)2 nr—pert (T> ( )

WhereK?Tfpe,.t (r) is infinitesimal value if compared with the main p&fn, (7). Furthermore, it presents the global pertur-

bative potential of IHGMP in the ENRQM symmetries:

nr—pert 7,4 ar e

The first term in Eq. (87) due to the centrifugal tethl + 1]/r2,) in ENRQM symmetries (see Eq. (24)) which equals
the usual centrifugal terrl [l + 1]/72) plus the perturbative centrifugal ter(h[l + 1]/7*)LO while the second term in Eq.
(87) is produced with the effect of IHGMP. We have seen in Eqg. (31) the expresBian (r)/0r, allows us to get as follows:

+0(0?). (87)

hmp _I(l+1) a bae™®  bae™" D.age™*"
Vnrfpert (7") - o Lo - 7,72 - r - r2 -2 1 —e—ar
Deq [1 _ q] e—2ar Deaq26—3ar L@ 5
T 2 1o )2 +0(0?). (88)

Now, we apply the Greene and Aldrich approximation for the centrifugal term in the perturbed pdlé’ﬂﬁg(jﬁ (s), we
obtain:

hmp _(Hi+let o) o bos by —
Vir—pert (8) = < TEL 5 [{1 P - +{2D.q — b} (1- s
Rl sl oo
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20 A. MAIRECHE
6.2. Nonrelativistic bound state correction under the improved Hellmann-generalized Morse potential

In this subsection, we want to generate nonrelativistic bound state corrections under improved Hellmann- generallzed Morse
potential. The expressmn of perturbatlve potentlal in Eq. (89) needs to calculate the expectation vélyés-ofs]*),

(1/[1 = s]*), (s/[1 — s]%, (s/[1 — s} ), (s2/[1 — s]*) and(s3/[1 — s]") to find the nonrelativistic energy corrections produced

by the perturbative potentiaf, " “pert (5). We have seen the expectation values of these terms in Egs. (35). i=1,2,3,4,5,6),
allow us to get the global nonrelativistic expectati@) ;="' (n,n, a, a, b, D, r.) value is determined from the following

expression:

1 1
<Z>£\:me)MP b Dete) = (l iy . <(1_5)4>(nlm) ) % [a <(1_8)3>(nlm)
3/2
—b s> +(2Deq—b)<s>
< (1 - 8)3 (nlm) (1 B 8)4 (nlm)
+2aD.q(1—gq) ij —2aD.q? iz; . (90)
(1 - S) (nlm) (1 N S) (nlm)

And by following the same method used in the relativistic study, we obtain the nonrelativistic energy corm@ﬁfgg’”
(n,a,a,b,De,re,©,0,%,7,1,s,m) for the generalized excited states due to the spin-orbit coupling, improved Zeeman effect
and nonrelativistic perturbed Fermi gas potential under the influence of the improved Hellmann-generalized Morse potential in
ENRQM symmetries are as follows:

(Z)NEHME (0 a,b, Do, 7e) (O7 (4,1, 8) + oRm + xQm) . (91)

(nlm)

AEZ?:Lp’W (Tl «, a, b D€7 Te, @7 a, Xa.ja l7 S, m) =
According to the standard perturbation theory. The new generalized nonrelativistic Eﬁéﬁ‘ﬁyc(m n,a,a,b,De,7e, ©,
o, X, j,1, s, m) for the excitech*" states, which, produced by the effect of the improved Hellmann-generalized Morse potential,
is the sum of the nonrelativistic energie¥; (see Eq. (16.2)) due to the effect of Hellmann-generalized Morse potential in
NRQM and the above corrections in Eq. (91):
hmp . _ nr NRHMP .
E (n,a,a,b,De,7e,0,0,%,4,1,8,m) = E}] + <Z>(nlm) (nya,a,b,De,1e) (O7 (4,1, 8) + oRm + xOQm). (92)

nr—nc

6.3. Nonrelativistic particular cases under the IHGMP

After examining the bound state solutions of arstate deformed Scdinger equation with the improved Hellmann-generalized
Morse potential, our task is now to discuss some particular cases below. By adjusting the potential parameters for each case,
some familiar potentials, which are useful for other physical systems, can be obtained.

1. SettingD,. to zero the potential in Eq. (8) turns to the Hellmann potential (Eq. (48)) in NRQM symmetries. The
perturbed effective potential in Eq. (89) turns to perturbed effective potdr)ﬁ%lpprt in the symmetries of RNCQM as
follows:

Il+1)a* « a bas as 9
Ven 9 = <<1+—s)>4 _2((1—s>3_<1—s>3_b<1_s>2>w+0(®)' o

The new relativistic energy in Eq. (92) reduces to the new enﬁfﬁxm (n,a,a,b,0,0,%,j,1,s,m) under improved equal
scalar and vector improved Hellmann potential in ENRQM symmetries, as follows:

Bl (n,0,0,6,0,0,x, ;1 s,m) = Epy_ i+ (Z) . (0,1,0,0,0) (O7 (4,1, 5) + o¥m + xQm) , (94)

nr—nc

where(Z) (21" (n,n, a, a, b) is determined as a particular case from the global nonrelativistic expectation(afé """

(n7 n, o, a, b> D€7 Te)
NRHMP B A 1 1
<Z> (nlm) (n7 «, a, b) =1 (l + 1) « — _ a{ ———
(1 B S) (nim) (1 B S) (nlm)

s 53/2
—b __ By (— , 95
<<1 s>3>(nlm> <<1 s>4>wm)D )
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DIATOMIC MOLECULES AND FERMIONIC PARTICLES WITH IMPROVED HELLMANN-GENERALIZED. .. 21

while Ep,_n can be obtained directly from Eq. (16.1) by repldegewith zero.
2. Settinga = b = 0, the potential in Eqg. (8) turns to the generalized Morse (Eq. (54)). The perturbed effective potential
in Eq. (33) turns to perturbed effective potentigl:” ..., (s) in the symmetries of RNCQM as follows:

mp s) = l(l+1)a47 042 s (1_(])82 o qSS
Vnr—pert()( (175)4 Deq [(15)2+ (175)3 (178)4

In this case, the nonrelativistic energy correction under the influence of improved Morse potentials in ENRQM symmetries
is given by:

) LO + 0 (0?). (96)

AE" (n,a, De,7e, ©,0,x, 4,1, 8,m) = (Z>é\;?ngp (n,a, De,1e) (O7 (4,1, 5) + oRXm + xQm) . (97)

Thus, the corresponding global expectation valdg) ;- " (n,n, a, De, ) is determined from the following expression:

Z\NRMP B 4 1 2 s3/2
(Z)(nim) (0, Deyre) = [L(I+1)a" { —— —a’Deq|b{ ——
(1 o S) (nlm) (1 a S) (nlm)

s2 s3
1-— —_— — _— . 98
Hima <(1_S)3>(nlm) q<(1_3)4>(nlm)‘|> )

The new nonrelativistic energy in Eq. (92) reduces to the new energy under IHGMP in ENRQM symmetries, as follows:

E':Zrzlnc (n7 «, DEa Tes @7 g, X?.ja l7 8, m) = E:‘:Z;;fnl + <Z>NRMP (n, a, D€7 ’I"€> (("‘)T (]7 l, 5) + oNm + me) 5 (99)

(nlm)

while E7Y_, can be obtained directly from Eqg. (16.1) by replace b = 0 with zero.
6.4. Study the nonrelativistic fermion cases

We have seen that in the previous section that the eigenvalues of the og&ratay? — L? — 52, for the case of spin-1/2, are
determined by Eq. (80.1) thus, the nonrelativistic energy in Eq. (92) can be generalized to the case of spin-1/2 with an improved
Hellmann-generalized Morse potential, in the symmetries of ENRQM, corresponding to the generalized excited states:

Q241 o (A(n,l)QMn(l))2

hmp -
E oM SM A(n,0)

nr—mnc (n7a7aa b, D¢,1e, 0,0, X Js L s,m) =D, —aa+

l
3 + o®m + xOm

For up polarity j =1+ 1/2
+(Z) ™ (n, 0, 0,1, De,re) : (100)

(nlm)
[+1
—% + oRm + xQm

For dawn polarityj =1 —1/2

We conclude with all merit that the combination of potentials in the new symmetries of ENRQM brought about an upgrade
to the ordinary Sclirdinger equation to become similar in the description ability of the Dirac equation. The spin condition was
clearly shown in the above result in Eq. (98).

6.5. Composite systems in ENRQM symmetries

Now, considering composite systems such as molecules madé ef 2 particles of masses, (n = 1,2) in the frame
of noncommutative algebra, it is worth taking into account features of descriptions of the systems in the space. In NRQM

symmetries, it was obtained that composite systems with different masses are described with different noncommutative param
eters [49,52,54,104]:

{xncftS,H,I)TIHC(VS,H,I)} = i6°,. (101)
with
2
05, = a0y, (102)
n=1
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with p,, = (m,,/>_ m,,), the indicegn = 1,2) label the particle, an (") is the parameter of noncommutativity, corresponding

to the particle of r?]asmn. Note that in the case of a system of two particles with the same mass ms such as the
homogeneous (N Hs and k) diatomic molecules the parameéﬁ) = 0,,,. Thus, the two paramete@&ando which appears
in Eq. (92) are changed to the new form:

2 2 2 2 2 2
o2 = (Z/ﬁﬁﬁ?) + (Z/ﬁ%’é’) + (Zui(%ﬁ’é)) : (103.1)
n=1 n=1 n=1
2 2 2 2 2 2
o = (Zuiﬂ?) + (Zuiog)) + (Zﬂiag)) : (103.2)
n=1 n=1 n=1

and

2 2 2 2 2 2
X% = <Zu><§3)) + (Zuxé?) + (Zuxi?) : (103.3)
n=1 n=1 n=1

As it is mentioned above, in the case of a system of two particles with the samenmassn, such as the homogeneous
(N2, Hy and ) diatomic molecule@ﬂ}) =0, anda,([,i) = o, .Finally, we can generalize the nonrelativistic global energy
EZT_”M (n,o,A,B, V4,0, o, x,j, l,s,m) under the improved Hellmann-generalized Morse potential model considering that
composite systems with different masses are described with different noncommutative parameters for the diatomic (HCI, LiH,
ScH, TiH, VH, CrH, CulLi, TiC, NiC, ScN and ScF) as:
Ehme (n,a,a,b,De,1e,0,0,X,4,1,s,m) = E}+ <Z>NRHMP (n,n,a,a,b, De,Te)

nr—nc (nlm)

x (©°7 (4,1, s) +0“Rm+xQm) . (104)

Finally, we arrived at the important results achieved in this new work. The KGE, as the most well-known relativistic wave
equation, describes spin-zero particles, but its extension to the RNCQM symmetric deformed Klein-Gordon equation under
improved Hellmann-generalized Morse potential has a physical behavior similar to the Duffin—-Kemmer equation for a meson
with spin-s that can describe a dynamic state of a particle with spin one in the symmetries of relativistic nhoncommutative
guantum mechanics. This is one of the most important new results of this research. It is worthwhile to mention that for the two
simultaneous limits(©, o, x) and(©¢, ¢, x¢) — (0, 0,0) we recover the results of Refs. [34, 35].

7. Summary and Conclusions

This main part of our paper gives a summary of the basic points in our work. In this work, we have found the approximate
bound state solutions of the deformed Klein-Gordon, deformed Dirac ané@nober equations of the improved Hellmann-
generalized Morse potential, which correspond to high and low energy physics for the diatomic molecules (HCI, LiH, H2,
ScH, TiH, VH, CrH, CulLi, TiC, NiC, ScN and ScF), in the symmetries of extended KG theory, Dirac theory ariatiBcjar

theory. We have used Bopp’s shift method, stationary, perturbation theory, and the improved approximation scheme to deal
with the centrifugal term. In addition to the usual state numigers) , the new energy equations have appeared sensitive to
discrete atomic numberg, [, s, m), the parameters for the quantum statesa( b, D.,r.) in addition to noncommutativity
parametersd, o andy). This new behavior is in the symmetries of extended relativistic and relativistic quantum mechanics
equivalent to a conventional physical system under the influence of at least three perturbative systems with the perturbed spin-
orbit, improved Zeeman effect and the perturbed Fermi gas effect. The main difference lies in the fact that these perturbations
appear automatically in the case of the new system of ERQM and ENRQM symmetries. Furthermore, we can conclude that
the deformed Klein-Gordon equation under the improved Hellmann-generalized Morse potential becomes similar to Duffin—
Kemmer equation for a meson with spin-s, it can describe the dynamic state of a particle with spin-s in this symmetry. We also
noted how the MHGPs model can be reduced to the improved Hellmann potential and improved Morse potential by applying
appropriate potential constant values. Moreover, we have applied our results to composite systems such as molecules made of
N = 2 particles of masses,, (n = 1, 2) such as HCI, LiH, ScH, TiH, VH, CrH, CulLi, TiC, NiC, ScN and ScF. It is worth
mentioning that, for all cases, to make the two simultaneous lifgit®, x) and(©¢, o¢, x¢) — (0,0) , the ordinary physical
guantities are recovered in refs. [34, 35]. Finally, given the effectiveness of the methods that we followed in achieving our goal
in this research, we advise researchers to apply the same methods in other studies, whether in the relativistic and nonrelativistic
regimes for others potentials.
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