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Optical solitons to fractal nonlinear Schrodinger equation
with non-Kerr law nonlinearity in magneto-optic waveguides
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This paper introduces the fractal model of the nonlinear &tihger equation with quadratic-cubic nonlinearity in magneto-optic waveguides,
having plenty of applications in fiber optics. He’s variational approach and Paitdehnique are used to obtain bright and kink soliton
solutions of the governing system. The constraint conditions that ensure the existence of these solitons arise naturally from the model's
solution structure. To quantify the behavior of different solutions, the effect of the fractal parameter is studied. These techniques may be
very useful and efficient tools for solving nonlinear fractal differential equations that emerge in mathematical physics.
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1. Introduction Bright solitons can be formed from a state of attraction to a
state of separation from each other by magneto-optic com-
Optical solitons are the basic component of fiber-opticponents. This allows us to manage the so-called soliton
telecommunication technology. Several models have beegiutter. This article explores the soliton solutions of cou-
developed to investigate this mechanism, including the nonpled NLSE with quadratic-cubic nonlinearity by implement-
linear Schodinger’s equation (NLSE). There are different ing He's semi-inverse variational method and the Painbgy
forms of waveguides such as optical metamaterials, opticgiroach that may be conducive for engineers and physicist to
fibers and photonic crystal fibers, among others, that send ghysically comprehend this model.
large amount of data across intercontinental distances [1,2]. Tne semi-inverse approach is an effective tool for finding

This paper considers a particular type of optical wavegyitterent variational principles of physical problems [22, 23].
uides with an artificially generated magnetic field, known asje g,ggested the semi-inverse variational theorem as an ef-
magneto-optic waveguides. The benefit of such waveguidegiient and direct algebraic approach for computing soliton
is that they reduce the soliton clutter effect ensuring smoothy | tions [24]. Many authors went on to expand this ap-
information propagation [3-5]. proach and contributed to the analysis of fractal models in
In the field of nonlinear science, the NLSE is a well- gjstinct fields of science [25-28]. Another method adopted
known model that can be used in a variety of physical in-nere to obtain soliton solutions of the governing model is the
stances, including nonlinear optics, nuclear physics, quanturpain|ewe approach, which is the generalization of well-known
mechanics, condensed matter physics, and plasma physigggorithms: simplest equation method, tanh-function method,
etc. [6-12]. The fractal model is gaining significance in NoN-anq theG’ /G-expansion method [29]. This is a powerful and

linear evolution equations (NLEE) of physics and mathematygjjaple scheme to find exact solutions of NLSE by avoiding
ics for its many attractive properties that traditional systemgne meromorphic solutions.

fail to provide. One form of fractal NLEE is coupled NLSE The article is organized as: Section 2 is devoted to the
in nonlinear optics. This system can handle soliton solutions X

) L : . L ) mathematical description. Section 3 covers the study of soli-
having applications in optical communications, logic gate de-

vices, ultrafast soliton switches, and soliton lasers [13]. ton solutions of the FLE along with their graphics. Discus-

) . , . . sion of the results is presented in Sec. 4 and 5 gives the con-
The optical soliton solutions of NLSE with various forms

: . o ; ; clusion.
of nonlinearity possess a significant part in resolving real-

world problems. In optics, a soliton is the wave that is un-
altered during propagation due to a delicate balance between )
nonlinear and dispersive effects in the medium [14-16]. Sot-1- Governing system

lutions for various NLSE have been sought to investigate

nonlinear phenomena with the solitons being either brightlhe coupled model of NLSE with quadratic-cubic nonlinear-
or dark depending on the details provided by the governity in magneto-optic waveguides is given as:

ing NLSE [17-20]. Researchers have been studying these

solitons with quadratic-cubic nonlinearity since this form of ju, + [;u,, + (my|ul + n1|u\2 +pilo| + 51\1}\2)“ = R
nonlinearity was first suggested in 2011 [21]. The study )

of soliton dynamics in magneto-optic waveguides is crucial. 1 #(01uz + pa(fulu)e + vi(ju])zu + mlulus) 1)
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Vg 4 loVey 4+ (Ma|v| + nalv]? + polul + solul*)v = Rau Equating the coefficients of linearly independent functions to
_ zero in Egs. (9) and (10), provides the constraints:
+i(Bav + pal(olo)s + valloso +malolo) () 96 () and (0. p
—(2lh+ B1) = a, (11)

Whereli7 Mg, N, Pi, Si, Ri; ﬁh iy Us and??i fori = 1,2 are
constants, whilé = /—1. In Egs. (1) and (2)t andz are 2p v +m =0, 12)
independent and represent the temporal and spatial variable:ﬁﬁ
X ) . and
respectively, while the dependent variables afe,t) and

v(z, t) which show the complex valued soliton profiles. The —(2lsh + B2) = a, (13)
constantg; denote chromatic dispersion, whereasandn;
are the self-phase modulation coefficients. The cross-phase 2p2 +v2 + 12 = 0. (14)

modulation _is expressed by the pgrameﬁer&nds?- On 'Fhe It can be deduced from Egs. (11) and (13) that the soliton
right hand side of Egs. (1) and (2), inter-modal dispersion anq‘requency is

the magneto-optic parameter are denoted by the coefficients

G; and R;, respectively. u; stands for self-steepening term h— B2 — b (15)
and the coefficients of nonlinear dispersion are symbolized 2(ly — 1g)’
by v; andn;. providedl;, # I, andj; # (3. Furthermore, we set

Fi(§) = eF5(8), (16)

wheree # 0, 1. As a consequence, Egs. (5) and (6) become

2. Mathematical analysis

To continue, the initial assumptions are as follows:

] ] l1F1”— [V—‘y—l1h2+h61 +R1E]F1
u(z,t) = F(eX®D, v(x,t) = KX, (3) )
+ [m1 — h(pr + m) + ep1] Fy
where + (ny + s162)FP = 0, (17)
sz_at7 X(Jf,t) :_hx‘FVt‘H?O- (4) lgé‘Fl/,*[€(V+lgh2+h62)+R2]F1
Herea, h, v andnq are speed, frequency, wave number, and + [e%(ma2 — h(p2 + 12)) + ep2) F}

phase constant of the wave, respectivélyx, ¢) fori = 1,2

denote the amplitude of the pulses, wherg#és,t) repre-

sents the phase component of the pulses. Equations (17) and (18) are equivalent by taking the con-
Substituting Egs. (3) and (4) into Egs. (1) and (2). So, thestraint conditions:

real parts become

+ (%ng + s06)FP = 0. (18)

ll = €l2, (19)
ILWF — I1h% + hB))Fy — R F. ,
149 (V+ 1 + ﬂl) 1 1472 n +€281 :53n2+5527 (20)
v+ 1A%+ hf + Rie = e(v + 1oh® + hfa) + Ry, (21)

mi—h(p1 +m)+epr = €2 (ma—h(uz + n2))+eps. (22)

+ (my — hyy — b ) FY
+m FY 4+ 51F5 Fy +p P Fy =0, (5)
1oFY) — (v +l3h? + hB2) Fy — Ry F°
2B = ( 2 bo)F 2t From the constraint Eq. (21), the wave numbeappears to
+ (mg — huo — hng)Fg be

+ n2F23 + 52F12F2 ergFlFQ _ O, (6) = h2(812 — l1) + h(Eﬁz - 51) + (RQ - 5R2). (23)
1—¢

Next, Eq. (17) can be rewritten as

while the imaginary parts are given as:

(a+ 20k + B1)F + (2p +v1 +m)FiFy =0, (7) Fl' + 6, F) + 6oF7 + 03FF =0, (24)

Integrating Egs. (7) and (8) and setting the integration con- 5 = 2T h? + hf + le’
stants to zero yields h
1 5 ~my — h(py +n1) +epy
(a+251h+ﬂl)F1+§(2M1 +v1+m)FE =0, 9 2T I ’
1 ny +€2s
(a -+ 2oh + ) Fa + (22 + v+ 12)FF = 0. (10) 83 = lTl (25)
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providedl; # 0.
In the view of [30], the fractal form of Eq. (1) and Eq. (2)
can be written as:
d (dFy
g (dsa
whereq is the fractal dimension value antf; /d¢* is the
fractal derivative represented as follows:

dFy im Fi(§) — Fi(%)
déx T(1+a) g—folAs,A#O (E—&)> @7)

) O P + 0, F2 4 55F3 =0,  (26)

3. Extraction of solitons by proposed methods
3.1. Semi-inverse method

By He's variational principle [22] we can derive the follow-
ing variational formulation for Eq. (26) as:

J= /Ldg /K E)d

- dF, 2R R\

/( (dga) —at -6t sk >d§,
0

Using the two scale transformatidn= £, Eq. (28)
takes the form

CT(1(dn\* F? ﬂ, i
J—/< (db> g~ 8 s | db. (29)
0

Using the Ritz's approach, consider the solitary wave solu-
tion as follows

Fy = X sech(Y), (30)

where unknown constanfs andY are to be computed fur-
ther. Substituting Eq. (30) into Eq. (29) gives

J— 1X2Y 51X2 527TX3 (55X4

6 2y 12Y  6Y

(31)

Taking the corresponding derivatives .ffwith respect taX
andY gives

oJ - 1 (SlX (527TX2 2(53,X
(28) ax 3"y Ty 3y % G
where aJ 1 16, X2 §yn X3 153X4
- 2 1 27T 3X o
1 dF1 F2 FS F4 aT—EX +§ Y2 + 12Y2 +6 Y2 =0. (33)
L = = dé_ia — 51 2 527 - 63
From Eg. (32) and Eq. (33) we have
be the Lagrangianil’ = 1/2 (dF};/d¢%) is the kinetic energy a- (32) a. (33)
and B 752
7 7 P x _ —omha t /257263 11525153 (34)
_61—+52—+6 2403
is the potential energy. v i 51205 —mda\/25m203— 11526103 45, (35)
7203
Equation (30) becomes
_ 282 282 282
o 510y + /257203 — 11526,43 weh | 4 1 [5m263 — moa+/25m263 — 11526,85 650 (36)
2463 2 7263

The solitary wave solution for Eq. (26) is

2
ule. )= —57752i\/2;4r§52—11526153 slhatutmo) sooh [
3

2
ol t)=e —5mdyt/257203— 11525103 Jilha-tvtno)
2403

7263

\/57r25§ 702/ 257265 —11526103

726, —461 (x — at)a] , (37)

252 257252—1152
x sech [ 2\/571- 03—/ 257283 520103 —461 (2 — at)a] , (38)

providede # 0, 1.

Now, consider another possible soliton solution, this time of the form

Fy = W sech*(Zb), (39)
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where unknown constant®” andZ are to be calculated later. Plugging Eq. (39) into Eq. (29) yields

_ 18, 8 AW 256 WP 512 6W*
~ 315 35 Z 2079 Z 6435 Z

Taking the corresponding derivatives.bfwith respect tdV andZ leads to

J

0 _ 256, 166:W 2560, 2048 6,W° _

oW 315 7 35 Z 693 Z 6435 Z '
aJ 128, 8 &W? 256 WP 512 W
07 315 35 Z2 2079 Z2 6435 72

From Egs. (41) and (42) we have

_ —32500 + /10562562 — 4864864, 3

W
5040, !

L |10 (32555 — §5,/10562502 — 4864866163)

Z=+— 275, ,
12 69305

with the help of which Eq. (39) takes the form
=320, & /IO aseasea sy [ 1 |10 (32555 - 52\/10562555—4864865153) .
= 50405 N 12 6935 !

The solitary wave solution for Eq. (26) is given as:

. —3250 = \/105625(5% — 4864860163

6L(h:r+l/t+ng)
50493

u(z,t)

— 2761 (xz — at)®

et |1 (3255; — §5,/10562502 — 4864866163)
see 12 69355

2
o(t) = ¢ —3256, + /10562552 — 486486003 -
50405

— 2761 (x — at)®

) J 10 (32553 — §5,/10562562 — 4864865163)

ht [+—
X sec 12 69305

providede # 0, 1.

3.2. Painlee Approach

According to Paul Painléy the exact solution of Eq. (26) has the form:

—ct
Fi) =co+ fU)e ™, U=g(&) =er — —,

andf(U) in Eq. (48) satisfiegy — AU? = 0, which is a Riccati-equation.
The solution to this equation is given as

1

HU) = AU + Uy’

Rev. Mex. Fis68 020707
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Differentiating Eq. (48) with respect © and using Riccati eV—0ig

o qive: Fi(§) = : (51)
equation give: B

Fie = —ce " f 4+ Ae7 2 f2,
Fiee = e f —3Ace 26 2 4 24273 3,

(i) If A=./—03/2andc = —/—d; then the solution is

F — _ B,k A 2 —2c€ g2 —v/—01€&
lece cle” S f +TAcTe ™ f Fi(e) = e - (52)
— 12A%ce3 f3 4 6A%e 4 f4, =0 + Uy

SubstitutingFy, Fi¢ and Fy¢¢ in Eq. (26) and comparing the (i) If A = —y/—d5/2 andc = /=4 then the solution is
coefficients of like powers af ~<¢ f(U) equal to zero, we ob-

tain the system of equations as: V=
) Fi(§) = ————. (53)
242 4 65 =0, —\/ =220 + Uy
—3Ac+ 02 =0, . .
€t o (iv) If A= —,/—63/2andc = —y/—4; then the solution
A+, =0, (50) is
which implies the following four cases: o~ VIIE
) =——— (54)
(i) If A= /—d3/2andc = +/—6; then the solution is —\/ =20 + Uy

c) d)

FIGURE 1. The 3D profile of a) Eq. (37) fopu|*> and b) Eq. (38) fofv|? for the parametersi; = —0.12, §> = 0.55, 63 = 1.2, 7 = 22/7,
a=—-3,a=1,¢=1.52D plots of ¢)|u|> and d)|v|? against att = 0 for fractal dimension value: = 0.2,0.5,0.7, 0.9.
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FIGURE 2. The 3D profile of a) Eq. (46) fofu|?> and b) Eq. (47) fofv|? the parametersi; = —0.3, §2 = 0.55, 03 = 1.2,a = —3, a = 1,
e = 1.5, 2D plots of ¢)|u|? and d)|v|* against: att = 0 for fractal dimension value: = 0.2, 0.5,0.7,0.9.

TABLE |. Comparison of the results following the Pairdeapproach¢® expansion, and semi-inverse methods.
Methods NLSE Fractal NLSE
. , £/ —5.€
Painlee F — eV 1t
1) +/ B u+u,

¢° expansion Pi(s) = { (2n+1)(2n2pu1 —hg) (1 +

3nZpug

1
(n2u1+h2)U%(s) ) an
3ho (fU2($)+9)

Semi-inverse q(z,t) = meu*kﬁwwao) u(z, t) = X sechlY (z — at)®]ethe+vi+mo)

4. Results and discussion

ing the Painle& approach. In Figs. 3 and 4, the 3D plots of

Eqg. (51) and Eq. (52) are shown for distinct fractal dimension
The graphical interpretation of the obtained results and the efaluesa = 0.2,0.5,0.7, 1. In Fig. 3, the oscillation spikes

fect of fractal parameter on them are discussed in this sectio@n the surface are due to the fractal effect. In Fig. 4, the frac-
The semi-inverse variational method yields the bright solitortal effect on the solution is shown by the irregularity in the

solutions given by Egs. (37), (38), (46), and (47). The physisurface. Equations (53) and (54) display the same graphical
cal appearance of these solitons is shown in terng|éfand

behavior with just reflection as in Figs. 3 and 4, respectively.
|v|? by assigning different parameteric values. In Figs.1 and Remark The obtained results are compared to those ex-

2, the 2D profiles are provided for fractal dimension valuesisting in the literature [3, 23] and found to be novel. Kink
a=0.2,0.5,0.7,0.9 while 3D plots are the standard solitary solitons of the governing system are obtained following the
waves of Egs. (37), (38), (46) and (47). Kink soliton solu- Painle\e approach, while for the semi-inverse variational
tions,i.e, Eq. (51-54) of a given model are obtained follow- method we considered the fractal model of NLSE.

Rev. Mex. Fis68 020707
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=0.2,0.5,0.7, 1.

1, Uy = 0.5 and«

0.8, ey =

FIGURE 3. Plots of Eq. (51) for the paramete®: = —0.9, 03 = —2.1, a

0.5anda = 0.2,0.5,0.7, 1.

Up =

1

FIGURE 4. Plots of Eq. (52) for the parameters: = —0.55, 5 = —2.2,a = —2, €1
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5. Conclusion lutions of non-integrable nonlinear differential equations by
averting their meromorphic solutions. The suitable choice of
In this article, we have obtained the optical solitons for frac-parameters enables us to discuss the fractal behavior of the
tal coupled NLSE in magneto-optic waveguides that havesystem. The outcomes could be helpful in the telecommuni-
many applications to the propagation of data in optical fiberscation industry to increase transmission system output capa-
Bright and kink solitons are retrieved by the implementationbility. The impact of fractal dimension value on solutions of
of He's semi-inverse and Painiewethods. The semi-inverse the coupled system has been shown graphically, facilitating
approach is a fascinating integration scheme to deduce vari#ie understanding of understand the dynamics of the model.
tional principles for various differential models. On the other The applied methodologies may be conducive to solve a va-
hand, the Painleédtechnique is compelling to find exact so- riety of problems arising in engineering and applied physics.

. R. Fedele, H. Schamel, V.I. Karpman and P. K. Shukla, Enve-12

lope solitons of nonlinear Scidinger equation with an anti-
cubic nonlinearity,J. Phys. A.36 (2003) 1169 Jnttps://
doi.org/10.1088/0305-4470/36/4/322

. A.-M. Wazwaz, A study on linear and nonlinear Satlinger

equations by the variational iteration meth&@haos, Solitons
Fractals 37 (2008) 1136 https://doi.org/10.1016/
].chaos.2006.10.009

E.M.E. Zayed et al, Solitons in magneto-optic waveg-
uides with dual-power law nonlinearityPhysics Letters A
384 (2020) 126697, https://doi.org/10.1016/].
physleta.2020.126697

M. Savescu, A.H. Bhrawy, E.M. Hilal, A.A. Alshaery and 19

A. Biswas, Optical solitons in magneto-optic waveguides with
spatio-temporal dispersiorkrequenz68 (2014) 9,https:
//doi.org/10.1515/freq-2013-0164

M. Eslami and M. Mirzazadeh, Optical solitons with Biswas- 16.

Milovic equation for power law and dual-power law nonlinear-
ities, Nonlinear Dyn.83 (2016) 731,https://doi.org/
10.100//s110/1-015-2361-1

G.P. Agarwal, Fiber-optic communication systems, 3th ed.
(John Wiley and Sons, NewYork, 2002).

A.H. Khater, D.K. Callebaut, M.A. Helal and A.R.
Seadawy, Variational method for the nonlinear dynamics
of an elliptic magnetic stagnation lineEur. Phys. J. D
39 (2006) 237, |https://doi.org/10.1140/epjd/

13.

17.

. M.M. Khader and K.M. Saad, Numerical studies of
the fractional Korteweg-de Vries, Korteweg-de Vries-
Burgers’ and Burgers’ EquationsProc. Natl. Acad. Sci.
India A 91 (2021) 67, https://doi.org/10.1007/
s40010-020-00656-2

A. Hasegawa and Y. Kodama, Solitons in optical communica-
tions (Oxford University Press, NewYork, 1995).

14. J.F. @mez-Aguilaret al., Optical solitons in birefringent fibers

with quadratic-cubic nonlinearity using three integration archi-
tectures AIP Adv.11 (2021) 021521https://doi.org/
10.1063/5.0038038

N. Raza, U. Afzal, A.R. Butt and H. Rezazadeh, Optical soli-
tons in nematic liquid crystals with Kerr and parabolic law non-
linearities, Opt. Quantum Electron51 (2019) 107 Jhttps:
/ldoi.org/10.1007/s11082-019-1813-0

N. Raza and A. Javid, Optical dark and dark-singular soliton
solutions of (1+2)-dimensional chiral nonlinear Sadinger’s
equation,Waves in Random and Complex Meda8 (2019)
496, |https://doi.org/10.1080/17455030.2018.

1451009 .

N. Raza and A. Zubair, Optical dark and singular solitons of
generalized nonlinear Sdtinger’'s equation with anti-cubic
law of nonlinearity, Mod. Phys. Lett. B33 (2019) 1950158,
https://doi.org/10.1142/S0217984919501586

62006-00093-3 18. M. Arshgd, AR. Seadawy and D. I_.u, Exact brlght-
o _ dark solitary wave solutions of the higher-order cubic-
8. C. Zhou and X.T. He, Stochastic diffusion of electrons in evo-  quintic nonlinear Scfirdinger equation and its stability,
lutive Langmuir fields,Phys. Scr.50 (1994) 415, https: Optik 138 (2017) 40, https://doi.org/10.1016/].
//do1.org/10.1088/0031-8949/50/4/015 ijleo.2017.03.005
9. LV. Barashenkoy and V.G. Makhankov, Soliton-like "bubbles 19. A. Biswas et al, Resonant optical solitons with quadratic-

in a system of interacting bosonBhys. Lett. A128 (1998)
52, |https://doi.org/10.1016/0375-9601(88)
91042-0 .

cubic nonlinearity by semi-inverse variational princip@p-
tik 145 (2017) 18, |https://doi.org/10.1016/].
1le0.2017.07.028

10. A.K. Alomari, T.A. Jawad, D. Baleanu, K.M. Saad and Q.M.
Al-Mdallal, Numerical solutions of fractional parabolic equa- 20- M. Ekici et al, Solitons in magneto-optic waveguides
tions with generalized Mittag-Leffler kernelumer. Methods by extended trial function schemeuperlatt. Microstruct.
Partial Differ. Equ. (to be published)https://doi.org/ 107(2017) 197https://doi.org/10.1016/].spmi.
10.1002/num.22699 2017.04.021

11. A.A. Alderremyet al., New models of fractional blood ethanol 21. J. Fujiokaet al., Chaotic solitons in the quadratic-cubic non-

and two-cell cubic autocatalator reaction equatioMath.
Methods Appl. Scito be published)https://doi.org/
10.1002/mma. /188

Rev. Mex. Fis68

linear Schédinger equation under nonlinearity management,
Chaos21 (2011) 033120https://doi.org/10.1063/
1.3629985 .

020707


https://doi.org/10.1088/0305-4470/36/4/322�
https://doi.org/10.1088/0305-4470/36/4/322�
https://doi.org/10.1016/j.chaos.2006.10.009�
https://doi.org/10.1016/j.chaos.2006.10.009�
https://doi.org/10.1016/j.physleta.2020.126697�
https://doi.org/10.1016/j.physleta.2020.126697�
https://doi.org/10.1515/freq-2013-0164�
https://doi.org/10.1515/freq-2013-0164�
https://doi.org/10.1007/s11071-015-2361-1�
https://doi.org/10.1007/s11071-015-2361-1�
https://doi.org/10.1140/epjd/e2006-00093-3�
https://doi.org/10.1140/epjd/e2006-00093-3�
https://doi.org/10.1088/0031-8949/50/4/015�
https://doi.org/10.1088/0031-8949/50/4/015�
https://doi.org/10.1016/0375-9601(88)91042-0�
https://doi.org/10.1016/0375-9601(88)91042-0�
https://doi.org/10.1002/num.22699�
https://doi.org/10.1002/num.22699�
https://doi.org/10.1002/mma.7188�
https://doi.org/10.1002/mma.7188�
https://doi.org/10.1007/s40010-020-00656-2�
https://doi.org/10.1007/s40010-020-00656-2�
https://doi.org/10.1063/5.0038038�
https://doi.org/10.1063/5.0038038�
https://doi.org/10.1007/s11082-019-1813-0�
https://doi.org/10.1007/s11082-019-1813-0�
https://doi.org/10.1080/17455030.2018.1451009�
https://doi.org/10.1080/17455030.2018.1451009�
https://doi.org/10.1142/S0217984919501586�
https://doi.org/10.1016/j.ijleo.2017.03.005�
https://doi.org/10.1016/j.ijleo.2017.03.005�
https://doi.org/10.1016/j.ijleo.2017.07.028�
https://doi.org/10.1016/j.ijleo.2017.07.028�
https://doi.org/10.1016/j.spmi.2017.04.021�
https://doi.org/10.1016/j.spmi.2017.04.021�
https://doi.org/10.1063/1.3629985�
https://doi.org/10.1063/1.3629985�

22.

23.

24.

25.

26.

OPTICAL SOLITONS TO FRACTAL NONLINEAR SCHRDINGER EQUATION WITH NON-KERR LAW NONLINEARITY. .. 9

J.H. He, Variational principles for some nonlinear partial dif-
ferential equations with variable coefficientShoas, Solitons

Fractals 19 (2004) 847, https://doi.org/10.1016/ 97

S0960-07/79(03)00265-0

M. Asma, W.A.M. Othman, B.R. Won and A. Biswas, Optical
soliton perturbation with quadratic-cubic nonlinearity by semi-
inverse variational principleProc. Rom. Acad. A18 (2017)
331.

J.H. He, Some asymptotic methods for strongly nonlinear equa-
tions, Int. J. Mod. Phys. B0 (2006) 1141 https://doi.
0rg/10.1142/S021 /7979206033796

A. Biswas et al, Optical soliton perturbation in
nanofibers with improved nonlinear Sékiinger equa-
tion by semi-inverse variational principle,J. Nonlin-
ear Opt. Phys. Mater.21 (2012) 1250054, https:

//do1.0rg/10.1142/S0218863512500543 L 30.

J. Zhang, Variational approach to solitary wave solution of
the generalized Zakharov equaticBpmput. Math. Appl54

29.

(2007) 1043,nttps://doi.org/10.1016/|.camwa.
2006.12.048

. Y. Khan, Fractal modification of complex Ginzburg-Landau

model arising in the oscillating phenomenRes. Physi18
(2020) 103324https://doi.org/10.1016/).rinp.
2020.103324 .

28. J.H. He, A fractal variational theory for one-dimensional

compressible flow in a microgravity space, Fractals
28 (2020) 2050024, https://doi.org/10.1142/
S0218348X20500243 |

N.A. Kudryashov, The Painlé&vapproach for finding solitary
wave solutions nonlinear nonintegrable differential equations,
Optik 183 (2019) 642 https://doi.org/10.1016/).
ijlec.2019.02.087

J.H. He, Fractal calculus and its geometrical explanafRes.
Phys. 10 (2018) 272,|https://doi.org/10.1016/].
rnnp.2018.06.011

Rev. Mex. Fis68 020707


https://doi.org/10.1016/S0960-0779(03)00265-0�
https://doi.org/10.1016/S0960-0779(03)00265-0�
https://doi.org/10.1142/S0217979206033796�
https://doi.org/10.1142/S0217979206033796�
https://doi.org/10.1142/S0218863512500543�
https://doi.org/10.1142/S0218863512500543�
https://doi.org/10.1016/j.camwa.2006.12.048�
https://doi.org/10.1016/j.camwa.2006.12.048�
https://doi.org/10.1016/j.rinp.2020.103324�
https://doi.org/10.1016/j.rinp.2020.103324�
https://doi.org/10.1142/S0218348X20500243�
https://doi.org/10.1142/S0218348X20500243�
https://doi.org/10.1016/j.ijleo.2019.02.087�
https://doi.org/10.1016/j.ijleo.2019.02.087�
https://doi.org/10.1016/j.rinp.2018.06.011�
https://doi.org/10.1016/j.rinp.2018.06.011�

