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In this brief erratum, we complete the analysis presented previously in [RMF 64 (2018) 662-670] regarding the quantifiers of the classical
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In Ref. [1], the analytical results of the correlation quantifiers
related to the so-called local available quantum correlations
(LAQC) [2] for the family of Bell diagonal states [3] were
presented. These states are written in the Bloch representa-
tion as

ρBD =
1
4

(
14 +

3∑

i=1

ciσi ⊗ σi

)
, (1)

where the coefficientsci ∈ [−1, 1] are such thatρBD is a
well-behaved density matrix (i. e. has non-negative eigenval-
ues) andσi are the well-known Pauli matrices.

The classical correlations quantifier defined in Ref. [2]
can be written in terms of theRij(θA, φA, θB , φB) coeffi-
cients that define the optimal computational basis as

C(ρAB) = min
θA,φA
θB,φB

{∑

i,j

Rij(θA, φA, θB , φB)

× log2

[
Rij(θA, φA, θB , φB)

Ri(θA, φA)Rj(θB , φB)

]}
. (2)

Since Bell diagonal (BD) states have null local Bloch vector,
it is straightforward that they are invariant under subsystem
exchangeA ↔ B. Therefore, only two angles,θ andφ, are
necessary, and the coefficientsRij(θ, φ) are given by

Rij(θ, φ) =
1
4
[1 + (−1)i+jc3]

+ (−1)i+j 1
2

cos2
(

θ

2

)
sin2

(
θ

2

)

× [
(c1 + c2) + cos(2φ)(c1 − c2)− 2c3], (3)

with R00(θ, φ) = R11(θ, φ), R01(θ, φ) = R10(θ, φ), and
Ri = 1/2.

The minimization in (2) leads to three different cases:

I Forθ = 0 andφ = 0:

R00(0, 0) =
1
4
(1 + c3) R01(0, 0) =

1
4
(1− c3). (4)

II Forθ = π/2 andφ = 0:

R00

(π

2
, 0

)
=

1
4
(1 + c1)

R01

(π

2
, 0

)
=

1
4
(1− c1). (5)

III Forθ = π/2 andφ = π/2:

R00

(π

2
,

π

2

)
=

1
4
(1 + c2),

R01

(π

2
,
π

2

)
=

1
4
(1− c2). (6)

Therefore, by defining

cm ≡ min
{|c1|, |c2|, |c3|

}
, (7)

we can write the classical correlations quantifier (2) as

C (
ρBD

)
=

1 + cm

2
log2(1 + cm)

+
1− cm

2
log2(1− cm). (8)

The above expression is the same as Eq. (33) in [1] but
now the minimization achieved forθ = π/2 andφ = 0 when
cm = |c1| has been included.

The LAQC quantifier is given by

L(ρAB) ≡ max
{Φ1,Φ2}

I(Φ1, Φ2) , (9)
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where

I(Φ1,Φ2) =
∑

i,j

P (iA, jB , Φ1,Φ2)

× log2

(
P (iA, jB , Φ1, Φ2)

P (iA, Φ1)P (jB , Φ2)

)
, (10)

with P (iA, jB , Φ1, Φ2) the probability distributions associ-
ated with the complementary basis [4] ofρAB written in the
optimal computational basis, andP (iA, Φ1) an P (jB , Φ2)
are the corresponding marginal probabilities. Contrary to
what is stated in [1], the density matrix of BD states does
not remain invariant when written in the optimal computa-
tional basis. That is only true for Werner [5] and Werner-like
states [6,7].

The density matrix ρ̃BD and their corresponding
P (i, j, Φ) for eachθ andφ, with P (0, 0, Φ) = P (1, 1, Φ),
P (0, 1,Φ) = P (1, 0,Φ), andP (i, Φ) = 1/2, are the follow-
ing:

I) Forθ = 0 andφ = 0:

ρ̃BD=
1
4




1+c3 0 0 c1−c2

0 1−c3 c1+c2 0
0 c1+c2 1−c3 0

c1−c2 0 0 1+c3


 (11)

and

P (0, 0, Φ) =
1
4

(
1 +

c1 + c2

2
+

c1 − c2

2
cos[2Φ]

)
,

P (1, 0, Φ) =
1
4

(
1− c1 + c2

2
− c1 − c2

2
cos[2Φ]

)
. (12)

II) Forθ = π
2 andφ = 0:

ρ̃BD=
1
4




1+c1 0 0 c3−c2

0 1−c1 c3+c2 0
0 c3+c2 1−c1 0

c3−c2 0 0 1+c1


 (13)

and

P (0, 0, Φ) =
1
4

(
1 +

c3 + c2

2
+

c3 − c2

2
cos[2Φ]

)
,

P (1, 0, Φ) =
1
4

(
1− c3 + c2

2
− c3 − c2

2
cos[2Φ]

)
. (14)

III) Forθ = π/2 andφ = π/2:

ρ̃BD=
1
4




1+c2 0 0 c3−c1

0 1−c2 c3+c1 0
0 c3+c1 1−c2 0

c3−c1 0 0 1+c2


 (15)

and

P (0, 0,Φ) =
1
4

(
1 +

c3 + c1

2
+

c3 − c1

2
cos[2Φ]

)
,

P (1, 0,Φ) =
1
4

(
1− c3 + c1

2
− c3 − c1

2
cos[2Φ]

)
. (16)

For eachθ andφ, Φ depends on|c1| > |c2|, |c2| > |c3|,
or |c1| > |c3|, respectively. Therefore, as was done with the
classical correlations quantifier (8), defining

cM ≡ max |c1|, |c2|, |c3| (17)

allows us to write a general expression for the LAQC quanti-
fier that encompasses all these possibilities:

L(ρBD) =
1 + cM

2
log2(1 + cM )

+
1− cM

2
log2(1− cM ). (18)

As with the classical correlations quantifiers, the above
expression is equivalent to the one presented in Eq. (36) of
[1]. Nevertheless, this newly definedcM also includes|c3|.
The case ofcM = |c3| arises when the density matrixρBD is
written in the optimal computational basis withθ = π/2.
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