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In this brief erratum, we complete the analysis presented previously in [RMF 64 (2018) 662-670] regarding the quantifiers of the classical
correlations and the so-called local available quantum correlations for Bell diagonal states. A correction is introduced in their previous
expressions once two cases within the optimizations are included.
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In Ref. [1], the analytical results of the correlation quantifiers | Ford = 0 and¢ = 0:

related to the so-called local available quantum correlations

(LAQC) [2] for the family of Bell diagonal states [3] were Roo(0,0) = 1(1 +¢3) Rep(0,0) = 1(1 —¢3). (4)
’ 4 ’ 4 ’

presented. These states are written in the Bloch representa-

tion as
1 3
PPl = 1 (]14 + E Ci0; ®Uv:> ) @

i=1

Il Forf = x/2 and¢ = 0:

Roo (E,O) = 1(]. + Cl)
where the coefficients; € [—1,1] are such thap®? is a 2 4
well-behaved density matrix (e. has non-negative eigenval- R (T 0) = }(1 _
: . 01 < ; ) c1). (5)

ues) andr; are the well-known Pauli matrices. 2 4

The classical correlations quantifier defined in Ref. [2]
can be written in terms of the;; (04, ¢4, 05, ¢5) coeffi- Nl Forf =n/2and¢ = m/2:
cients that define the optimal computational basis as )
Roo (gv g) = 1(1 + c2),
C(paB) = sril’iqg {ZRij(9A7¢AaeB7¢B)

T 1
BB ) Ro1 (5) 5) = 1(1 - 02)' (6)

Rij(0a,04,08,98) }
x 1 J . 2 .
08, {Ri(9A7¢A)Rj(HBa¢B) (2)  Therefore, by defining

Since Bell diagonal (BD) states have null local Bloch vector, cm = min {|c1], |zl les]}, @)
it is straightforward that they are invariant under subsystem _ _ . .
exchangeA — B. Therefore, only two angled,and e, are we can write the classical correlations quantii@®rgs

necessary, and the coefficietits; (9, ¢) are given by 1
€ (p7P) =~ logy(1+ )
1 L
Ri;(0,¢) = Z[l + (1) e 1—cm
+ — logy (1 — ). (8)
+ (=1)" = cos? <) sin? () . )
2 2 2 The above expression is the same as Eq. (33) in [1] but
N o now the minimization achieved fér= 7/2 and¢ = 0 when
x [(e1+e2) +eos(29)(er —e2) = 23], (3) ¢m = |c1| has been included.
with Roo(0,¢) = Ri1(0,¢), Ro1(0,6) = Rio(6, ), and The LAQC quantifier is given by
R; =1/2.

The minimization in/2) leads to three different cases: Llpas) = (b1 oo} 1(21, 1), ©)
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where

I(®1,@5) = Y Plia, jn, ®1,P2)
%,
P(iAaij(I)lv(I)Q) )
X 10 N . )
&2 (P(ZA,%)P(JB?%)

with P(ia,jg, ®1,Py) the probability distributions associ-
ated with the complementary basis [4]@f 5 written in the
optimal computational basis, and(i 4, ®1) an P(jp, ®2)
are the corresponding marginal probabilities.

(10)

states [6, 7].

The density matrix 522 and their corresponding
P(i, j, ®) for eachd and ¢, with P(0,0,®) = P(1,1,®),
P(0,1,®) = P(1,0,®), andP(i, ) = 1/2, are the follow-
ing:

I) Ford =0and¢ = 0:

1+c3 0 0 c1—C2
_ 1 0 l—c3 ci+c 0
Bp_ 1 3 1+c2
P T4 0 c1+cy  1—cg 0 (11)
C1—C2 0 0 1+Cd
and
1 c1+co C1 — C2
P P)=-(1 20
(0,0, ) 1 ( + 5 + 5 cos| ]) ,
1 _
P(1,0,) = ~ (1- 912 9~ a]). 12
4 2 2
ll) Ford =3 and¢ = 0:
1+4+c 0 0 c3—Co
_ 1 0 1-c1  c3+c 0
Bp_ 1 1 c3tea
_4 0 c3+Co 1—01 0 (13)
c3—Co 0 0 14+c
and
1 _
P(0,0,9) = ; (1 + 2 ’; I B cos[2<I>]> :
1 _
P(1,0,0) = ; (1 _ @ ;L 2% . @ cos[2<I>]) . (14)

Contrary to
what is stated in [1], the density matrix of BD states does
not remain invariant when written in the optimal computa-
tional basis. That is only true for Werner [5] and Werner-like

) Forf =r/2and¢ = n/2:

14+co 0 0 c3—C1

- 1 0 1—c c3tc 0

Bp__ 1 2 3+C1

P 4 0 c3+c1  1—co 0 (15)

c3—Cq 0 0 1+co
and
c3t+c1 33—
P(0,0,9) = 1+ > + 5 cos[29] |,

1
4
1 vy —
P(1,0,d) =~ (1-38T4 _ 3= va]). (16)
4 2 2
For eachy and¢, ® depends otie1| > |eal, |e2] > |esl,
or |e1| > |esl, respectively. Therefore, as was done with the
classical correlations quantifie8)( defining
¢y = max e, |eal, |es) a7
allows us to write a general expression for the LAQC quanti-
fier that encompasses all these possibilities:

l+ey

L(p"P) log, (1 + cnr)

+1_C]\4

10g2(1 — C]w). (18)

As with the classical correlations quantifiers, the above
expression is equivalent to the one presented in Eq. (36) of
[1]. Nevertheless, this newly defined,; also includegcs.

The case of; = |c3| arises when the density matgi¥” is
written in the optimal computational basis with= /2.
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