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Geometry optimization for multi-inlet vortex photoreactor for CO 2 reduction
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Process optimization of multiphase chemical and/or photochemical reactor means a challenge not only at laboratory scale but also while
scaling-up is intended towards industrial applications. Using computational tools, such as Computational Fluid Dynamics, is essential to
assess the transport limitations of the heterogeneous process to verify the kinetic regime while the reaction and the reactor engineering
are studied. Computational Fluid Dynamics, together with Genetic Algorithms, have been currently applied to verify fluid behavior and
turbulence. The latter device has been self-designed and is planned to be constructed for CO2 reduction. The results of the Computational
Fluid Dynamics simulations are presented and discussed to optimize the operation of a multi-inlet vortex photoreactor. By considering the
catalytic particle features, the residence time distribution in the multi-inlet photoreactor has been verified and optimized.
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1. Introduction

The growing demand for energy sources to sustain the
lifestyle of today’s societies has brought consequences to the
environment, as well as public health problems in industrial-
ized cities [1]. The use of fossil fuels as the main source of
energy, leads to the generation of greenhouse gases, where
more than 77% of the total concentration of anthropogenic
gases corresponds to CO2 [2]. Despite the efforts and results
achieved by the so-called renewable energies, oil and coal
continue to be the principal energy sources, more than 60%
of the energy produced comes from these two sources [3].
Different approaches have been proposed and evaluated to
mitigate the effects of CO2, from capture and storage, to its
reuse and conversion to high-value chemicals [4]. The reuse
of CO2 for fuel production can be achieved through elec-
trochemistry, traditional catalysts, and biological conversions
[5–8]. However, these processes require considerable energy
consumption, and result in high operating costs [9, 10]. The
transformation of solar energy into chemical bonds provides
long-term energy storage [11, 12], whereas the photoreduc-
tion of CO2 to hydrocarbons is one of the breakthroughs in
the field of photocatalysis. The materials used in the process
of photocatalysis are responsible for absorbing sunlight, this
absorption can create electron-hole pairs, that can migrate to
the surface where they can be used for H2O dissociation and
CO2 reduction [13–17]. The most common CO2 transforma-
tion leads to a product such as methane, methanol, formalde-
hyde, acid formic, etc., always demanding a high amount
of energy since these are endergonic and non-spontaneous

chemical reactions [18]. Although there have been multiple
studies regarding the synthesis of efficient and stable photo-
catalyst [19, 20], only a few studies focus their attention on
reaction engineering, as well as obtaining the optimal condi-
tions for the reaction and the photoreactors design [21–26].

Two reactor configurations are used extensively for ap-
plications in CO2 reduction with photocatalytic methods, the
continuous flow system and the batch system. The batch
system is one of the most reported, however, its photocat-
alytic efficiency is low, becoming imprecise when compared
to other methods [27]. The key limitation of the batch reac-
tor system is the accumulation of products inside the reactor
chamber for a defined time, which can lead to changes in the
concentration of the reactants and reabsorption at the surface
of the photocatalyst. Although continuous-flow reactors have
better efficiency, the production of compounds is inadequate
due to the short residence time of the reactants inside the re-
actor chamber, reducing the contact time with the photocat-
alytic material [28, 29]. In this sense, the optimization of the
residence time for continuous flow reactors, becomes a diffi-
cult problem to solve, as well the study of the fluid dynamics
and the mass transfer, due to the geometric dependence pre-
sented by the fluid dynamics inside the reactor.

The optimization problem by deterministic methods for
systems whose analytical representation cannot be solved tra-
ditionally, numerical methods and stochastic algorithms be-
come a great alternative. One of the most popular stochastic
methods, which belongs to the family of evolutionary algo-
rithms, is the Genetic Algorithm (GA) [30]. This concept
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was first formalized by Holland [31], and later extended by
De Jong for functional optimization [32]. GA uses search
strategies inspired by the Darwinian notion of natural selec-
tion and evolution. During an optimization by GA, a set of
solutions are chosen randomly, this set generates an offspring
with the best characteristics of the previous population. This
generation of offspring and selection is used recursively to
get an optimum solution [33].

On other hand, Computational Fluid Dynamics (CFD) is
a well-established tool for numerous areas of science and en-
gineering [34–36]. CFD uses numerical methods and empiri-
cal approximations to solve the Navier-Stokes equations, and
due to the development of numerical methods and advances
in computational technology, there exists a growing confi-
dence in the results of these computational methods. From
the reactor design point of view, in the case of gas-solid reac-
tors, the geometric complexity restricts detailed modeling of
their fluid dynamics and, therefore, their optimization. In this
sense, tools such as CFD, bring a trustworthy tool for solving
fluid dynamics in gas-solid reactor systems [37–41].

In the present work, GA are used to maximize the resi-
dence time of the reactant phase inside a multi-inlet vortex
photoreactor. CDF is used to solve the fluid dynamics in-
side each individual in the population of GA. The objective
function as well as the statistics of residence time is reported
and compared to the classic geometric configuration of multi-
inlet vortex reactors. An analysis of turbulent intensities in-
side the photoreactor was implemented to determine the best
operational conditions.

2. Methology

2.1. Optimization Process of the Prototype Reactor

2.1.1. Genetic Algorithm

The importance of using the Genetic Algorithm in the present
work lies in the wide range of possibilities to build a reactor
device. Logically, there is a large number of configurations
to arrange and set the reactant inlet, the product outlet as well
as the catalyst support within the reactor vessel. This set of
parameters must be evaluated which makes the process time
and computer demanding. To initialize the reactor configu-
ration selection, are required design values currently estab-
lished, and afterward the algorithm randomly generates and
evaluates the best generation of results, which are fit accord-
ing to the objective function.

The implemented GA consists of six main steps, four of
them correspond to the evolutionary loop, where the selection
of parents, crossing, mutations, creation of offspring and the
selection of individuals for the next generation takes place;
the other two steps correspond to the initialization and ter-
mination of the evolutionary loop. The algorithm can find a
local minimum of a real and real-valued objective function
f(~x). In cases where there is a direct comparison with deter-
ministic methods of optimization, like Lagrange or dual, it is

known that GA approximates very well to a global optimum
(global maximum or minimum) [42]. However, there is no
mathematical proof that assures that GA reaches a global op-
timum [43, 44]. In this sense, the so-called local minimum
(optimum) is described by the currently obtained result ap-
plying GA. The following are the six steps implemented in
GA:

1. Initialization. In this step, the first population (t0) is
generated withN numbers of individuals, each indi-
vidual has a specific gene which is a vector withn
design variables, chosen randomly values within their
domain, each individual is evaluated with the objective
function. Equation (1) shows the gene of themth in-
dividual. In all generations there areN individuals.

ym = (x1, x2, x3, ..., xn). (1)

2. Selection of parents and crossover. In this step, the in-
dividuals of theti generation, with the best solution
that minimizes the objective function are selected to
perform crossover. The type of selection used corre-
sponds to roulette selection, where the most outstand-
ing individuals have a higher probability of being se-
lected than the less outstanding individuals. Each indi-
vidual evaluation by the objective function has a result,
namely cost (c), a probabilitypm is assigned to each
individualym according to itscm, using Eq. (2).

pm = e−β(cm/[1/N ]
∑

m cm), (2)

whereβ is the selection pressure and
∑
m

pm = 1, (3)

cm ≤ ck ⇐⇒ pm ≥ pk, (4)

must be satisfied. Two individuals, namely parentsv1

andv2, are chosen randomly accordingly to its proba-
bility pm, to perform crossover,

v1 = (v11, v12, v13, ..., v1n), (5)

v2 = (v21, v22, v23, ..., v2n). (6)

Each crossover creates two offspring,u1 andu2,

u1 = (u11, u12, u13, ..., u1n), (7)

u2 = (u21, u22, u23, ..., u2n), (8)

accordingly, to Eqs. (9) and (10).

u1j = αjv1j + (1− αj)v2j , (9)

u2j = αjv2j + (1− αj)v1j , (10)

in which
α = (α1, α2, α3, ..., αn), (11)

with
αj ∈ [−γ, 1 + γ], γ ∈ R. (12)

The selection of parents and the creation of offspring
are executed until the number of offspring required
Nof is achieved.

Rev. Mex. Fis.68020601



GEOMETRY OPTIMIZATION FOR MULTI-INLET VORTEX PHOTOREACTOR FOR CO2 REDUCTION 3

3. Mutation. In this step, each offspring has a proba-
bility of changing some of the values of their gene,
within a certain allowed range for each design variable,
this process creates a changed version of the offspring,
Eq. (13). Some design variables of the gene of the off-
spring are chosen randomly to change its value accord-
ingly to Eq. (14).

um → u′m, (13)

u′mj = umj + δ, (14)

whereδ it is a number selected by a normal probability
distribution with meanµ = 0 and selectable variance
σ2.

4. Union of population and offspring. In this step, the
current population (ti) is joined with the offspring gen-
erated in the selection of parents and crossover step,
giving a population size ofN + Nof .

5. Evaluation and selection. In this step, theNof off-
spring population is evaluated with the objective func-
tion, and the populationN + Nof is ordered accord-
ingly to the individualscm to select the bestN individ-
uals, these individuals generate the population of the
generationti+1.

6. Termination. In this step, it is determined whether it
is necessary to end the evolutionary loop or to return
to the Selection of parents and crossover step. The ter-
mination is done when the evolutionary loop reaches a
maximum number of iteration (MaxIt), this istMaxIt.

The GA parameters used in this work correspond to,
MaxIt= 50; N = 10; Nof = N ; β = 1; γ = 0.25
andσ = 0.4. An in-house software based on Phyton, from
the Python Software Foundation [45] (with headquarters in
Delaware, USA), was developed to execute the GA.

FIGURE 1. Multi-inlet vortex photoreactor components for Genetic
Algorithm optimization: a) Exploded view of the multi-inlet vor-
tex photoreactor components; b) Assembly of the multi-inlet vortex
photoreactor components.

2.1.2. Design Variables and Boundary Conditions

The proposed multi-inlet photoreactor, namely GA photore-
actor, consists of three main components. First, a quartz win-
dow is located in the upper part that allows the passage of
light. Second, a photocatalytic bed is placed in the lower part
of the main chamber before the reactor outlet (the photocat-

FIGURE 2. Design variables for the Genetic Algorithm: a) Shows the three design variables related to the heightH of the reactant inlets as
well as the design variable that controls the angled wall of the main chamberθD; b) Shows those design variables related to reactants inlets
angle (θA, θB , andθC ) around the main chamber.
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TABLE I. Limit values for the reactor design variables.

Name Maximum Value Minimum Value

θA 360.0◦ 310.0◦

θB 168.0◦ 70.0◦

θC 288.0◦ 190.0◦

θD 150.0◦ 90.0◦

HA 13.5 mm 2.0 mm

HB 13.5 mm 2.0 mm

HC 13.5 mm 2.0 mm

alytic bed, for the CFD is isotropic with a porosity of 50%
and a width of 1 mm). And, third, the reactor body where
the main chamber is surrounded by the reactant gas inlets.
Figure 1 shows the detail of the different parts of the pho-
toreactor.

The geometric design variables, that modify the current
GA photoreactor, add up to seven, refer to Fig. 2. Three de-
sign variables correspond to the angle around the main cham-
ber of the three inlets, namelyθA, θB , andθC . These in-

lets are always tangent to the circle formed by the cut of the
cone at their specific height, and have a diameter of 1.59 mm.
Another three design variables are the height of the inlets,
namelyHA, HB andHC , all the heights are measured from
the surface of the photocatalytic bed. Finally, the angle of the
wall in the main chamber, which is labeled asθD.

Only two dimensions are kept constant, the height of the
main chamber, with a value of 14.30 mm, and the diameter
of the photocatalytic bed, with a value of 10 mm. The gene
of themth individual in the GA will be,

ym = (θA, θB , θC , θD,HA,HB , HC). (15)

The maximum and minimum values for the design vari-
ables are shown in Table I. The limit values forθA, θB , and
θC were selected to ensure no superposition of the inlets.

The objective function corresponds to the volume rate
(ΦV f ml/min) that passes through the photocatalytic bed. In
all the runs for the GA the three inlets have a volume flow
rate of 83.3 ml/min with CO2 at 298 K, and the outlet has
a pressure opening at 100 kPa, as boundary conditions for
the CFD. A Flow chart for the implemented GA is shown in
Fig. 3.

FIGURE 3. Genetic algorithm flow chart.
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2.1.3. Computational Fluid Dynamics

All CFD software includes a representation of the Navier-
Stokes equations, turbulence models and models that repre-
sent physical phenomena. In this work, the CFD software that
was selected corresponds to SolidWorks Flow Simulation
from Dassault Systèmes, with headquarters in V́elizy-
Villacoublay, France. This tool uses a modifiedk − ε two-
equation turbulence model designed to simulate accurately a
wide range of turbulence scenarios, and a boundary Cartesian
meshing technique that allows accurate flow field resolution
with low cell mesh densities.

Depending on the tested fluid and its conditions, any fluid
flow can be classified as one of the following [46]:

• Laminar. That is, a smooth flow without any distur-
bances.

• Turbulent. This is a flow regime characterized by ran-
dom vorticity and Eddie currents.

• Transitional. An alternation between laminar and tur-
bulent regions.

The modifiedk−ε turbulence model with damping func-
tions proposed by Lam and Bremhorts, and used in Solid-
Works Flow Simulation, describes laminar, turbulent and
transitional flows of homogeneous fluids. This model em-
ploys two transport equations, one for the turbulent kinetic
energy (k), Eq. (16), and the second for the turbulent dissipa-
tion (ε), Eq. (17) [47].

∂ρk

∂t
+

∂ρkui

∂t
=

∂

∂xi

([
µ +

µt

σk

]
∂k

∂xi

)

+ τR
ij

∂ui

∂xi
− ρε + µtPB , (16)

∂ρε

∂t
+

∂ρεui

∂t
=

∂

∂xi

([
µ +

µt

σε

]
∂ε

∂xi

)

+Cε1
ε

k

(
f1τ

R
ij

∂ui

∂xj
+ CBµtPB

)
−f2Cε2

ρε2

k
, (17)

with

τij = µsij , (18)

τR
ij = µtsij − 2

3
ρkδij , (19)

sij =
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk
, (20)

PB = − gi

σB

1
ρ

∂ρ

∂xi
, (21)

in which, Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92,
σε = 1.30, σB = 0.90, CB = 1.00 if PB > 0 and
CB = 0.00 if PB < 0.

The turbulent viscosity is determined by:

µt = fµ
Cµρk2

ε
. (22)

The Lam and Bremhorst’s damping functionfµ is deter-
mined by:

fµ =
(
1− e−0.025Ry

)2
(

1 +
20.5
Rt

)
, (23)

where,

Ry =
ρ
√

ky

µ
, (24)

Rt =
ρk2

µε
. (25)

In this case,y is the distance from a point to the wall and Lam
and Bremhorst’s damping functionsf1 andf2 are determined
by:

f1 = 1 +
(

0.05
fµ

)3

, (26)

f2 = 1− eR2
t . (27)

The heat flux is defined by:

qi =
(

µ

Pr
+

µt

σc

)
∂h

∂xi
, i = {1, 2, 3}, (28)

where,σc = 0.9, Pr is the Prandtl Number, andh is the
thermal enthalpy.

Another important quantity for analysis is the turbulence
intensity, which is defined as,

I ≡ u′

U
, (29)

whereu′ is the root-mean-square of the turbulent velocity
fluctuations andU is the mean velocity (Reynolds averaged),
and can be computed as

I ≡
√

1
3

(
u′x

2 + u′y
2 + u′z

2
)

=

√
1
3
k, (30)

the mean velocity can be obtained from the three mean ve-
locity components as

U ≡
√

1
3

(ux
2 + uy

2 + uz
2). (31)

For each reactor design a global mesh of level 4, with an
advanced channel refinement provided by SolidWorks Flow
Simulation, was used for the determination of the fluid dy-
namics. The solver was configured to reach a steady-state.

For comparative purposes, a reference photoreactor was
studied. The geometrical consideration for this reference
photoreactor was of those from the classical configuration for
multi-inlet vortex reactors [48, 49]. In this reference reactor,
gas feed inlets are at equidistant position each other and their
heights are at the middle of the main cylinder, see Fig. 4. The
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FIGURE 4. Reference reactor inlets configuration: a) Inlets and plane 1 for the cut plot. b) Isometric view of the reference photoreactor.

FIGURE 5. Optimized photoreactor inlets configuration: a) Inlets and plane 1 for the cut plot. b) Isometric view of the optimized photoreactor.

FIGURE 6. Calculated volumetric flow rate passing through pho-
tocatalytic bed after several iterations for the optimization process
using GA.

criteria to evaluate the performance of both the optimized
configuration of the prototype photoreactor and the reference,
are the value of the turbulence and the residence time average.
Because of this, a plane that cuts transversally both reactors
is used, namely plane 1, this plane is depicted in Figs. 4 and
5 for optimized and reference photoreactor respectively.

3. Results and discussion

3.1. Genetic algorithm

Throughout the optimization process, 500 reactor designs
were simulated, and for each iteration of the evolutionary
loop, the value of the best reactor desingΦV f was obtained
and plotted (Fig. 6). For the first five iterations there is a
sharp decrease ofΦV f , suggesting a good performance of the
GA. After iteration number ten, it can be seen that there is a

FIGURE 7. Residence time distribution for the Opt photoreactor
and the reference photoreactor.
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FIGURE 8. Flow trajectories: a) Reference photoreactor front view; b) Opt-3-Tuned photoreactor front view; c) Reference photoreactor top
view; d) Opt-3-Tuned photoreactor top view.

TABLE II. The optimized set of parameters for the reactor configu-
ration, taken as indicated in Fig. 2.

Name Value

θA 313.4◦

θB 74.0◦

θC 240.9◦

θD 113.0◦

HA 11.0 mm

HB 7.20 mm

HC 6.30 mm

slight change ofΦV f , indicating a local minimum approx-
imation in the design space. After iteration number thirty
there is no change in theΦV f value, and the algorithm
reaches a local minimum. The final values of the design vari-
ables are shown in Table II.

3.2. Residence time distribution and turbulence inten-
sity

In order to find the residence time distribution for the op-
timized photoreactor (Opt) and the reference photoreactor
a particle study was performed, where 30,000 representative

particles of CO2 fluid were injected at each inlet, with a vol-
ume flow rate of 83.3 ml/min for all the three inlets. Figure 7
shows the residence time distribution for both photoreactors,
it can be noted that the Opt photoreactor has a more uniform
distribution with particles that stays longer in the reactor than
the reference photoreactor. Also, the reference photoreactor
has two main regions of time, the first between 0.1 s and 0.2 s,
and the second, between 0.3 s and 0.6 s, whereas for the Opt
photoreactor the main time region is between 0.5 s and 1.1
s. The mean residence time for the Opt photoreactor corre-
sponds to 0.79 s, and for the reference photoreactor 0.29 s,
this is an improvement of 2.7 times with respect of the refer-
ence photoreactor. This proves that withΦV f as the objective
function for the GA implementation, it is possible to adjust
indirectly the residence time for this type of photoreactors.

Figure 8 shows the flow trajectories for the reference
photoreactor and the Opt photoreactor. It can be seen from
Figs. 8a) and 8b) that the higher part of the Opt photoreactor
has more fluid lines than the reference photoreactor, this is
an indication of better reactants distributions inside the Opt
photoreactor. Figures 8c) and 8d) show the vortex formed in
both photoreactors. It can be noted that the fluid trajectories
for the reference reactor are concentrated near the cylinder
wall, whereas for the Opt photoreactor its fluid trajectories
are more concentrated at the middle of the cone wall. More-
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FIGURE 9. Flow trajectories: a) Reference photoreactor front view;
b) Opt-3-Tuned photoreactor front view.

over, it can be seen from this figure that molecules have to
travel longer path in the Opt photoreactor, this has conse-
quently that residence time becomes longer because of these
larger trajectories within this optimized photoreactor.

A cut plot on plane 1, showed in Figs. 9a) and b), was
performed to find the turbulence intensities behavior inside
both photoreactors. It can be observed that there are marked
turbulent zones (more than 10%) near the photocatalytic bed

in both cases. The case of the reference photoreactor reaches
14.5% turbulence intensity on the photocatalytic bed surface,
whereas for the Opt photoreactor the average turbulence in-
tensity onto the photocatalytic bed yields 15.5%. This turbu-
lence intensity of the Opt photoreactor together with the high
turbulence intensity near the photocatalytic bed ensures the
mixing and contact of the reactant phases.

4. Conclusions

Computational Fluid Dynamics showed goodness in process
operation and optimization in order to gain insight into the
performance of a current designed and tailored photoreactor
configuration. According to the simulation results, by chang-
ing the inlet angles and height, as well as the wall angle of
the main chamber in the photoreactor, a higher residence time
and turbulence are enhanced that, logically, in a multiphase
system such as our planned reaction system, is essential for
the reaction to occur. With the current study, reactor design
and optimization lead to construct the physical device to per-
form the experimental study with the conviction that its per-
formance will be optimal and the kinetic measurements will
be intrinsic. The latter is the target of our further work and
research.
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37. T. Norton and D.-W. Sun, Computational fluid dynamics
(CFD)-an effective and efficient design and analysis tool for
the food industry: a review.Trends In Food Science & Tech-
nology. 17 (2006) 600,https://doi.org/10.1016/j.
tifs.2006.05.004 .

38. A. G. Dixon, and M. Nijemeisland, CFD as a design tool for
fixed-bed reactors.Industrial & Engineering Chemistry Re-
search. 40 (2001) 5246,https://doi.org/10.1021/
ie001035a .

39. S. Kulkarni, et al., Computational fluid dynamics-
assisted process intensification study for biomass fast py-
rolysis in a gas-solid vortex reactor.Energy & Fuels.
32 (2018) 10169, https://doi.org/10.1021/acs.
energyfuels.8b01008 .

40. D. Lee, et al., Continuous photo-oxidation in a vortex reac-
tor: efficient operations using air drawn from the laboratory.
Organic Process Research & Development. 21 (2017) 1042,
https://doi.org/10.1021/acs.oprd.7b00153 .

41. K. Tong, L. Yang, X. Du, and Y. Yang, Review of modeling and
simulation strategies for unstructured packing bed photoreac-
tors with CFD method.Renewable And Sustainable Energy Re-
views. 131(2020) 109986,https://doi.org/10.1016/
j.rser.2020.109986 .

42. D. J. Rader, Deterministic operations research: models and
methods in linear optimization. (John Wiley and Sons, 2010).

43. S. Norving, and P. Russel,Artificial Intelligence A Modern Ap-
proach.(Prentice Hall Upper Saddle River, NJ, USA, 2002).

44. L. M. Schmitt, Theory of genetic algorithms.Theoretical
Computer Science. 259 (2001) 1,https://doi.org/10.
1016/s0304-3975(00)00406-0 .

45. G. Van Rossum, and F. Drake Jr,Python tutorial.(Centrum
voor Wiskunde en Informatica Amsterdam, 1995).

46. H. Schlichting and E. Truckenbrodt, Aerodynamik des
Flugzeuges Grundlagen aus der Strömungsmechanik Aerody-
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