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Effect of the orientation distribution of thin highly conductive inhomogeneities
on the overall electrical conductivity of heterogeneous material
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Many natural composite materials contain systems of partially oriented thin low-resistivity inclusions (for example, water-saturated microc-
racks in a double porosity sedimentary formation). We have calculated the components of the electrical conductivity tensor of such materials
as a function of crack density. The results were obtained for thin ellipsoidal inclusions with conductivity (electrical or thermal) much larger
than the matrix conductivity. To calculate the effective conductivity, we have used the effective field method (EFM). We have obtained
the explicit expressions for the effective parameters of inhomogeneous materials. The application of the EFM allows one to describe the
influence of the peculiarities in the spatial distribution of inclusions on the effective properties of the medium. General explicit expressions,
obtained in this work, are illustrated by calculating examples for inclusions, homogeneously distributed in the S8egtomferes is

the disorientation angle, and some continuous angle distribution functions. The calculations have shown that the spatial distribution of the
crack-like inclusions strongly affects the conductive properties of the effective medium and the symmetry of their tensor.

Keywords: Heterogeneous medium; highly conductive inhomogeneities; homogenization problem; effective field method; influence of the
inclusion orientations.
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1. Introduction the model of a microinhomogeneous medium with inclusions
that are not strictly oriented. Their spatial distribution is de-
Many microinhomogeneous materials, for instance, sedimerscribed by some angular function. Such models have long
tary rocks, contain a system of oriented or partially orientecbeen in the interest of researchers. For elastic cracked solids,
inhomogeneities (inclusions). Thus, carbonate hydrocarbofor example, such models are considered in Refs. [15,28,31].
reservoirs may be represented as a system of fluid-filled miThe solid review about the effect of orientation distribution
crocracks that are either randomly oriented or oriented alongn the effective properties of the fiber reinforced materials
certain directions [1-18]. The presence of such systems afan be found in Ref. [20]. In the works by [8,9,17] the in-
cracks leads to a considerable anisotropy of the physical chafltuence of the inhomogeneity orientation on the elastic and
acteristics of the medium, such as effective electrical or thereonductive properties of microinhomogeneous materials are
mal conductivity or elastic moduli. Identification of oriented studied. The results obtained in the last works were based on
systems of cracks and the evaluation of their parameters ihie so-called non-interaction approximation that slightly re-
an important problem that is of interest for many areas ofduced the area of possible application. Our calculations are
physics of composite materials and petrophysics. The materbased on the so-named effective field method that allows con-
als, containing high-conductivity inclusions, may be consid-sidering the interaction between the inclusions. According to
ered as homogeneous with certain effective properties, whethis method, every inclusion in the inhomogeneous medium
their physical properties are determined in a larger scale conis considered as an isolated one, embedded in the homoge
pared to the characteristic size of inclusions. neous background medium (matrix). The field that acts on
During the past one hundred years, starting from the pithis inclusion (effective field) does not coincide with the “ex-
oneering works by [5,6,19] a number of methodologies ofternal” field applied to the medium, but it is the sum of this
calculation of effective conductivity of a medium with inclu- “external” field and disturbances induced by all surrounding
sions of different shapes have been developed [25-29]. A rgnclusions. This method has a long history, and it was mainly
view of such methods that includes the works, published beused in nuclear physics and the theory of phase transitions for
fore 1990, was given in the papers by [3,26,30]. An overviewthe description of various types of many particle interactions.
of the more recent works is given in Refs. [4,29]. As a rule,In application to the mechanics of composite materials, this
in the majority of the works, that are based on the effectivenethod was developed by [10,13]. This method has gained
medium approach, the authors consider the media that copopularity for the calculation of effective elastic properties
tain either random or parallel inclusions. In the case of reatlue to its simplicity. The most complete explanation of the
media, such models may be frequently considered only as rethod is given in the monographs by [13].
rough approximation [18]. In the current work, we consider



2 V. LEVIN, M. MARKQOV, AND G. RONQUILLO JARILLO

However, this method is not frequently used in applica-3. One-particle problem for a thin high-
tion to the problems of thermal or electric conductivity. In conductivity inclusion in a homogeneous
our previous work by [16], we have applied this method to medium
calculate the coefficients of the conductivity tensor of ran-
domly oriented and parallel inclusions. In the present work
we apply the effective field method for the calculation of con-
ductivity tensor of microheterogeneous media containing thi

(crack-like) high-conductivity inclusions that are distributed medium having the conductivity coefficie@t, containing a

in the space, and this distribution is characterized by Somgingle inclusion with the conductivity coefficie6t, occupy-

distribution density. In the second section of the paper, Wt?ng the regionv. The fields This problem has been solved by
discuss the homogenization problem, while in the third on

t th Ui £ th lled el befle]. Here, we present this solution only briefly, the details
we present the solution ot the So-called one-particie probg.,, ne seen in the mentioned publication. Let us examine a

lem that is the building block of any homogenization schemeh . . : : o
S . omogeneous isotropic medium having the conductivity co-
Then, the effective field method is shortly presented, and thgfﬁcie%tco, containinpg a single inclusign with the cond){Jc-

effective conductivity of the material containing a random ety - - : !
o . ivity coefficient C, occupying the region v. The fiel
of thin high-conductivity inclusions are calculated. After that andye-(z) satisfy the integ}r/al ?equatiogs [16]: di)

we study the changes of the overall conductive material sym-
metry depending on the changes in the parameters of the dis-
tribution function over the orientation of the inclusions.

ei(z)=ed (z)—(C — CO)/Pij(x—x')eJ(z’)dz’,

2. Homogenization problem v

This problem has been solved by [16]. Here, we present
this solution only briefly, the details can be seen in the men-
Yioned publication. Let us examine a homogeneous isotropic

1 1 “N o
Let us consider a set of dispersed isotropic particles (inclu- ¢ (z)=¢} (z)+ | =——= /quj(x—ﬂﬂ’)qy‘(u’c )dz', (3.1)
) : or o ) c Cy
sions), having the conductivity coefficient C, randomly dis- v

tributed in an infinitely isotropic homogeneous medium, hav-

ing the conductivity coefficienCy. The vector of the local where it is denoted

flux ¢;(z) and the fielde;(z) in such a medium satisfy the

system of equations: Poi(x) = 9:0; 1
E v 47TCO|JJ‘ ’
9igi(x) =0, qi(v) = Cij(z)ej(x),
9 Qij(w) = Co [CoPyj(w) — di56(x)] (3-2)
rot;je;(x) = 0, 0; = B (2.1)

eY(x) andq! () are the “external” fields that would be in the

vyhere:c IS an grbltrary point |n'3D-space. These e edium without inclusiony(x) is the 3D-Dirac-delta func-
tions can describe various physical processes in solids, i on

cluding stationary thermal conductivity and filtration, static o )
electroconductivity in conductors and dielectrics, as well as, W€ assume that one characteristic lerigtf the regiorv

magneto- and electrostriction. All functions in Egs. (3) are!S Smaller than two others of order |. Thus the ratio= 1/l

random functions of coordinates. Determination of the reJS Small. A thin inclusion with conductivity greater than that

lation between the mathematical expectations of the field8f the surrounding medium is of prime interest in application.
¢; () ande; () that generally has the form: In this case, the ratié, = Cy/C is also small. The most

valuable information about the fields(z) andg;(z) in the

(gi(2)) = Cy (ej(z)), (2.2) vicinity of the inclusion is contained in the principal terms of
whereC;; is the tensor of effective (or overall) conductiv- the asymptotic expansion of these fields over the parameters
ity. The determination of this tensor is the central problemd1 andds. In order to construct these terms, it is necessary to
of micromechanics (the homogenization problem). For thdind the limiting solution of the conductivity problem, when
random set of inclusions, the exact solution to this problenf1;d2 — 0, and the ratiaj; /J» is of unit order and remains
is impossible, and only approximate methods are availableconstant.
There are several such approximate homogenization schemes Let us assume that the middle surface of the inclusion
that are named self-consistent methods [13]. The main dif? is a smooth enough surface with a given continuous field
tinguishing feature of these methods is the reduction of thef its normal vectom,(x). The surface? bounded by the
problem for many randomly placed particles to the problenclosed contouf’. We take a point: on Q and put it in the
for only one separate particle (one-particle problem), that i®rigin of the local coordinate system with We assume that
the building block of these methods. In what follow, we con-one characteristic lengthof the region v is smaller than two
sider a special kind of particle: the thin inclusion with high others of order I. Thus the rati4 = &/l is small. A thin
conductivity. Such inclusion can be used for example as @nclusion with conductivity greater than that of the surround-
model of crack, filled with saltwater in a rock formation. ing medium is of prime interest in application. In this case,
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the ratiods = Cy/C is also small. The most valuable infor- This vector is the solution of the following integral equa-
mation about the fields;(x) andg;(x) in the vicinity of the  tion:
inclusion is contained in the principal terms of the asymptotic
expansion of these fields over the paramefeendd,. In or- i (2)m; () — /U”( 2’ \n;(z')dQ

der to construct these terms, it is necessary to find the limiting

solution of the conductivity problem, when, j, — 0, and

the ratiod; /d, is of unit order and remains constant. Let = 9z‘j($)€?(l’)» (3.6)
us assume that the middle surface of the inclugibis a

smooth enough surface with a given continuous field of itsvhere it is denoted

normal vector We assume that one characteristic lehgth 1

the regionv is smaller than two others of order |. Thus the pij(z) = CT(I)GM (),

ratio6; = h/l is small. A thin inclusion with conductivity

greater than that of the surrounding medium is of prime in- Uij(x) = ix(x) Py (xz — )0, (x") (3.7

terest in application. In this case, the rafip = Cy/C is

also small. The most valuable information about the fieldsand the action of the operator with kerrig);(z,z') on a

e;(z) andg;(z) in the vicinity of the inclusion is contained smooth enough function (regularization of this operator) can

in the principal terms of the asymptotic expansion of thesebe obtained in Ref. [12].

fields over the parametefs andds. In order to construct Solving Eg. (3.6) for the function;(z) and substituting

these terms, itis necessary to find the limiting solution of thethe result in the right-hand side of Egs. (3.3), we obtain ex-

conductivity problem, whedy, 5, — 0, and the ratid; /0> pressions for the field; () andg;(z). These fields approxi-

is of unit order and remains constant. mate the real fields in the medium with inhomogeneity except
Let us assume that the middle surface of the inclusiorfor the small vicinity of the contouf. For an inclusion of ar-

2 is a smooth enough surface with a given continuous fielditrary shape, Eq. (3.6) can be solved only numerically. But

of its normal vectom;(z). The surface&? bounded by the for ellipsoidal thin inclusion and constant “external” fielgi

closed contou’. We take a pointz on €2 and put it in the  this equation can be solved in the closed analytical form.

origin of the local coordinate system withaxis directed Let the inclusion be a thin ellipsoid with semi-axes

along the normah;(z). We denote by:(z) the transverse o, a,, h, (h/a1,h/a; < 1. ThenQ becomes a plane ellipti-

size of the inclusion along the normaj(z). Then, we de- cal surface. Let; denotes its normal. In the system of co-

noteh(z) = 4,1 and take into account thai /d> is O(1).  ordinates with the axes that coincide with the major ellipsoid
It follows from Egs. (3.1) that the main terms of the field ex- axes, functiorh(x) can be written as:
pansion ok; (x) andg; (x) overd; andd, in the medium with

thin high-conductivity inclusion can be expressed as: h(z) = 2hz(x),
2 2
ei(x) = () / Pyj(a — o'y (a’)da, () = \/ - () _ (x) Y-
aq as
gi(z) = O (x C /Q” n;(a")dx’, (3.3) In the results of calculations, the details of which are pre-

sented in Appendix A, we obtain that the fieldgx) and
¢:(x) outside of the thin inclusion can be expressed as:

where
h(z)/2 /P” VA Z (2 )da' - €]
nk(x) = (C — Cy) / er(z + n(x)z)dz, (3.4)

—h(z)/2 qi(z) /Q” YA Z(2")da' - ef). (3.9)
and it is necessary to consider the main terms of expansion _
overd; andd, in the expansion fon; (z). To construct these Here,Z(x) is denoted
terms (for which we will preserve the same notatip(z)), )
we will use the method of matched asymptotic expan_sion. Z(z) = %Z(m), (3.10)
Using the results of [12], where one can find the details of az

the proof, it is possible to show thaf(z) is the vector of the

surface? satisfying the equality: and tenson’\” in same system of coordinates with unit vec-

torsn}, n?,n3 (n3 is coincided with the normal; of the sur-
face) has the form:
0wy () = mi(x), )
0ii(x) = 6;5 — ni(z)n;(z), (xeQ). (35 Aij = A (a, ag)n%n} + As(ay, ag)n? ?, (3.11)
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where The procedure of the homogenization by the effective
16y . K(k) - E(k’)} field method is presented in Appendix B. The final result is:

Ai(ag,a2) =Cy [

X az01 ; K Cl=Cobij+10 [Bit — 10 (i (1) A ()] " (wAij (n),
0y = o’ 02 = 607 v = %wa?, (4.3)
As(ar,a2) = Co [Z:gj + EE) (_1 (_1 ,;f:gK(k)] 5 where(-) means the averaging over ensemble distribution of
) the sizes apd orientgtion qf the inclusions; i's the numbgr
E=1-(2) mre e1) G o E (3
K (k) andE(k) are the complete elliptic integrals of the first Agj(n) = Ainln} + Agn2n® + Agnin®, (4.4)

and the second kind, respectively:
1003

/2 Ak - 200

K(k)—/L
s \/17k25i112t’ do

/2 XO/(ai+0)\/(a%+0)(a§+a)(a§+0)’
E(k) = / V1 — k2 sin? tdt. (3.13) (k=1,2,3), (4.5)
0

wherea, as, ag are the semi-axes of the ellipsoidal “corre-

4. Random set of thin low-resistivity inclu- lationhole” (see Appendix B).

sions in an isotropic homogeneous medium The cases of parallel and completely disoriented thin
high-conductivity inclusions were considered by [16]. In

We consider a microinhomogeneous medium consisting of #hat follows, our attention is concentrated on the effects of
homogeneous isotropic host material (matrix) and random segartly oriented inclusions.

of thin low-resistivity inclusions. The “one-particle” prob-

lem, considered in the previous Section, is basic for self-

consistent homogenization schemes [11,13]. Here, we use. Description of the inclusion orientation dis-
one of these schemes that is named the effective field method  tribution

(EFM). According to this method, we introduce a local “ex-

ternal” field e; () that acts on each inclusion. This field is For the description of the thin inclusion orientation, we in-
composed of an “external” fielef’ and the fields induced by troduce a global Cartesian basi§i = 1,2,3) of the axes
surrounding inclusions. The main hypothesis of the effective;; 1, 25, wherexzs is the vertical axis (Fig. 1). The orien-
field method is as follows: every inclusion in the compositeiation of the basis” (k = 1,2, 3) that defines the symmetry

material can be considered as an isolated one in the hom@xes of the elliptical thin inclusion with respect to the global
geneous matrix in a local uniform “external” fiet, which

depends on the orientation of the inclusion (veetprUsing
this hypothesis, the expressions for the fielgs:) andg; ()
can be represented in a form like Egs. (3.3), in which:

ni(x) = Aij()ej (n(x)) Z (2)(x),
Q) = (). (4.1)
k

Here Q) (z) is a generalized function concentrated on the
surface of theé-th inclusion, the functiom(z) coincides with
the normah to the surface?,, whenz € Q.. The function
A;j(z) is equal to the constant valubij(agk),aék)) deter-

mined in (3.11), when: € Q; and: P ¢
X

2(a§k))2 T 2 T 2 FIGURE 1. The global basis i®;, and the basisi; defines the
O 1- RO |\ (4.2) symmetry axes of the elliptical crack-like inclusion};, @, ¢) are
as ay ) the Euler angles.

—»= X

Z(x) =
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basise! is described by the three Euler angles, ¢), and  where it is denoted:
the connection between these bases is given by the relations: CF — Gyt 7(Ay + A2)(1 + Sp)
! 4 —7(A1 A1 + Ao Ag) (1 + Sp)’
T(A1 —+ AQ)(l - Sg)

n' = (cos ¢ costp — sin @ sin 1 cos )e’

+ (cos psin ) + sin ¢ cos ¢ cos @)e? + sin p sin fe, C3 =Co+ 2~ (M Ay + AoAs) (1 — Sp)’ (5.7)
n? = —(sin ¢ cos ) + cos @ sin 1 cos f)e’ . .
_ = 29
+ (— sin @ sin + cos  cos 1 cos B)e* + cos psin e, So = 2 /fe(G) cos” 0 sin 6. (5.8)
0

3 _ . 1 : 2 3
n” = singsin fle” — cos 1 sin fe” + cos fe”. (5.1) The casefy(0) = 1 (the uniform distribution over the an-

o ) ) gle d) leads taSy = 1/3, that corresponds to the full isotropy
Substituting these formulas into (4.3), we obtain the prexf the material:

sentation of the tensdr;; in the global basig’.
Let us consider some special cases. Cy; = C* (eiej +efef +eje}) = C*oy,
Let the thin inclusions be the same size and shape, but T T -1
randomly oriented with respect to the global coordinate sys- ¢ =Co+ 3 (A1 +As) [1 T3 (ArAs + AQA?)]
tem. In this case, the formula (4.3) takes the form: (5.9)

Cl = Codiy + 7 [0 — 7 (Nim (1) Ao ()] ™" (g () 5.1. System of vertical inclusions

4 4 We consider the system of vertical inclusion8 (=
T = gTaino, (5.2) /2, = 0). Inthis case
1 1 . 2 2 3
and the Euler angles in Egs. (5.1) become random variables. n’ = cosye’ +sinye’, n-=e,
The parameter in Eq. (5.2) is the so-called crack density. n? = sin el + cos pe?. (5.10)
We introduce the function of distributiof(¢, 8, ¢) of the
inclusion orientation over the angles 6, ¢. This function We choose one of the simplest distribution functions over
must satisfy the normalization conditions: the angley:

1 when o €[-0,0]
fo() = (5.11)
0 when ¢ ¢ [-8,/]

It means that the horizontal crack-like inclusions homo-
eneously distributed in the sectpr, 3], whereg is the
isorientation angle. Fdr < ¢ < /2 the conductive prop-
erties of such material have the orthorhombic symmetry with
the following tensor of effective conductivity coefficients:

2w 27

8% dz/J/dcp/f(z/),go,é’) sinfdf = 1. (5.3)
0

0 0

Suppose that the orientations of the inclusions, describeg
by the angles), 6, ¢, are statistically independent. There-
fore, the functionf (¢, 6, ») can be represented as:

F(W,0,0) = fu () fo () fo(6)- (5.4) Cjj = Ciejej + Ciejel + Ciejey, (5.12)

L . where
The normalization conditions take the form:

Cr=Co+7MF(B)[1—7MAF(B)] ",

2 2
1 1 « _
o [ftwan =1 o [ fode=1. 3= Co+ T (1= F(9) [L = s Ay (1 = F(B))]
0 0 Ci = Co+7Ay (1 —7AyAy) (5.13)
1 s
3 /fg(@) sinfdf = 1. (5.5) F(B) = %(6 + sin B cos ). (5.14)
0
When 3 — 0 (completely aligned vertical inclusions),
We consider the case, whefy,(¢) = 1, fu(p) = F(B) — 1, and the medium is still orthotropic. The tensor of

1, f9(8) # 1. The medium has the macroscopically trans-effective conductivity coefficients is determined by the same
versely isotropic conductive properties with symmetry axisformula (5.12), in which:

3 Ci=Co+7A (1—7A AN, CF =0,
Cy = Ci(elel + ele?) + Cielel (5.6) Ci = Co+ 1Ay (1 —TAAy) . (5.15)

AR
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If 6 — n/2,F(8) — 1/2, and the medium becomes i.e. the inclusions are parallel to the plamgxs. In this
transversely isotropic with the symmetry axis Expression case,Fi(c) = 1, Fy(o) = 0, and Egs. (5.22) are trans-

for the C3 in (5.12) remains the same, but: formed to Egs. (5.15). The other limit — oo corresponds
- - 1 to the homogeneous distribution of inclusions with respect to
Ci =05 =Co+ o (1 - §A1A1> . (5.16) the angley. For this limit Fy(0) = Fy(c) = 1/2, the for-

mula (5.16) is recovered from (5.22k. the system becomes
Suppose that the inclusions have the same spheroid@lansversely isotropic with the symmetry axis

shapei; = az = a,a3. For such inclusions: In a more general case, the distribution function can be
s N\ L represented in the form of series of spherical harmonics. The
A=A =A=C ((52 + 4) (5.17)  coefficients of such series can be calculated from the analysis
1

of measuring data.
If the shape of the correlation hole is also spheroidal

(a1 = a2 = a, w3) and coaxial to the inclusion, then: 5.2. System of horizontal thin inclusions with high con-
ductivity.
4490
A=Ay =A="- . ] .

Co Now we consider the case, whén= 0 (horizontal inclu-
a sions). It is well known that in this case the Euler angles

Ay = Tco(l —9(), = >1, degenerate (the line of nudes coincides withaxis, and the
) anglesy andvy become uncertain). At the same time, it is

1 i i -

B arctan m . (5.18) possible to introduce the only one anglébetween the vec

torsn! ande! that determines the orientation of inclusions in
thex;zo-plane. For this situation we have:

= ]_—
90 = 57 o

For spheroidal inclusions amti= 0 (parallel inclusions),

the medium is transversely isotropic with the symmetry axis n' = cos pe! + sin pe?,
X!
? n? = —sin e’ + cos pe?, nd =e’. (5.25)
C;; = C*(ejej + €jel) + Coelel, (5.19)
With the same distribution function (5.11) the tensor of
where the effective conductivity coefficients;; has the form:
* —1
C"=CotrA(l-rAd) . (5-20) Cy; = Cretel + Cyele? + Coelel. (5.26)
It has to be noted, that the angle distribution function can
be chosen as a continuous one [18]: One of these independent coefficients of conductivity co-
1 incides with those of the matrix in the direction of-axis,
fo(®) = 5 exp(cos/o?), (5.21) and two other coefficients are determined by the expressions:

whereo is the parameter, which characterizes the inclusion C7 = Co + 7 (A1 F(B3) + A2(1 — F(B))
disorientation. With this distribution function the tensor of 1
effective conductivity coefficients is determined by the same X [L=7 (MALF(B) + A2 A2(1 = F(B))]

formula (5.12), in which: Cs =Co+71 (A (1= F(B) + A F(B))
Ct =Co+7MFi(0) [l - TA A Fi(0)] 7, X [1—7(AAL (1 — F(B)) + A AsF(B)] ", (5.27)
* -1
Gy = Co+ A F2(0) [1 = T A1 Fo(0)] where the functior () is determined in Eq. (5.14).
C5=Co+7Ay (1 —7AA) ", (5.22) Wheng3 — 0 (the symmetry axes of the horizontal el-
lipsoidal inclusions are completely aligned), the effective
Here, it is denoted medium remains orthorhombic with the effective conductivi-
o211 (1/02) + I»(1/0?) ties (see formula (5.19)):
Fi(o) = ;
Io(1/0?) CF = Co+7A (1 —7ALA) ",
%I, (1/c? N _
Fy(o) = 10(11(/(/72)) (5.23) Ci=Co+7Mhy (1 —TAAy) " . (5.28)
wherel,, (z) is the modified Bessel function. The other limiting case3 — /2 corresponds to the
Note, that the limitr — 0 corresponds to the distribution transversely isotropic material with the following tensor of
function in the form: effective coefficients of conductivity:
fo (@) =6(v), (5.24) C; = C* (ejej + ejef) + Coeled, (5.29)
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where

-1
C*=00+%(A1+A2) 1—%(A1A1+A2A2) .

If we choose the distribution function in the form (5.21),

(5.30)

6. Numerical examples

To validate our model, we calculated the effective conductiv-
ity of the medium, which contains parallel spheroidal inclu-

the formula for the tensor of the effective conductivity coef- SIons; using the effective field method and the well-known

ficients remains the same (5.26), but in this case:
Ct = Co+ 7 (AL Fi(0) + Ay Fa(0))
X [1 =7 (A A Fy(0) + A Ay Fy (o)),
Cy =Co+ 7 (A Fa(0) + A2 Fi (o))
X [1 =7 (A A Fa(0) + AgAgFy ()] "

In both limit casesr — 0 ando — oo, the Egs. (5.28)-

(5.30) are recovered from Egs. (5.31).

(5.31)

Effective Medium Approximation (EMA) by [3,4,5]. The
semi-axes of the inclusions were chosemas= ay = 1,

az = 0.001. The inclusions conductivity is equal to 1, and
the matrix conductivity is equal to 0.01. To compare the re-
sults obtained with the EMA model and the effective field
method, we use the inclusion concentratdistead of the
crack densityr. For spheroidal inclusions = 3®/(47a),
whereq is the aspect ratio of the spheroid. The comparison
of the results obtained shows that both methods give close
results for parallel inclusions (Fig. 2), but to calculate the
effective conductivity of the material with partially oriented

If the inclusions are identical spheroids, the medium withincjysions by the EMA method is a complicated mathemat-
such inclusions is transversely isotropic (5.29). In this for-jca| problem,while the (EFM) gives the explicit expressions

mula:

C*=Co+7A(1—TAA),

independently on the choice of distribution functionsand

A are determined in Egs. (5.17) and (5.18)).

(5.32)

0,12
— Effective field method
- - - -EMA method
0,10 |
>
i
(&)
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Inclusion concentration
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—— Effective field method
- - --EMA method
0,0110
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& 00106
(3]
(3
2
E 0,0104 4
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0,0102 -
0,0100 ; : : . .
) 0,00 0,02 0,04 0,06 0,08 0,10
Inclusion concentration
FIGURE 2. Effective conductivity as a function of the inclu-

sion concentration.
spheroidal inclusions.

for the effective conductivity coefficients.

Further, we present examples of the effective conductiv-
ity calculation for partially oriented inclusions. We assume
that the inclusion conductivity is equal to 1, and the matrix
conductivity is equal to 0.01. The semi-axes of the inclusions
were chosen ag; = 1, a; = 0.5, a3 = 0.01. Such parame-
ters are typical, for example, for sedimentary carbonate rocks
containing cracks, filled with conductive formation water [1].
We assume that the correlation hole has a spherical shape:
Ay = Ay = Az = 1. Figures 3 and 4 show the dependences
of the conductivity tensor components of the horizontal and
vertical crack-like inclusions, homogeneously distributed in
the sectof—3, 3], whereg is the disorientation angle. The
angle distribution function is described by (5.11). The calcu-

1,35 -
— c,/C,
\\ c,Ic
1,30 \\ 20
4 \
1,25 \\
00 | \
= 420 \\
[$)

o ] \
Q 1,15 .
o |

1,10
1,05 o
A0 = =
e s ST
0 10 2200 30 40 50 60r 70 80 90
B, Deg.

Vertical inclusions

FIGURE 3. Normalized components of the conductivity tensor
as a function of the disorientation angle The crack density
1. The results are presented for the system of vertical in-
¢ = 0) and the first model of the angu-

T =
clusions ¢ = =/2,

The calculations are presented for parallellar distribution (inclusions homogeneously distributed in the sector

(-8, 8]
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1 1394 22
1,380
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Q 1 > 1,38
S, 1,370 L
3 ] o
Y 1,365 >
L ] O 137
$) 1360 1 6 s = =
1,355
] 1,36
1,350
13454 135
1,340 L e e e e e e e e e e e
0 1020 80 40 50~ =60 70 780 90
B, Deg. 18—
Horizontal inclusions 0,0 0,2 0,4 0,6 0,8 1,0 1.2 1,4 1,6 1,8 2,0
(o)
FIGURE 4. Normalized components of the conductivity tensor as Horzortal inclusions

a function of the disorientation angl# The crack density = 1.

The results are presented for the system of horizontal inclusionsFIGURE 6. Normalized components of the conductivity tensor as
® =0, = 0) and the first model of the angular distribution @ function of the disorientation parameter The crack density
(inclusions homogeneously distributed in the seftgs, 5]). 7 = 1. The results are presented for the system of vertical in-
clusions ¢ = 0, ¢ = 0) and the second model of the angular
distribution of the inclusions (Eq.(5.21)).

1,4 .
—c,Ic,

””” c,/c, orthorhombic, but in the case, when— oo, the effective
medium becomes transversely isotropic.

Figure 7 illustrates the dependences of the normalized
components of the conductivity tensor as a function of the
disorientation angles for different crack densities. The re-
sults are presented for vertical inclusions. In the general
case, the effective medium is orthorhombic, but in the case,
e whenj = 7 /2, the effective medium becomes transversely
: isotropic.

clc.elc,
S
1

7. Conclusion

0,0 : 0:2 I 0:4 : O:G : O:B I 1jO I 1:2 : 1!4 l 1:8 I 1?8 : 2:0
% We have presented an approach for calculating the effective
_ o conductivity tensor of material containing a system of cracks
FIGURE 5. Normalized components of the conductivity tensor as 4t are not strictly oriented. Their spatial distribution is de-
a function of the disorientation parameter The crack d_ensn_ty scribed by some angular function. The approach is based on
T = 1. The results are presented for the system of vertical |nclu-the effective field method. This method is sufficiently general
sions @ = 7/2, ¢ = 0) and the second model of the angular . ' .
distribution of the inclusions (Eq.(5.21)). and contains the weII—knqwn method of Mori-Tanaka and the
Maxwell method as particular cases. The advantage of the
lations were fulfilled for the disorientation angle= 7/2  effective field method lies in its simple numerical realiza-
andf = 0(p = 0) for vertical and horizontal inclusions, re- tion compared with other methods. The application of this
spectively. The aspect ratio of the correlation hole is closénethod permits us to take into account the texture of a mi-
to 1. As expected, the effective medium is orthorhombiccroinhomogeneous medium. The general theory was illus-
(Cr # C% # C3), but with increasing of the value of the pa- trated by numerical results obtained for crack-like inclusions
rameter( the difference between the conductiviti€s and ~ homogeneously distributed in the sector. We have shown
C3 decreases. When the value is close tar/2, the dif- that in the case of circular penny-shaped inclusions with the
ference betwee’;and C;; tends to zero, and the medium Same aspect ratio, the effective medium can be orthorhombic,
becomes transversely isotropic (Figs. 3 and 4). transversely isotropic, or isotropic depending on the choice
Figures 5-6 show the dependences of the normalize@f the distribution function of the normal to the crack surface
components of the conductivity tensor as a function of théfom Euler angles. From our point of view, the dependences,
disorientation parameter (the distribution function (5.21). obtained in the framework of this work, may be interesting
The results are presented for vertical and horizontal crackfor many areas of applications, including the rock physics
like inclusions. In the general case, the effective medium isand physics of micro-inhomogeneous (cracked) materials.

Vertical inclusions

Rev. Mex. Fis68031401
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L — Crack density 0.5 5
"""""""" -----Crack density 0.75 1,30 Crack density 0.5
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e e e e LBV S R e Crack density 1
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1,5
- 1,20
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FIGURE 7. Normalized components of the conductivity tensor as a function of the disorientation@&nBliéferent curves correspond to

the different values of crack densities. Figure 7A corresponds to the conductivity in the directiand Figure 7B corresponds to the
conductivity in the directiorxe. The results are presented for the first model of angular distribution (inclusions homogeneously distributed
in the sectof—2, f3]).

Appendix A. rajcosp, To = Tagsiny (aq,a. are the ellipse) semi-

axes), we obtain
The kernel of the integral operator in Eq. (3.6) has the form:

Uij(z, 2" )=U;j(x—2")=0;,(n) P (z—2")0;(n). (A.1) 105 702
kl -
It can be shown [13] that integral operator with such a - 4nGo 0

kernel transforms the function(z) into a constant off2. It o
allows us to find the solution of Eq. (3.5) for the elliptic do- 3mgi (¢) de
main 2 with ¢! = const in the form of the constant vector 2(p) M

multiplying onz(x):
2(p) = adcos® p+aZsin’ o, z(r) =+/1—12,

(k,1=1,2) (A7)

ni(z) = niz(z). (A.2)
(r<i1), z(r)=0, (r>1)
Substituting (A.2) into Eg. (3.5) and taking into account s o 5 . o
(A.1), we obtain: Mmi1 = @y COS™ @, M2 = Ay 810" @,
2a1 0r—1 o o 1 M1 = Ma1 = Q102 Sin @ CoS Y.
i = (Mzk +U)  ens Hig, = %Qik, (A.3)

and the constant tensbr), is expressed in term of absolutely ~ Calculation of the integral in (A.7) gives
converging integral:

ay K(k) — E(k)

' 00 0 _
Uij = 0ir(n) P60y, Un = 2a3Cy k2 7
el / i () [2(z) — 1] (A-4) P=1-— <a2> , a1 2 ag,
ax

Here, the integration is over the planger,, and the func-

ar E(k) — (1 - k2K (k)

tion z(z) vanishes outsidg. Uiz =0, U= (A.8)
The explicit expression foP;; (z) is 2a5Cy k2(1 - k2)
1 31’k:cl
Pu(z) = " 4nCola? <5kl - |33|2) : (A-5) After the vectom),; (z) has been determined, the function

e;(xz) and ¢;(z) outside the inclusion can be expressed by
Substituting this expression into (A.4) and introduc- Egs. (3.8)-(3.9) of the main text, and tendgy is determined
ing the coordinates: and ¢ in the planexixy: x1 = by Egs. (3.11)-(3.12).
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Appendix B In this case, the ellipsoidl with semi-axesy;, as, a3, de-
fined by the equation:
If we introduce the function:
|aij(n)z;| <1, (B.8)
= ZQZ'(.I‘I), when z € Q. (B.1)
i describes the shape of the correlation hole.

After the substitution (B.5) in Eq. (B.4), one can obtain
The equation for the local “external” field at the point  an expression for* (n) in the form:

located on the middle surface of an arbitrary inclusion can be

presented in the following form: er(n) = €0 + Ai(n) (Axj ()€’ (n), (B.9)
=e; —/B] x — a2 A (x) where it is denoted:
x ep(¢)Z (") Qasa")dx!,  x € Q. (B.2) Ayj(n) = /Pz‘j(w)[l — U, (2)]da. (B.10)

Let us average this equation under the condition that the !f the correlation hole is an ellipsoid, coaxial with the in-
pointz is located on the middle surface of the inclusion with ¢lusion having the orientation, then 4;;(n) is defined by
normaln. This averaging is denoted asz, ). If the mean  the formulas (4.4) of the main text.

(e:(z)|z, n) is identified with an effective field acting onthe L€t us multiply both sides of Eq. (B.9) by the tensor

inclusion of orientatiom A;;(n) and average the result over the ensemble of random
sizes and orientation of the inclusions. Solving the obtained
(ef(z)|z,n) = el (n), (B.3)  equation for the vectofA;(n)e;(n)) , we have:
then we obtain from (B.2) (Arj(n)e;(n))=[0u— (Aix(n) A (n))] ™
x (Ag(n)) ed. (B.11)

cia) =l = [ Pyla— ) (i)
The expression for the effective fietdl(n) can be found,
x ex(z)Z(x)Qz; 2" |2, n)d'. (B.4) if we substitute(A;;(n)e;(n)) from (B.11) into the right-
hand side of Eq. (B.9).
Assuming that the conductivity properties of inclusions | etus average the Egs. (4.1) over the ensemble of the ran-

are statistically independent on their spatial position, one cafiom set of the inclusions. Taking into account the relation:
find the expression for the mean under the integral in (B.4):

(Aj(2)er(a) Z (@' )Qux; ') |2, )
= (Aij(n)e ()W (2 — ),

Aij(n) = (Z(x)Q(x)Ai;(x)), (eq) 26?—/1%-]-(33—56’) <Ajk(n)e2(n)>d:c’,

(Qz; )z, n)

(Q(x))

The mean(A;;(n)e}(n)) is calculated over the ensemble Because the “external” field? |s.f|xed in the homoge-
of inclusion distribution by orientation. The functidin, (z)  Nization problem [13], Egs. (B.13) yield:
characterizes the spatial correlation of the random set of thin 0 .
inclusions. It follows from definition of the functiof(z; ) (i) =i (ai) = Cjles) (B.14)
that

(Aij(2)e; (2)Z(2)(2)) = (Aij(n)ej(n)),  (B.12)

J

we obtain:

W, = B9 (w=a+ g [Qule—a) M) do'. (©.13)

where
Tal0) =0, Walw) = 1 when [z = oo. (BO) ¢ =Codut 16— {Aa(m) Au(m)] ™" (Aiy(m), (B.15)

This function defines the shape of the so-called “correlations the tensor of the effective conductivity coefficients of the

hole” — the region in the vicinity of each inclusion inside composite material with a random set of thin high conductive
which the existence of the center of some other inclusion ignclusions.

improbable. Let us assume that there exists a linear transfor- Note that the Mori-Tanaka approach [2,21] gives the
mation of z-space rearrange the functidn, (z) into a spa-  same (B.15) expression for the effective conductive coeffi-

tially symmetric one: cients only if the shape of the correlation hole coincides with
the shape of the typical inclusion. In the general case, this
yi = agi(n) = ¥(ly|). (B-7)  shape can be different [16].
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The ergodic properties of the functions considered allowwith

11

analogous determination of the average

replacing the ensemble averaging over random set of inclutA;;(n) Ag; (n)) .
sions by the volume averages over the fixed realization of this

set, so thatd; > a»):

ot

10.

11.

12.

13.

14.

. Ya. Benveniste,

= lim
W —oo

(i) = Jim - [ K@) Z(@) 2w
w
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