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Effect of the orientation distribution of thin highly conductive inhomogeneities
on the overall electrical conductivity of heterogeneous material
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Many natural composite materials contain systems of partially oriented thin low-resistivity inclusions (for example, water-saturated microc-
racks in a double porosity sedimentary formation). We have calculated the components of the electrical conductivity tensor of such materials
as a function of crack density. The results were obtained for thin ellipsoidal inclusions with conductivity (electrical or thermal) much larger
than the matrix conductivity. To calculate the effective conductivity, we have used the effective field method (EFM). We have obtained
the explicit expressions for the effective parameters of inhomogeneous materials. The application of the EFM allows one to describe the
influence of the peculiarities in the spatial distribution of inclusions on the effective properties of the medium. General explicit expressions,
obtained in this work, are illustrated by calculating examples for inclusions, homogeneously distributed in the sector [-β, β], whereβ is
the disorientation angle, and some continuous angle distribution functions. The calculations have shown that the spatial distribution of the
crack-like inclusions strongly affects the conductive properties of the effective medium and the symmetry of their tensor.
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1. Introduction

Many microinhomogeneous materials, for instance, sedimen-
tary rocks, contain a system of oriented or partially oriented
inhomogeneities (inclusions). Thus, carbonate hydrocarbon
reservoirs may be represented as a system of fluid-filled mi-
crocracks that are either randomly oriented or oriented along
certain directions [1-18]. The presence of such systems of
cracks leads to a considerable anisotropy of the physical char-
acteristics of the medium, such as effective electrical or ther-
mal conductivity or elastic moduli. Identification of oriented
systems of cracks and the evaluation of their parameters is
an important problem that is of interest for many areas of
physics of composite materials and petrophysics. The materi-
als, containing high-conductivity inclusions, may be consid-
ered as homogeneous with certain effective properties, when
their physical properties are determined in a larger scale com-
pared to the characteristic size of inclusions.

During the past one hundred years, starting from the pi-
oneering works by [5,6,19] a number of methodologies of
calculation of effective conductivity of a medium with inclu-
sions of different shapes have been developed [25-29]. A re-
view of such methods that includes the works, published be-
fore 1990, was given in the papers by [3,26,30]. An overview
of the more recent works is given in Refs. [4,29]. As a rule,
in the majority of the works, that are based on the effective
medium approach, the authors consider the media that con-
tain either random or parallel inclusions. In the case of real
media, such models may be frequently considered only as a
rough approximation [18]. In the current work, we consider

the model of a microinhomogeneous medium with inclusions
that are not strictly oriented. Their spatial distribution is de-
scribed by some angular function. Such models have long
been in the interest of researchers. For elastic cracked solids,
for example, such models are considered in Refs. [15,28,31].
The solid review about the effect of orientation distribution
on the effective properties of the fiber reinforced materials
can be found in Ref. [20]. In the works by [8,9,17] the in-
fluence of the inhomogeneity orientation on the elastic and
conductive properties of microinhomogeneous materials are
studied. The results obtained in the last works were based on
the so-called non-interaction approximation that slightly re-
duced the area of possible application. Our calculations are
based on the so-named effective field method that allows con-
sidering the interaction between the inclusions. According to
this method, every inclusion in the inhomogeneous medium
is considered as an isolated one, embedded in the homoge-
neous background medium (matrix). The field that acts on
this inclusion (effective field) does not coincide with the “ex-
ternal” field applied to the medium, but it is the sum of this
“external” field and disturbances induced by all surrounding
inclusions. This method has a long history, and it was mainly
used in nuclear physics and the theory of phase transitions for
the description of various types of many particle interactions.
In application to the mechanics of composite materials, this
method was developed by [10,13]. This method has gained
popularity for the calculation of effective elastic properties
due to its simplicity. The most complete explanation of the
method is given in the monographs by [13].
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However, this method is not frequently used in applica-
tion to the problems of thermal or electric conductivity. In
our previous work by [16], we have applied this method to
calculate the coefficients of the conductivity tensor of ran-
domly oriented and parallel inclusions. In the present work,
we apply the effective field method for the calculation of con-
ductivity tensor of microheterogeneous media containing thin
(crack-like) high-conductivity inclusions that are distributed
in the space, and this distribution is characterized by some
distribution density. In the second section of the paper, we
discuss the homogenization problem, while in the third one
we present the solution of the so-called one-particle prob-
lem that is the building block of any homogenization scheme.
Then, the effective field method is shortly presented, and the
effective conductivity of the material containing a random set
of thin high-conductivity inclusions are calculated. After that
we study the changes of the overall conductive material sym-
metry depending on the changes in the parameters of the dis-
tribution function over the orientation of the inclusions.

2. Homogenization problem

Let us consider a set of dispersed isotropic particles (inclu-
sions), having the conductivity coefficient C, randomly dis-
tributed in an infinitely isotropic homogeneous medium, hav-
ing the conductivity coefficientC0. The vector of the local
flux qi(x) and the fieldei(x) in such a medium satisfy the
system of equations:

∂iqi(x) = 0, qi(x) = Cij(x)ej(x),

rotijej(x) = 0, ∂i ≡ ∂

∂xi
. (2.1)

where x is an arbitrary point in 3D-space. These equa-
tions can describe various physical processes in solids, in-
cluding stationary thermal conductivity and filtration, static
electroconductivity in conductors and dielectrics, as well as,
magneto- and electrostriction. All functions in Eqs. (3) are
random functions of coordinates. Determination of the re-
lation between the mathematical expectations of the fields
qi(x) andei(x) that generally has the form:

〈qi(x)〉 = C∗ij 〈ej(x)〉 , (2.2)

whereC∗ij is the tensor of effective (or overall) conductiv-
ity. The determination of this tensor is the central problem
of micromechanics (the homogenization problem). For the
random set of inclusions, the exact solution to this problem
is impossible, and only approximate methods are available.
There are several such approximate homogenization schemes
that are named self-consistent methods [13]. The main dis-
tinguishing feature of these methods is the reduction of the
problem for many randomly placed particles to the problem
for only one separate particle (one-particle problem), that is
the building block of these methods. In what follow, we con-
sider a special kind of particle: the thin inclusion with high
conductivity. Such inclusion can be used for example as a
model of crack, filled with saltwater in a rock formation.

3. One-particle problem for a thin high-
conductivity inclusion in a homogeneous
medium

This problem has been solved by [16]. Here, we present
this solution only briefly, the details can be seen in the men-
tioned publication. Let us examine a homogeneous isotropic
medium having the conductivity coefficientC0, containing a
single inclusion with the conductivity coefficientC, occupy-
ing the regionv. The fields This problem has been solved by
[16]. Here, we present this solution only briefly, the details
can be seen in the mentioned publication. Let us examine a
homogeneous isotropic medium having the conductivity co-
efficient C0, containing a single inclusion with the conduc-
tivity coefficient C, occupying the region v. The fieldsqi(x)
andei(x) satisfy the integral equations [16]:

ei(x)=e0
i (x)−(C − C0)

∫

v

Pij(x−x′)eJ(x′)dx′,

qi(x)=q0
i (x)+

(
1
C
− 1

C0

) ∫

v

Qij(x−x′)qj(x′)dx′, (3.1)

where it is denoted

Pij(x) = ∂i∂j

(
1

4πC0|x|
)

,

Qij(x) = C0 [C0Pij(x)− δijδ(x)] , (3.2)

e0
i (x) andq0

i (x) are the “external” fields that would be in the
medium without inclusion;δ(x) is the 3D-Dirac-delta func-
tion.

We assume that one characteristic lengthh of the regionv
is smaller than two others of order l. Thus the ratioδ1 = h/l
is small. A thin inclusion with conductivity greater than that
of the surrounding medium is of prime interest in application.
In this case, the ratioδ2 = C0/C is also small. The most
valuable information about the fieldsei(x) andqi(x) in the
vicinity of the inclusion is contained in the principal terms of
the asymptotic expansion of these fields over the parameters
δ1 andδ2. In order to construct these terms, it is necessary to
find the limiting solution of the conductivity problem, when
δ1, δ2 → 0, and the ratioδ1/δ2 is of unit order and remains
constant.

Let us assume that the middle surface of the inclusion
Ω is a smooth enough surface with a given continuous field
of its normal vectorni(x). The surfaceΩ bounded by the
closed contourΓ. We take a pointx on Ω and put it in the
origin of the local coordinate system with We assume that
one characteristic lengthh of the region v is smaller than two
others of order l. Thus the ratioδ1 = h/l is small. A thin
inclusion with conductivity greater than that of the surround-
ing medium is of prime interest in application. In this case,
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the ratioδ2 = C0/C is also small. The most valuable infor-
mation about the fieldsei(x) andqi(x) in the vicinity of the
inclusion is contained in the principal terms of the asymptotic
expansion of these fields over the parametersδ1 andδ2. In or-
der to construct these terms, it is necessary to find the limiting
solution of the conductivity problem, whenδ1, δ2 → 0, and
the ratioδ1/δ2 is of unit order and remains constant. Let
us assume that the middle surface of the inclusionΩ is a
smooth enough surface with a given continuous field of its
normal vector We assume that one characteristic lengthh of
the regionv is smaller than two others of order l. Thus the
ratio δ1 = h/l is small. A thin inclusion with conductivity
greater than that of the surrounding medium is of prime in-
terest in application. In this case, the ratioδ2 = C0/C is
also small. The most valuable information about the fields
ei(x) andqi(x) in the vicinity of the inclusion is contained
in the principal terms of the asymptotic expansion of these
fields over the parametersδ1 and δ2. In order to construct
these terms, it is necessary to find the limiting solution of the
conductivity problem, whenδ1, δ2 → 0, and the ratioδ1/δ2

is of unit order and remains constant.
Let us assume that the middle surface of the inclusion

Ω is a smooth enough surface with a given continuous field
of its normal vectorni(x). The surfaceΩ bounded by the
closed contourΓ. We take a pointx on Ω and put it in the
origin of the local coordinate system withz-axis directed
along the normalni(x). We denote byh(x) the transverse
size of the inclusion along the normalni(x). Then, we de-
noteh(x) = δ1l and take into account thatδ1/δ2 is O(1).
It follows from Eqs. (3.1) that the main terms of the field ex-
pansion ofei(x) andqi(x) overδ1 andδ2 in the medium with
thin high-conductivity inclusion can be expressed as:

ei(x) = e0
i (x)−

∫

Ω

Pij(x− x′)ηj(x′)dx′,

qi(x) = q0
i (x) +

1
C0

∫

Ω

Qij(x− x′)ηj(x′)dx′, (3.3)

where

ηk(x) = (C − C0)

h(x)/2∫

−h(x)/2

ek(x + n(x)z)dz, (3.4)

and it is necessary to consider the main terms of expansion
overδ1 andδ2 in the expansion forηi(x). To construct these
terms (for which we will preserve the same notationηi(x)),
we will use the method of matched asymptotic expansion.
Using the results of [12], where one can find the details of
the proof, it is possible to show thatηi(x) is the vector of the
surfaceΩ satisfying the equality:

θij(x)ηj(x) = ηi(x),

θij(x) = δij − ni(x)nj(x), (x ∈ Ω). (3.5)

This vector is the solution of the following integral equa-
tion:

µij(x)ηj(x)−
∫

Ω

Uij(x− x′)ηj(x′)dΩ′

= θij(x)e0
j (x), (3.6)

where it is denoted

µij(x) =
1

Ch(x)
θij(x),

Uij(x) = θik(x)Pkl(x− x′)θlj(x′) (3.7)

and the action of the operator with kernelUij(x, x
′
) on a

smooth enough function (regularization of this operator) can
be obtained in Ref. [12].

Solving Eq. (3.6) for the functionηi(x) and substituting
the result in the right-hand side of Eqs. (3.3), we obtain ex-
pressions for the fieldei(x) andqi(x). These fields approxi-
mate the real fields in the medium with inhomogeneity except
for the small vicinity of the contourΓ. For an inclusion of ar-
bitrary shape, Eq. (3.6) can be solved only numerically. But
for ellipsoidal thin inclusion and constant “external” fielde0

i

this equation can be solved in the closed analytical form.
Let the inclusion be a thin ellipsoid with semi-axes

a1, a2, h, (h/a1, h/a2 ¿ 1. ThenΩ becomes a plane ellipti-
cal surface. Letni denotes its normal. In the system of co-
ordinates with the axes that coincide with the major ellipsoid
axes, functionh(x) can be written as:

h(x) = 2hz(x),

z(x) =

√
1−

(
x1

a1

)2

−
(

x2

a2

)2

. (3.8)

In the results of calculations, the details of which are pre-
sented in Appendix A, we obtain that the fieldsei(x) and
qi(x) outside of the thin inclusion can be expressed as:

ei(x) = e0
i −

∫

Ω

Pij(x− x′)ΛjkZ(x′)dx′ · e0
k,

qi(x) = q0
i +

1
C0

∫
Qij(x− x, )ΛjkZ(x′)dx′ · e0

k. (3.9)

Here,Z(x) is denoted

Z(x) =
2a2

1

a2
z(x), (3.10)

and tensorΛij in same system of coordinates with unit vec-
torsn1

i , n
2
i , n

3
i (n3

i is coincided with the normalni of the sur-
faceΩ) has the form:

Λij = Λ1(a1, a2)n1
i n

1
j + Λ2(a1, a2)n2

i n
2
j , (3.11)
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where

Λ1(a1, a2) = C0

[
a1δ2

a2δ1
+

K(k)− E(k)
k2

]
,

δ1 =
h

a1
, δ2 =

C0

C
,

Λ2(a1, a2) = C0

[
a1δ2

a2δ1
+

E(k)− (1− k2)K(k)
(1− k2)k2

]
,

k2 = 1−
(

a2

a1

)2

, a1 > a2, (3.12)

K(k) andE(k) are the complete elliptic integrals of the first
and the second kind, respectively:

K(k) =

π/2∫

0

dt√
1− k2 sin2 t

,

E(k) =

π/2∫

0

√
1− k2 sin2 tdt. (3.13)

4. Random set of thin low-resistivity inclu-
sions in an isotropic homogeneous medium

We consider a microinhomogeneous medium consisting of a
homogeneous isotropic host material (matrix) and random set
of thin low-resistivity inclusions. The “one-particle” prob-
lem, considered in the previous Section, is basic for self-
consistent homogenization schemes [11,13]. Here, we use
one of these schemes that is named the effective field method
(EFM). According to this method, we introduce a local “ex-
ternal” field e∗i (x) that acts on each inclusion. This field is
composed of an “external” fielde0

i and the fields induced by
surrounding inclusions. The main hypothesis of the effective
field method is as follows: every inclusion in the composite
material can be considered as an isolated one in the homo-
geneous matrix in a local uniform “external” fielde∗i , which
depends on the orientation of the inclusion (vectorn). Using
this hypothesis, the expressions for the fieldsei(x) andqi(x)
can be represented in a form like Eqs. (3.3), in which:

ηi(x) = Λij(x)e∗j (n(x))Z(x)Ω(x),

Ω(x) =
∑

k

Ωk(x). (4.1)

Here,Ωk(x) is a generalized function concentrated on the
surface of thek-th inclusion, the functionn(x) coincides with
the normaln to the surfaceΩk, whenx ∈ Ωk. The function
Λij(x) is equal to the constant valueΛij(a

(k)
1 , a

(k)
2 ) deter-

mined in (3.11), whenx ∈ Ωk and:

Z(x) =
2(a(k)

1 )2

a
(k)
2

√√√√1−
(

x1

a
(k)
1

)2

−
(

x2

a
(k)
2

)2

. (4.2)

The procedure of the homogenization by the effective
field method is presented in Appendix B. The final result is:

C∗ij=C0δij+n0 [δik − n0 〈vΛim(n)Amk(n)〉]−1 〈vΛkj(n)〉 ,

v =
4
3
πa3

1, (4.3)

where〈·〉 means the averaging over ensemble distribution of
the sizes and orientation of the inclusions;n0 is the number
concentration of the inclusions. TensorAij(n) in Eq. (4.3) is
determined by the relations:

Aij(n) = A1n
1
i n

1
j + A2n

2
i n

2
j + A3n

3
i n

3
j , (4.4)

Ak =
α1α2α3

2C0

×
∞∫

0

dσ

(α2
k + σ)

√
(α2

1 + σ)(α2
2 + σ)(α2

3 + σ)
,

(k = 1, 2, 3), (4.5)

whereα1, α2, α3 are the semi-axes of the ellipsoidal “corre-
lation hole” (see Appendix B).

The cases of parallel and completely disoriented thin
high-conductivity inclusions were considered by [16]. In
what follows, our attention is concentrated on the effects of
partly oriented inclusions.

5. Description of the inclusion orientation dis-
tribution

For the description of the thin inclusion orientation, we in-
troduce a global Cartesian basisei(i = 1, 2, 3) of the axes
x1, x2, x3, wherex3 is the vertical axis (Fig. 1). The orien-
tation of the basisnk(k = 1, 2, 3) that defines the symmetry
axes of the elliptical thin inclusion with respect to the global

FIGURE 1. The global basis isei, and the basisni defines the
symmetry axes of the elliptical crack-like inclusion, (ψ, θ, ϕ) are
the Euler angles.
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basisei is described by the three Euler angles(ψ, θ, ϕ), and
the connection between these bases is given by the relations:

n1 = (cos ϕ cos ψ − sinϕ sin ψ cos θ)e1

+ (cos ϕ sinψ + sin ϕ cosψ cos θ)e2 + sin ϕ sin θe3,

n2 = −(sinϕ cos ψ + cos ϕ sinψ cos θ)e1

+ (− sin ϕ sinψ + cos ϕ cos ψ cos θ)e2 + cos ϕ sin θe3,

n3 = sin ψ sin θe1 − cos ψ sin θe2 + cos θe3. (5.1)

Substituting these formulas into (4.3), we obtain the pre-
sentation of the tensorC∗ij in the global basisei.

Let us consider some special cases.
Let the thin inclusions be the same size and shape, but

randomly oriented with respect to the global coordinate sys-
tem. In this case, the formula (4.3) takes the form:

C∗ij = C0δij + τ [δik − τ 〈Λim(n)Amk(n)〉]−1 〈Λkj(n)〉 ,

τ =
4
3
πa3

1n0, (5.2)

and the Euler angles in Eqs. (5.1) become random variables.
The parameterτ in Eq. (5.2) is the so-called crack density.

We introduce the function of distributionf(ψ, θ, ϕ) of the
inclusion orientation over the anglesψ, θ, ϕ. This function
must satisfy the normalization conditions:

1
8π2

2π∫

0

dψ

2π∫

0

dϕ

π∫

0

f(ψ,ϕ, θ) sin θdθ = 1. (5.3)

Suppose that the orientations of the inclusions, described
by the anglesψ, θ, ϕ, are statistically independent. There-
fore, the functionf(ψ, θ, ϕ) can be represented as:

f(ψ, θ, ϕ) = fψ(ψ)fϕ(ϕ)fθ(θ). (5.4)

The normalization conditions take the form:

1
2π

2π∫

0

fψ(ψ)dψ = 1,
1
2π

2π∫

0

fϕ(ϕ)dϕ = 1,

1
2

π∫

0

fθ(θ) sin θdθ = 1. (5.5)

We consider the case, whenfψ(ψ) = 1, fϕ(ϕ) =
1, fθ(θ) 6= 1. The medium has the macroscopically trans-
versely isotropic conductive properties with symmetry axis
x3:

C∗ij = C∗1 (e1
i e

1
j + e2

i e
2
j ) + C∗3e3

i e
3
j , (5.6)

where it is denoted:

C∗1 = C0 +
τ(Λ1 + Λ2)(1 + Sθ)

4− τ(Λ1A1 + Λ2A2)(1 + Sθ)
,

C∗3 = C0 +
τ(Λ1 + Λ2)(1− Sθ)

2− τ(Λ1A1 + Λ2A2)(1− Sθ)
, (5.7)

Sθ =
1
2

π∫

0

fθ(θ) cos2 θ sin θdθ. (5.8)

The casefθ(θ) = 1 (the uniform distribution over the an-
gleθ) leads toSθ = 1/3, that corresponds to the full isotropy
of the material:

C∗ij = C∗
(
e1
i e

1
j + e2

i e
2
j + e3

i e
3
j

)
= C∗δij ,

C∗ = C0 +
τ

3
(Λ1 + Λ2)

[
1− τ

3
(Λ1A1 + Λ2A2)

]−1

(5.9)

5.1. System of vertical inclusions

We consider the system of vertical inclusions (θ =
π/2, ϕ = 0). In this case

n1 = cos ψe1 + sin ψe2, n2 = e3,

n3 = sin ψe1 + cos ψe2. (5.10)

We choose one of the simplest distribution functions over
the angleψ:

fψ(ψ) =

{
1 when ψ ∈ [−β, β]

0 when ψ /∈ [−β, β]
(5.11)

It means that the horizontal crack-like inclusions homo-
geneously distributed in the sector[−β, β], whereβ is the
disorientation angle. For0 < β < π/2 the conductive prop-
erties of such material have the orthorhombic symmetry with
the following tensor of effective conductivity coefficients:

C∗ij = C∗1e1
i e

1
j + C∗2e2

i e
2
j + C∗3e3

i e
3
J , (5.12)

where

C∗1 = C0 + τΛ1F (β) [1− τΛ1A1F (β)]−1
,

C∗2 = C0 + τΛ1(1− F (β)) [1− τΛ1A1(1− F (β))]−1
,

C∗3 = C0 + τΛ2 (1− τΛ2A2)
−1

, (5.13)

F (β) =
1
2β

(β + sin β cos β). (5.14)

When β → 0 (completely aligned vertical inclusions),
F (β) → 1, and the medium is still orthotropic. The tensor of
effective conductivity coefficients is determined by the same
formula (5.12), in which:

C∗1 = C0 + τΛ1 (1− τΛ1A1)
−1

, C∗2 = C0,

C∗3 = C0 + τΛ2 (1− τΛ2A2)
−1

. (5.15)
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If β → π/2, F (β) → 1/2, and the medium becomes
transversely isotropic with the symmetry axisx3. Expression
for theC∗3 in (5.12) remains the same, but:

C∗1 = C∗2 = C0 +
τ

2
Λ1

(
1− τ

2
Λ1A1

)−1

. (5.16)

Suppose that the inclusions have the same spheroidal
shape:a1 = a2 = a, a3. For such inclusions:

Λ1 = Λ2 = Λ = C0

(
δ2

δ1
+

π

4

)−1

(5.17)

If the shape of the correlation hole is also spheroidal
(α1 = α2 = α, α3) and coaxial to the inclusion, then:

A1 = A2 = A =
g(γ)
C0

,

A3 =
1

2C0
(1− g(γ)), γ =

a

a3
> 1,

g(γ) =
γ2

γ2 − 1

[
1− 1√

γ2 − 1
arctan

√
γ2 − 1

]
. (5.18)

For spheroidal inclusions andβ = 0 (parallel inclusions),
the medium is transversely isotropic with the symmetry axis
x2:

C∗ij = C∗(e1
i e

1
j + e3

i e
3
j ) + C0e

2
i e

2
j , (5.19)

where

C∗ = C0 + τΛ (1− τΛA)−1
. (5.20)

It has to be noted, that the angle distribution function can
be chosen as a continuous one [18]:

fψ(ψ) =
1
2π

exp(cos ψ/σ2), (5.21)

whereσ is the parameter, which characterizes the inclusion
disorientation. With this distribution function the tensor of
effective conductivity coefficients is determined by the same
formula (5.12), in which:

C∗1 = C0 + τΛ1F1(σ) [1− τΛ1A1F1(σ)]−1
,

C∗2 = C0 + τΛ1F2(σ) [1− τΛ1A1F2(σ)]−1
,

C∗3 = C0 + τΛ2 (1− τΛ2A2)
−1

. (5.22)

Here, it is denoted

F1(σ) =
σ2I1(1/σ2) + I2(1/σ2)

I0(1/σ2)
,

F2(σ) =
σ2I1(1/σ2)
I0(1/σ2)

. (5.23)

whereIn(z) is the modified Bessel function.
Note, that the limitσ → 0 corresponds to the distribution

function in the form:

fψ(ψ) = δ(ψ), (5.24)

i.e. the inclusions are parallel to the planex2x3. In this
case,F1(σ) = 1, F2(σ) = 0 , and Eqs. (5.22) are trans-
formed to Eqs. (5.15). The other limitσ → ∞ corresponds
to the homogeneous distribution of inclusions with respect to
the angleψ. For this limit F1(σ) = F2(σ) = 1/2, the for-
mula (5.16) is recovered from (5.22),i.e. the system becomes
transversely isotropic with the symmetry axisx3.

In a more general case, the distribution function can be
represented in the form of series of spherical harmonics. The
coefficients of such series can be calculated from the analysis
of measuring data.

5.2. System of horizontal thin inclusions with high con-
ductivity.

Now we consider the case, whenθ = 0 (horizontal inclu-
sions). It is well known that in this case the Euler angles
degenerate (the line of nudes coincides withx1- axis, and the
anglesϕ andψ become uncertain). At the same time, it is
possible to introduce the only one angleϕ between the vec-
torsn1 ande1 that determines the orientation of inclusions in
thex1x2-plane. For this situation we have:

n1 = cos ϕe1 + sin ϕe2,

n2 = − sin ϕe1 + cos ϕe2, n3 = e3. (5.25)

With the same distribution function (5.11) the tensor of
the effective conductivity coefficientsC∗ij has the form:

C∗ij = C∗1e1
i e

1
j + C∗2e2

i e
2
J + C0e

3
i e

3
j . (5.26)

One of these independent coefficients of conductivity co-
incides with those of the matrix in the direction ofx3-axis,
and two other coefficients are determined by the expressions:

C∗1 = C0 + τ (Λ1F (β) + Λ2(1− F (β))

× [1− τ (Λ1A1F (β) + Λ2A2(1− F (β))]−1
,

C∗2 = C0 + τ (Λ1(1− F (β)) + Λ2F (β))

× [1− τ (ΛA1(1− F (β)) + Λ2A2F (β))]−1
. (5.27)

where the functionF (β) is determined in Eq. (5.14).
Whenβ → 0 (the symmetry axes of the horizontal el-

lipsoidal inclusions are completely aligned), the effective
medium remains orthorhombic with the effective conductivi-
ties (see formula (5.19)):

C∗1 = C0 + τΛ1 (1− τΛ1A1)
−1

,

C∗2 = C0 + τΛ2 (1− τΛ2A2)
−1

. (5.28)

The other limiting caseβ → π/2 corresponds to the
transversely isotropic material with the following tensor of
effective coefficients of conductivity:

C∗ij = C∗
(
e1
i e

1
j + e2

i e
2
j

)
+ C0e

3
i e

3
j , (5.29)
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where

C∗=C0+
τ

2
(Λ1+Λ2)

[
1−τ

2
(Λ1A1+Λ2A2)

]−1

. (5.30)

If we choose the distribution function in the form (5.21),
the formula for the tensor of the effective conductivity coef-
ficients remains the same (5.26), but in this case:

C∗1 = C0 + τ (Λ1F1(σ) + Λ2F2(σ))

× [1− τ (Λ1A1F1(σ) + Λ2A2F2(σ))]−1
,

C∗2 = C0 + τ (Λ1F2(σ) + Λ2F1(σ))

× [1− τ (Λ1A1F2(σ) + Λ2A2F1(σ))]−1
. (5.31)

In both limit casesσ → 0 andσ → ∞, the Eqs. (5.28)-
(5.30) are recovered from Eqs. (5.31).

If the inclusions are identical spheroids, the medium with
such inclusions is transversely isotropic (5.29). In this for-
mula:

C∗ = C0 + τΛ (1− τΛA)−1
, (5.32)

independently on the choice of distribution functions (Λ and
A are determined in Eqs. (5.17) and (5.18)).

FIGURE 2. Effective conductivity as a function of the inclu-
sion concentration. The calculations are presented for parallel
spheroidal inclusions.

6. Numerical examples

To validate our model, we calculated the effective conductiv-
ity of the medium, which contains parallel spheroidal inclu-
sions, using the effective field method and the well-known
Effective Medium Approximation (EMA) by [3,4,5]. The
semi-axes of the inclusions were chosen asa1 = a2 = 1,
a3 = 0.001. The inclusions conductivity is equal to 1, and
the matrix conductivity is equal to 0.01. To compare the re-
sults obtained with the EMA model and the effective field
method, we use the inclusion concentrationΦ instead of the
crack densityτ . For spheroidal inclusionsτ = 3Φ/(4πα),
whereα is the aspect ratio of the spheroid. The comparison
of the results obtained shows that both methods give close
results for parallel inclusions (Fig. 2), but to calculate the
effective conductivity of the material with partially oriented
inclusions by the EMA method is a complicated mathemat-
ical problem,while the (EFM) gives the explicit expressions
for the effective conductivity coefficients.

Further, we present examples of the effective conductiv-
ity calculation for partially oriented inclusions. We assume
that the inclusion conductivity is equal to 1, and the matrix
conductivity is equal to 0.01. The semi-axes of the inclusions
were chosen asa1 = 1, a2 = 0.5, a3 = 0.01. Such parame-
ters are typical, for example, for sedimentary carbonate rocks
containing cracks, filled with conductive formation water [1].
We assume that the correlation hole has a spherical shape:
A1 = A2 = A3 = 1. Figures 3 and 4 show the dependences
of the conductivity tensor components of the horizontal and
vertical crack-like inclusions, homogeneously distributed in
the sector[−β, β], whereβ is the disorientation angle. The
angle distribution function is described by (5.11). The calcu-

FIGURE 3. Normalized components of the conductivity tensor
as a function of the disorientation angleβ. The crack density
τ = 1. The results are presented for the system of vertical in-
clusions (θ = π/2, ϕ = 0) and the first model of the angu-
lar distribution (inclusions homogeneously distributed in the sector
[−β, β]).

Rev. Mex. Fis.68031401



8 V. LEVIN, M. MARKOV, AND G. RONQUILLO JARILLO

FIGURE 4. Normalized components of the conductivity tensor as
a function of the disorientation angleβ. The crack densityτ = 1.
The results are presented for the system of horizontal inclusions
(θ = 0, ϕ = 0) and the first model of the angular distribution
(inclusions homogeneously distributed in the sector[−β, β]).

FIGURE 5. Normalized components of the conductivity tensor as
a function of the disorientation parameterσ. The crack density
τ = 1. The results are presented for the system of vertical inclu-
sions (θ = π/2, ϕ = 0) and the second model of the angular
distribution of the inclusions (Eq.(5.21)).

lations were fulfilled for the disorientation angleθ = π/2
andθ = 0(ϕ = 0) for vertical and horizontal inclusions, re-
spectively. The aspect ratio of the correlation hole is close
to 1. As expected, the effective medium is orthorhombic
(C∗1 6= C∗2 6= C∗3 ), but with increasing of the value of the pa-
rameterβ the difference between the conductivitiesC∗1 and
C∗2 decreases. When theβ value is close toπ/2, the dif-
ference betweenC∗1andC∗2 tends to zero, and the medium
becomes transversely isotropic (Figs. 3 and 4).

Figures 5-6 show the dependences of the normalized
components of the conductivity tensor as a function of the
disorientation parameterσ (the distribution function (5.21).
The results are presented for vertical and horizontal crack-
like inclusions. In the general case, the effective medium is

FIGURE 6. Normalized components of the conductivity tensor as
a function of the disorientation parameterσ. The crack density
τ = 1. The results are presented for the system of vertical in-
clusions (θ = 0, ϕ = 0) and the second model of the angular
distribution of the inclusions (Eq.(5.21)).

orthorhombic, but in the case, whenσ → ∞, the effective
medium becomes transversely isotropic.

Figure 7 illustrates the dependences of the normalized
components of the conductivity tensor as a function of the
disorientation angleβ for different crack densities. The re-
sults are presented for vertical inclusions. In the general
case, the effective medium is orthorhombic, but in the case,
whenβ = π/2, the effective medium becomes transversely
isotropic.

7. Conclusion

We have presented an approach for calculating the effective
conductivity tensor of material containing a system of cracks
that are not strictly oriented. Their spatial distribution is de-
scribed by some angular function. The approach is based on
the effective field method. This method is sufficiently general
and contains the well-known method of Mori-Tanaka and the
Maxwell method as particular cases. The advantage of the
effective field method lies in its simple numerical realiza-
tion compared with other methods. The application of this
method permits us to take into account the texture of a mi-
croinhomogeneous medium. The general theory was illus-
trated by numerical results obtained for crack-like inclusions
homogeneously distributed in the sector. We have shown
that in the case of circular penny-shaped inclusions with the
same aspect ratio, the effective medium can be orthorhombic,
transversely isotropic, or isotropic depending on the choice
of the distribution function of the normal to the crack surface
from Euler angles. From our point of view, the dependences,
obtained in the framework of this work, may be interesting
for many areas of applications, including the rock physics
and physics of micro-inhomogeneous (cracked) materials.
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FIGURE 7. Normalized components of the conductivity tensor as a function of the disorientation angleβ. Different curves correspond to
the different values of crack densities. Figure 7A corresponds to the conductivity in the directionx1, and Figure 7B corresponds to the
conductivity in the directionx2. The results are presented for the first model of angular distribution (inclusions homogeneously distributed
in the sector[−β, β]).

Appendix A.

The kernel of the integral operator in Eq. (3.6) has the form:

Uij(x, x′)=Uij(x−x′)=θik(n)Pkl(x−x′)θlj(n). (A.1)

It can be shown [13] that integral operator with such a
kernel transforms the functionz(x) into a constant onΩ. It
allows us to find the solution of Eq. (3.5) for the elliptic do-
mainΩ with e0

i = const in the form of the constant vector
multiplying onz(x):

ηi(x) = ηiz(x). (A.2)

Substituting (A.2) into Eq. (3.5) and taking into account
(A.1), we obtain:

ηi =
2a2

1

a2

(
µ0

ik + U0
ik

)−1
e0
k, µ0

ik =
1

2hC
θik, (A.3)

and the constant tensorU0
ik is expressed in term of absolutely

converging integral:

U0
ij = θik(n)P 0

klθlj ,

P 0
kl =

∫
Pkl(x)[z(x)− 1]dΩ. (A.4)

Here, the integration is over the planex1x2, and the func-
tion z(x) vanishes outsideΩ.

The explicit expression forPij(x) is:

Pkl(x) = − 1
4πC0|x|3

(
δkl − 3xkxl

|x|2
)

. (A.5)

Substituting this expression into (A.4) and introduc-
ing the coordinatesr and ϕ in the planex1x2: x1 =

ra1 cosϕ, x2 = ra2 sin ϕ (a1, a2 are the ellipseΩ semi-
axes), we obtain

P 0
kl = − a1a2

4πC0

∞∫

0

z(r)− 1
r2

×
2π∫

0

[
3mkl(ϕ)
t2(ϕ)

− δkl

]
dϕ

t3(ϕ)
, (k, l = 1, 2) (A.7)

t2(ϕ) = a2
1 cos2 ϕ + a2

2 sin2 ϕ, z(r) =
√

1− r2,

(r ≤ 1), z(r) = 0, (r > 1)

m11 = a2
1 cos2 ϕ, m22 = a2

2 sin2 ϕ,

m12 = m21 = a1a2 sinϕ cosϕ.

Calculation of the integral in (A.7) gives

U0
11 =

a2

2a2
1C0

K(k)− E(k)
k2

,

k2 = 1−
(

a2

a1

)
, a1 ≥ a2,

U12 = 0, U0
22 =

a2

2a2
1C0

E(k)− (1− k2)K(k)
k2(1− k2)

. (A.8)

After the vectorηi(x) has been determined, the function
ei(x) and qi(x) outside the inclusion can be expressed by
Eqs. (3.8)-(3.9) of the main text, and tensorΛij is determined
by Eqs. (3.11)-(3.12).
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Appendix B

If we introduce the function:

Ω(x; x′) =
∑

i 6=j

Ωi(x′), when x ∈ Ωj . (B.1)

The equation for the local “external” field at the pointx
located on the middle surface of an arbitrary inclusion can be
presented in the following form:

e∗i (x) = e0
i−

∫
Pij(x− x′)Λjk(x′)

× e∗k(x′)Z(x′)Ω(x;x′)dx′, x ∈ Ω. (B.2)

Let us average this equation under the condition that the
pointx is located on the middle surface of the inclusion with
normaln. This averaging is denoted as〈·|x, n〉. If the mean
〈e∗i (x)|x, n〉 is identified with an effective field acting on the
inclusion of orientationn :

〈e∗i (x)|x, n〉 = e∗i (n), (B.3)

then we obtain from (B.2)

e∗i (x) = e0
i −

∫
Pij(x− x′)〈Λjk(x′)

× e∗k(x′)Z(x′)Ω(x; x′)|x, n〉dx′. (B.4)

Assuming that the conductivity properties of inclusions
are statistically independent on their spatial position, one can
find the expression for the mean under the integral in (B.4):

〈Λjk(x′)e∗k(x′)Z(x′)Ω(x; x′)|x, n〉
= 〈Λij(n)e∗j (n)〉Ψn(x− x′),

Λij(n) = 〈Z(x)Ω(x)Λij(x)〉,

Ψn =
〈Ω(x; x′)x, n〉

〈Ω(x)〉 . (B.5)

The mean
〈
Λij(n)e∗j (n)

〉
is calculated over the ensemble

of inclusion distribution by orientation. The functionΨn(x)
characterizes the spatial correlation of the random set of thin
inclusions. It follows from definition of the functionΩ(x;x′)
that

Ψn(0) = 0, Ψn(x) → 1, when |x| → ∞. (B.6)

This function defines the shape of the so-called “correlation
hole” – the region in the vicinity of each inclusion inside
which the existence of the center of some other inclusion is
improbable. Let us assume that there exists a linear transfor-
mation ofx-space rearrange the functionΨn(x) into a spa-
tially symmetric one:

yi = αij(n) = Ψ(|y|). (B.7)

In this case, the ellipsoidA with semi-axesα1, α2, α3, de-
fined by the equation:

|αij(n)xj | ≤ 1, (B.8)

describes the shape of the correlation hole.
After the substitution (B.5) in Eq. (B.4), one can obtain

an expression fore∗i (n) in the form:

e∗i (n) = e0
i + Aik(n)

〈
Λkj(n)e∗j (n)

〉
, (B.9)

where it is denoted:

Aij(n) =
∫

Pij(x)[1−Ψn(x)]dx. (B.10)

If the correlation hole is an ellipsoid, coaxial with the in-
clusion having the orientationn, thenAij(n) is defined by
the formulas (4.4) of the main text.

Let us multiply both sides of Eq. (B.9) by the tensor
Λij(n) and average the result over the ensemble of random
sizes and orientation of the inclusions. Solving the obtained
equation for the vector

〈
Λkj(n)e∗j (n)

〉
, we have:

〈
Λkj(n)e∗j (n)

〉
= [δil−〈Λik(n)Akl(n)〉]−1

× 〈Λlj(n)〉 e0
j . (B.11)

The expression for the effective fielde∗i (n) can be found,
if we substitute

〈
Λij(n)e∗j (n)

〉
from (B.11) into the right-

hand side of Eq. (B.9).
Let us average the Eqs. (4.1) over the ensemble of the ran-

dom set of the inclusions. Taking into account the relation:

〈Λij(x)e∗i (x)Z(x)Ω(x)〉 =
〈
Λij(n)e∗j (n)

〉
, (B.12)

we obtain:

〈ei〉 = e0
i −

∫
Pij(x− x′) 〈Λjk(n)e∗k(n)〉 dx′,

〈qi〉=q0
i +

1
C0

∫
Qij(x−x′) 〈Λjk(n)e∗k(n)〉 dx′. (B.13)

Because the “external” fielde0
i is fixed in the homoge-

nization problem [13], Eqs. (B.13) yield:

〈ei〉 = e0
i , 〈qi〉 = C∗ij 〈ej〉 , (B.14)

where

C∗ij=C0δik+ [δik−〈Λil(n)Alk(n)〉]−1 〈Λkj(n)〉 , (B.15)

is the tensor of the effective conductivity coefficients of the
composite material with a random set of thin high conductive
inclusions.

Note that the Mori-Tanaka approach [2,21] gives the
same (B.15) expression for the effective conductive coeffi-
cients only if the shape of the correlation hole coincides with
the shape of the typical inclusion. In the general case, this
shape can be different [16].
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The ergodic properties of the functions considered allow
replacing the ensemble averaging over random set of inclu-
sions by the volume averages over the fixed realization of this
set, so that (a1 ≥ a2):

〈Λij(n)〉 = lim
W→∞

1
W

∫

W

Λij(x)Z(x)Ω(x)dx

= n0 〈vΛij(a1, a2)〉 , (B.16)

with analogous determination of the average
〈Λik(n)Akj(n)〉 .
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