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Aberration patterns in the optical testing
surfaces using transport of intensity equation
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Classic phase retrieval techniques use intensity patterns to obtain typical aberrations such as coma or astigmatism. However, the patterns
obtained using the transport of intensity equation techniques have not been studied yet. In this work, we propose a method to obtain intensity
distributions of some aberration wavefronts. We expect that this characterization method may facilitate new testing strategies in optical
workshops.
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1. Introduction

The transport of intensity equation (TIE) widely used in op-
tics, is an equation that relates an optical wavefrontW and
the corresponding intensity distributionI at some detection
plane after the output of some optical system to be tested
[1,2]. In some works, this equation has been developed
proposing that, under specific conditions it can lead to a Pois-
son equation [3,4]. The recovery of the optical wavefront
is thereby reduced to a numerical problem [5], offering the
advantage that the spatial resolution of the test will depend
on the number of pixels of the detector and not only on the
number of elements (stripes, lines, points) obtained by con-
ventional tests that use spatial filters or complex optics like
interferometric tests, Ronchi or Hartmann tests [6].

On the other hand, a general method has been developed
to calculate the intensity of light that propagates in a medium
whose refractive indexn(r) varies slowly with the position,
based on a differential equation of the curvature of the wave-
fronts [7]. In addition, there is a ray counting method for de-
termining the PSF of an optical system by counting the rays
that hits a hypothetical grid [8]. With these ideas in mind,
we have developed an algorithm for calculating the intensity
distribution from an optical wavefront using the ray count-
ing method [9,10].The theoretical support of this algorithm
is based on the ray propagation theory: for an isotropic and
non-conducting medium, geometric rays are defined to be the
orthogonal paths to the wavefrontW (x, y); rays direction
matches with the direction of the average Poynting vector
[11,12]. In a perpendicular plane, relative to the propaga-
tion of the wavefront, the spatial distribution of the intensity
due to the divergence and convergence of the rays along the
observation plane can be obtained. The number of rays is the
main parameter that leads to obtaining an approximate func-
tion of the luminous intensity at the detection plane. In this
work, we obtain an approximation of the the characteristic in-

tensity patterns of some aberrations, based on the calculation
of the density of rays.

2. Zernike polynomials

Zernike polynomials are often used to express data from the
wavefront in polynomial form, since they are constituted by
terms whose graphs resemble the typical aberrations that we
can observe in optical testing [13]. In polar coordinates, these
polynomials are expressed as follows:
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In Cartesian coordinates the following transformations are
considered [14]:

x = ρ sin(ϕ); ρ cos(ϕ). (3)

As an example, Table I shows the first six Zernike poly-
nomials.

3. Transport of Intensity Equation

It has been shown in previous works that if a wavefront,
which propagates in the direction of the optical axis, is con-
sidered within the paraxial approximation, we obtain the
equation [6]:

∇T I · ∇T W + I∇2
T W = −∂I

∂z
, (4)
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TABLE I. First six orthogonal Zernike Polynomials.

n m Zm
n

Cartesian,
Coordinates

Polar
Coordinates

Name

0 0 Z0
0 1 1 Piston

1 1 Z−1
1 x ρ sin ϕ y-Tilt

1 1 Z1
1 y ρ cos ϕ x-Tilt

2 2 Z−2
2 2xy ρ2 sin 2ϕ Primary Astigmatism

Axis at45◦

2 0 Z0
2 −1 + 2x2 + 2y2 2ρ2 − 1 Defocusing

2 2 Z2
2 y2 − x2 ρ2 cos 2ϕ Primary Astigamtism

Axis at0◦ or 90◦

FIGURE 1. Calculation of the numerical derivate.

where∇T ≡ (∂/∂x)x̂ + (∂/∂y)ŷ is the nabla operator in
the x − y plane, and z is the direction of the beam propa-
gation. The Eq. (4) is known as the transport of intensity
equation (TIE), and it is only valid in cases where the cur-
vature presented during the wavefront propagation is smooth
and the propagation of the wavefront is mainly in the paraxial
regime.

If the intensity distribution is considered to be almost uni-
form, the first term of Eq. (4) vanishes and the TIE becomes
a Poisson equation as follows:

I∇2
T W = −∂I

∂z
. (5)

Although Eq. (5) may seems simple, in practice the ana-
lytical solution is too complex to carry out, so it is used to be
solved numerically, taking the wavefrontW as an unknown
function, and the numerical values of the intensity calculated
in two unfocused planes in the propagation axis as data in-
put (Fig. 1), which is used to find the approximation to the
derivative intensity corresponding to the term on the right-
side of Eq. (5).

This derivative is known as the sensor functionS and can
be approximated as

S=
1

I(x, y, z0)
I(x, y, z0 + ∆z)−I(x, y, z0 −∆z)

2∆z
. (6)

Despite the considerable amount of work aimed at solv-
ing the TIE and obtain the wavefront, as far as we know,
the inverse problem about obtaining function intensity from
wavefronts has not been previously discussed.

To be more specific, some typical aberrations of opti-
cal surfaces can be recognized by patterns characterized by
Ronchi patterns, patterns of Hartmann test, and interferomet-
ric techniques. However, there is no idea what the intensity
pattern would looks like for optical testing techniques that
use the TIE as a theoretical basis.

4. Ray counting method

As already mentioned, some authors have derived the TIE
based on the Poynting’s theorem [11,12]. The main idea of
these works is to calculate the density flowI of a surface el-
ement perpendicular to the direction of the vector intensity
flux. Also, we assume an aberrated wavefrontW coming
from an optical system that is immersed in a homogeneous
medium, which hits hits the surface of some flat detector. As
the rays represent the direction of flow of radiant energy and
they are perpendicular to the wavefront, there will be more
iluminated areas than others on the detector surface due to
the convergence or divergence of the optical rays, see Fig. 2.

FIGURE 2. WavefrontW produces areas on the detector with dif-
ferent intensity levels.
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FIGURE 3. Geometrical analysis proposed to find the approximate
ray position on a plane.

FIGURE 4. Ray position fits to their nearest integer value in a mesh.

With this in mint an algorithm has been developed using
the trace method and ray counting in order to find an approxi-
mate intensity function, using as input data a wavefront func-
tion which must fulfill the conditions where the TIE is valid
(smooth surface or on the paraxial zone) [9].

Figure 3 shows a schematic of our ray counting algo-
rithm. First, we assume that the value of any point of the
wavefrontWi is known at the positionxi. Next, we find the
positionPd(xdi , zd) of each optical ray on a detection plane
as follow: we calculate the slope of the wavefront by using
∂Wi/∂x; then, after some calculations we obtain the coordi-
natexdi given by

xdi = xi − ∂Wi

∂z
(zd −Wi), (7)

this equation gives us the direction of the rays.
Once the exact positions where the rays hit on the hy-

pothetical detector are known, the algorithm must find these
positions to their nearest integer index value from a mesh,
such that all adjacent rays coincide in that position, as shown
in Fig. 4.

For a given wavefront, this algorithm gives us the inten-
sity distribution that must be compared with the actual inten-
sity function.

5. Simulations

To obtain the characteristic intensity patterns of some aberra-
tions, we propose the following algorithm

1. Select a Zernike polynomial (input function), corre-
sponding to some aberration, like one of those pre-
sented in Table I, and obtain the numerical values of
its function.

2. Calculate the intensity distribution functions at three
different planes to calculate the sensor functionS, as
described in Eq. (6).

3. Apply a phase retrieve algorithm that uses the TIE to
obtain an output function, as described in Sec. 4.

4. Finally, compare therms wavefront differences and
correlation values between the input and the output
wavefront functions.

According with step 4, we consider that if these compar-
isons show us a similarity between the input and output wave-
front functions, then the calculated intensity corresponds to
that obtained using TIE techniques which it is the aim of this
work.

FIGURE 5. Astigmatism wavefront aberration.
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FIGURE 6. Intensity patterns calculated with the counting and trac-
ing method ray, for astigmatism aberration.

6. Results

As example, we select the Zernike polynomial correspond-
ing to astigmatism at 90◦•(W = y2 − x2) which is shown in
Fig. 5.

Now, with the trace and counting ray algorithms, we com-
pute the intensity in three different planes (∆z = 0.02 mm)
to calculate the sensor function according to Eq. (6). In Fig. 6

FIGURE 7. Output wavefront function calculated from the ray-
counting method.

we observe the results of these calculations, which are similar
due to the plane nearest where they are placed.

Then, the Poisson numerical solution algorithm was used
in rectangular coordinates to retrieve the wavefront. The re-
trieve output wavefront is show in Fig. 7. A qualitative com-
parison between the input (Fig. 5) and the retrieved wavefront
(Fig. 7) shows the similarity of both plots.

Next, for quantitative comparison, we calculated the dif-
ference between the input and retrieved output wavefront.
The error differences are shown in Fig. 8. Here, thermser-
ror differences and correlation values for astigmatism at 90◦

error function are12.11× 10−4 and 0.9932, respectively.
Additionally, to evaluate the performance of our proposed

method other higher-order Zernike polynomials were evalu-
ated. The results of our simulations are shown in the plots
of Fig. 9. Here, the analyzed wavefront aberrations were a)
Primary astigmatism axis at 45◦, b) Triangular Astigmatism
30◦, 150◦, 270◦, c) Coma alongx-axes, d) Coma alongy-
axis, e) Triangular Astigmatism 0◦, 120◦, 240◦, f) Ashtray
22.5◦, g) Fifth-order Astigmatism axis at 45◦, h) Spherical
Aberration, i) Fifth-order Astigmatism axis at 0◦ or 90◦, and

FIGURE 8. Wavefront error.
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FIGURE 9. Higher order wavefronts evaluated with the proposal method. a) Primary astigmatism axis at45◦, b) Triangular Astigmatism
30◦, 150◦, 270◦, c) Coma along x-axes, d) Coma along y-axis, e) Triangular Astigmatism0◦, 120◦, 240◦, f) Ashtray22.5◦, g) Fifth-order
Astigmatism axis at45◦, h) Spherical Aberration, i) Fifth-order Astigmatism axis at0◦ or 90◦, j) Ashtray0◦.

TABLE II. Correlation and RMS values between original wavefront and those recovery with ray-tracing algorithm.

Zm
n Name Correlation (C) RMS × 10−4

Z−2
2 Primary Astigmatism axis at45◦ 0.9791 14.96

Z2
2 Primary Astigamtism Axis at0◦ or 90◦ 0.9932 12.11

Z−3
3 Triangular Atigmatism30◦, 150◦, 270◦ 0.9648 18.22

Z−1
3 Coma alongx axes 0.7004 22.99

Z1
3 Coma alongy axes 0.7004 22.99

Z3
3 Triangular Atigmatism0◦, 120◦, 240◦ 0.9648 18.22

Z−4
4 Ashtray 22.5 0.9955 19.59

Z−2
4 Fifth-order Astigmatism, axis at45◦ 0.8581 12.21

Z0
4 Spherical Aberration 0.89045 9.93

Z2
4 Fifth-order Astigmatism, axis at0◦ or 90◦ 0.5768 17.50

Z4
4 Ashtray 0 0.9518 21.57
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j) Ashtray 0◦, respectively. From a qualitative point of view,
the graphs recovered with our method resemble the original
input aberrations.

On the other hand, the correlation and rms values between
the original and the retrieved wavefront are shown in Table II.
We can observe that almost all the aberration functions can be
retrieved with accuracy, with rms differences ranging from
9.93 × 10−4 to 22.99 × 10−4. However, for some aberra-
tion functions there are small correlation values, for example,
for fifth-order Astigmatism axis at 0◦ or 90◦. In this case,
the corresponding retrieved plot (Fig. 9i)) does not resemble
completed the original aberration function. We think that this
issue could be solved if we increase the number of rays used
in the simulation.

7. Conclusions

The method proposed here was developed and tested with
different Zernike aberration polynomials. The calculations
of the rms wavefront differences and correlation values be-
tween the original and retrieved wavefront show an accurate
relationship that validates the method. The retrieve wave-
front can be recovery with an accuracy that ranges between
9.93 × 10−4 to 22.99 × 10−4 for some wavefront aberra-
tions. In addition, it was found that this method helps us to
validate all the algorithms developed. We conclude that our
proposed method is useful to identify aberrations in optical
testing workshops when phase retrieve techniques supported
by the TIE are used.
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