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Aberration patterns in the optical testing
surfaces using transport of intensity equation
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Classic phase retrieval techniques use intensity patterns to obtain typical aberrations such as coma or astigmatism. However, the patterr
obtained using the transport of intensity equation techniques have not been studied yet. In this work, we propose a method to obtain intensity
distributions of some aberration wavefronts. We expect that this characterization method may facilitate new testing strategies in optical
workshops.
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1. Introduction tensity patterns of some aberrations, based on the calculation

. ) ) i ) of the density of rays.
The transport of intensity equation (TIE) widely used in op-

tics, is an equation that relates an optical wavefidhtind i i
the corresponding intensity distributidnat some detection 2. Zérnike polynomials

plane after the output of some optical system to be teste

[1,2]. In some works, this equation has been developegemike polynomials are often used to express data from the

proposing that, under specific conditions it can lead to a Poiswavefront in polynomial form, since they are constituted by

son equation [3,4]. The recovery of the optical wavefront€ms whose graphs resemble the typical aberrations that we

is thereby reduced to a numerical problem [5], offering thean observe in optical testing [13]. In polar coordinates, these

advantage that the spatial resolution of the test will depen@c’lynom"':lls are expressed as follows:
on the number of pixels of the detector and not only on the Z™(p, ¢) cos(my) for m >0
number of elements (stripes, lines, points) obtained by con- {Z—nm(p’ 80)} =R ){Sin(m@) for m < O}’ (1)
ventional tests that use spatial filters or complex optics like " ’
interferometric tests, Ronchi or Hartmann tests [6]. where the radial polynomialB!" are defined as
On the other hand, a general method has been developed
to calculate the intensity of light that propagates in a medium
whose refractive index(r) varies slowly with the position,
based on a differential equation of the curvature of the wave- k=l
frontg .[7]' In addition, there ISaray counting met_hod . de'In Cartesian coordinates the following transformations are
termining the PSF of an optical system by counting the rays. onsidered [14]:
that hits a hypothetical grid [8]. With these ideas in mind, '
we have developed an algorithm for calculating the intensity
distribution from an optical wavefront using the ray count-
ing method [9,10].The theoretical support of this algorithm  As an example, Table | shows the first six Zernike poly-
is based on the ray propagation theory: for an isotropic an@omials.
non-conducting medium, geometric rays are defined to be the
orthogonal paths to the wavefroft' (x,y); rays direction ) )
matches with the direction of the average Poynting vect0|3- Transport of Intensity Equation
[.11’12]' In a perpendicular p_Iane_, r(_—:-latl_ve o the Propagay, o< been shown in previous works that if a wavefront,
tion of the wavefront, the spatial distribution of the intensity , . . L . .
: which propagates in the direction of the optical axis, is con-
due to the divergence and convergence of the rays along the s ) L ;
: . 2 sidered within the paraxial approximation, we obtain the
observation plane can be obtained. The number of rays isthe_ = .
. S : equation [6]:
main parameter that leads to obtaining an approximate func-
tion of the luminous intensity at the detection plane. In this ) oI
work, we obtain an approximation of the the characteristic in- Vrl -NoW + IV W = Tz (4)

n

n—m

~1l(n—1)! _
R0 = Y = Y @

x = psin(p); pcos(p). 3)
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TABLE |. First six orthogonal Zernike Polynomials.

Cartesian Polar
n m zZn ) . Name
Coordinates Coordinates
0 0 Z8 1 1 Piston
1 1 z! x psin p y-Tilt
1 1 Zt y p COS x-Tilt
2 2 72 9 2609 Primary Astigmatism
2 e posmap Axis at45°
2 0 Z3 —14 222 4+ 297 2p% — 1 Defocusing
72 2 2 2 9 Prim_ary Astigamtism
2 vy preosey Axis at0° or 90°
I(x,v,2o + Az Despite the considerable amount of work aimed at solv-
Ity zo —dz) 10y,20) (0% 20+ 02) P

ing the TIE and obtain the wavefront, as far as we know,
the inverse problem about obtaining function intensity from
wavefronts has not been previously discussed.

To be more specific, some typical aberrations of opti-
cal surfaces can be recognized by patterns characterized by
Ronchi patterns, patterns of Hartmann test, and interferomet-
ric techniques. However, there is no idea what the intensity
pattern would looks like for optical testing techniques that
use the TIE as a theoretical basis.

Az Az

FIGURE 1. Calculation of the numerical derivate. 4. Ray counting method

whereVr = (9/0z)z + (0/0y)y is the nabla operator in  As already mentioned, some authors have derived the TIE
the z — y plane, and z is the direction of the beam propa-pased on the Poynting’s theorem [11,12]. The main idea of
gation. The Eg. (4) is known as the transport of intensitythese works is to calculate the density fléwf a surface el-
equation (TIE), and it is only valid in cases where the cur-ement perpendicular to the direction of the vector intensity
vature presented during the wavefront propagation is smootflux. Also, we assume an aberrated wavefréiitcoming
and the propagation of the wavefront is mainly in the paraxiakrom an optical system that is immersed in a homogeneous
regime. medium, which hits hits the surface of some flat detector. As
If the intensity distribution is considered to be almost uni-the rays represent the direction of flow of radiant energy and
form, the first term of Eq. (4) vanishes and the TIE becomeshey are perpendicular to the wavefront, there will be more
a Poisson equation as follows: iluminated areas than others on the detector surface due to
oI the convergence or divergence of the optical rays, see Fig. 2.

IVAW = ——. 5
T 9z )

i i i TRANSPARENT SAMPLE DETECTOR
Although Eg. (5) may seems simple, in practice the ana- OPTICAL RAYS

lytical solution is too complex to carry out, soitis usedtobe | | | = INTENSITY
solved numerically, taking the wavefrolt as an unknown l | ; INCREASE
function, and the numerical values of the intensity calculated ‘ /-?
in two unfocused planes in the propagation axis as data in- | | | / TATERSITY
put (Fig. 1), which is used to find the approximation to the | | f _— SRR
derivative intensity corresponding to the term on the right- \ INTENSITY
side of Eq. (5). ‘ ‘ ] E INCREASE
This derivative is known as the sensor functivand can ot '
be approximated as INCIDENT BEAM WAVEFRONT
g 1 I(z,y,20 + Az)—I(x,y,z0 — Az) 5 FIGURE 2. WavefrontW produces areas on the detector with dif-
_I(x, Y, 20) 2A 2 - (8 ferent intensity levels.
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W this equation gives us the direction of the rays.
Once the exact positions where the rays hit on the hy-
| . pothetical detector are known, the algorithm must find these
positions to their nearest integer index value from a mesh,
T such that all adjacent rays coincide in that position, as shown
Yi=z4— W; in Fig. 4. ' ' | . .
For a given wavefront, this algorithm gives us the inten-
sity distribution that must be compared with the actual inten-
sity function.

o=

5. Simulations

HR
<

To obtain the characteristic intensity patterns of some aberra-
tions, we propose the following algorithm

X: — Xg.
£ 4 1. Select a Zernike polynomial (input function), corre-
FIGURE 3. Geometrical analysis proposed to find the approximate sponding to some aberration, like one of those pre-
ray position on a plane. sented in Table |, and obtain the numerical values of

its function.

Ei{aﬁt pDIﬂt VEII?EFE 2. Calculate the intensity distribution functions at three
the ray strikes different planes to calculate the sensor functiyras
described in Eq. (6).

3. Apply a phase retrieve algorithm that uses the TIE to
obtain an output function, as described in Sec. 4.

L J
O Qlij
.P ( ! l] 4. Finally, compare thems wavefront differences and
\ correlation values between the input and the output

\ wavefront functions.

. According with step 4, we consider that if these compar-
Point where isons show us a similarity between the input and output wave-

the ray 55_ front functions, then the calculated intensity corresponds to
apprDaChl ng that obtained using TIE techniques which it is the aim of this
on the mesh work.

FIGURE 4. Ray position fits to their nearest integer value in a mesh.

INPUT WAVEFRONT

With this in mint an algorithm has been developed using
the trace method and ray counting in order to find an approxi-
mate intensity function, using as input data a wavefront func-
tion which must fulfill the conditions where the TIE is valid
(smooth surface or on the paraxial zone) [9].

Figure 3 shows a schematic of our ray counting algo-
rithm. First, we assume that the value of any point of the
wavefrontWW; is known at the position;. Next, we find the
position Py (z4,, zq) Of each optical ray on a detection plane 1
as follow: we calculate the slope of the wavefront by using

o o
o -]

Normalized Wavefront
o
o

o
L]

o

e .
O0W;/0x; then, after some calculations we obtain the coordi- >~ e 3
: Q0.5 . —
natezx,, given by Vipman] P s 0.5 -
ow;
Ld; = Ti — azl (za — Wi), (7) FIGURE 5. Astigmatism wavefront aberration.
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INTENSITY 1 OUTPUT WAVEFRONT

Normalized Wavefront

0
0

05 05
Y[mm] 104 X[mm]
FIGURE 7. Output wavefront function calculated from the ray-
counting method.

we observe the results of these calculations, which are similar
due to the plane nearest where they are placed.

Then, the Poisson numerical solution algorithm was used
in rectangular coordinates to retrieve the wavefront. The re-
trieve output wavefront is show in Fig. 7. A qualitative com-
parison between the input (Fig. 5) and the retrieved wavefront
(Fig. 7) shows the similarity of both plots.

Next, for quantitative comparison, we calculated the dif-
ference between the input and retrieved output wavefront.
The error differences are shown in Fig. 8. Here, itims er-
ror differences and correlation values for astigmatism &t 90
error function are2.11 x 10~* and 0.9932, respectively.
INTRNITY 3 Additionally, to evaluate the performance of our proposed
method other higher-order Zernike polynomials were evalu-
ated. The results of our simulations are shown in the plots
of Fig. 9. Here, the analyzed wavefront aberrations were a)
Primary astigmatism axis at 4pb) Triangular Astigmatism
3¢, 15, 270, c) Coma alonge-axes, d) Coma along-
axis, e) Triangular Astigmatism°Q 120°, 240, f) Ashtray
22.5°, g) Fifth-order Astigmatism axis at 45h) Spherical
Aberration, i) Fifth-order Astigmatism axis at @r 9¢°, and

Normalized Indons ity

Hormalized Infensty
o o o
- - -

=
b

X{mem] 1 Y[mm)

FIGURE 6. Intensity patterns calculated with the counting and trac- ~ **”

ing method ray, for astigmatism aberration.

Error Differences

6. Results

As example, we select the Zernike polynomial correspond-
ing to astigmatism at 98 (W = y? — x2) which is shown in
Fig. 5. 05

Now, with the trace and counting ray algorithms, we com- Yimm) i ~ Xmm)
pute the intensity in three different planes{ = 0.02 mm)
to calculate the sensor function according to Eg. (6). In Fig. GFicURE 8. Wavefront error.
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ABERRATION PATTERNS IN THE OPTICAL TESTING SURFACES USING TRANSPORT OF INTENSITY EQUATION 5

Input Wavefront Output Wavefront  Input Wavefront Output Wavefront

s

Primary sssigmatm, axis t 48" Primany sstigmatem, axe ot 45" 2

FIGURE 9. Higher order wavefronts evaluated with the proposal method. a) Primary astigmatism &x?s b} Triangular Astigmatism
30°, 150°, 270°, c) Coma along x-axes, d) Coma along y-axis, €) Triangular Astigmditsrh20°, 240°, f) Ashtray22.5°, g) Fifth-order
Astigmatism axis a#5°, h) Spherical Aberration, i) Fifth-order Astigmatism axiator 90°, j) Ashtray0°.

TaBLE Il. Correlation and RMS values between original wavefront and those recovery with ray-tracing algorithm.

zm Name Correlation (C) RMS x 107*
Z;? Primary Astigmatism axis at5° 0.9791 14.96
Z3 Primary Astigamtism Axis ab° or 90° 0.9932 12.11
Zy® Triangular Atigmatisn80°, 150°, 270° 0.9648 18.22
Zit Coma along: axes 0.7004 22.99
Z3 Coma alongy axes 0.7004 22.99
73 Triangular Atigmatisn0°, 120°, 240° 0.9648 18.22
Z4_4 Ashtray 22.5 0.9955 19.59
Z2 Fifth-order Astigmatism, axis at5° 0.8581 12.21
Z9 Spherical Aberration 0.89045 9.93
Z2 Fifth-order Astigmatism, axis @° or 90° 0.5768 17.50
Z4 Ashtray 0 0.9518 21.57
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j) Ashtray @, respectively. From a qualitative point of view, 7. Conclusions

the graphs recovered with our method resemble the original
input aberrations. The method proposed here was developed and tested with

different Zernike aberration polynomials. The calculations
of the rms wavefront differences and correlation values be-
On the other hand, the correlation and rms values betweetween the original and retrieved wavefront show an accurate
the original and the retrieved wavefront are shown in Table Ilrelationship that validates the method. The retrieve wave-
We can observe that almost all the aberration functions can bfieont can be recovery with an accuracy that ranges between
retrieved with accuracy, with rms differences ranging from9.93 x 10=* to 22.99 x 10~* for some wavefront aberra-
9.93 x 10~ t0 22.99 x 10~*. However, for some aberra- tions. In addition, it was found that this method helps us to
tion functions there are small correlation values, for exampleyalidate all the algorithms developed. We conclude that our
for fifth-order Astigmatism axis at®or 9C°. In this case, proposed method is useful to identify aberrations in optical
the corresponding retrieved plot (Fig. 9i)) does not resembleesting workshops when phase retrieve techniques supported

completed the original aberration function. We think that thisby the TIE are used.
issue could be solved if we increase the number of rays used
in the simulation.
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