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An overview of two-dimensional (2D) materials electronic properties is presented, including research in multilayered heterostructures. An
emphasis is made on simple models that contain the representative physical features seen among 2D materials while presenting differer
and important perspectives that have been ignored or overlooked in other reviews. Starting with a short section on the crystallographic anc
diffraction properties, the review continues with a discussion of the theoretical models needed to describe the electronic properties. A special
emphasis is made on the rise of the Dirac equation in terms of the electronic wavefunctions’ frustration due to the underlying triangular
symmetry of graphene. Then a new method to deal with such problems in other systems is presented. Also, a section concerning the les
known graphene’s free-electron bands is presented, which is important to describe interactions with metals and liquids as water. These band
are explained in terms of the electron interaction with its charge image, resulting in an effective Hydrogen model leading to a Rydberg
series. We also discuss the effects of the disorder, flexural modes, strain, and electromagnetic waves, using novel techniques developed
collaborations with other groups in Mexico. Using all of the previous techniques, other exotic matter phases are studied Bkaridekul

Moiré patterns, flat bands, topological insulators, and time-dependent topological states. Finally, heterostructures made by stacking layers o
2D materials are studied. A special section is devoted to the latest discovered superconductivity of graphene over graphene at magic angle:
including our latest reduction of the problem onto a sintple2 Hamiltonian, which describes the phenomena. Moreover, any other stacking

of graphene layers like trilayer graphene, can be reduced using such method.
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1. Introduction and outline be impossible to make, as according to the Mermin-Wigner
theorem there is no order with short-range interactions at a
It should not be a controversial undertaking to change the ditemperature different from zero. Eventually, it turns out that
mensionality of a physical system. On the one hand and whesuch theorem was literally too rigid to be applied in a real-
things go well, it leads to suggestive new viewpoints. On theéworld situation; graphene is a 2D membrane that lives in a
other hand, new polemics and paradoxes arise. In the classi world, and it vibrates like a drum pad. Such vibrations,
book “A Brief History of Time”, Stephen Hawkings wrote known as flexural modes, allow 2D materials to evade the fate
on the impossibility of two-dimensional (2D) life-forms by predicted by many eminent theoretical physicists. In a record
showing that digestion will be next to impossible. Yet, theretime of 6 years from graphene’s discovery, A. Geim and K.
are recent claims that 2D worlds are not necessarily “too simNovoselov were awarded the 2010 Nobel prize. As a lesson,
ple” for life to exist [1]. If Phil Anderson’s manifesto “More this shows that still in the XXI century, there is a place for
Is Different” brings out the importance of having more el- simple tools as adhesive tape, graphite, and an optical mi-
ements to increase the complexity and have new emergingfoscope if good ideas, creativity, and hard work is present.
laws [2], the discovery of 2D materials showed the other sidéA second Nobel prize was given in 2016 to D.J. Thouless,
of the coin [3]: less is also different. And when looking at its F.D.M. Haldane and M. Kosterlitz for another 2D related dis-
physical properties, 2D materials can result in a quite differcovery: topological phase transitions and topological phases
ent manifesto: sometimes less is more. of matter. This work was made nearly 40 years before the
More amazing electronic, optical, and mechanical propdraphene’s discovery but pointed out in the same direction:
erties, like the material with the highest known electrical and®rder is not impossible in B 3 at finite temperature, it is
thermal conductivity, highest known electronic moblility, and 1USt @ bit different.
elasticity [4], yet many of these 2D materials can be strained, Since the discovery of graphene, the main feature of any
bent, and wrinkled as a soft material [5]. The 2D materials2D material is now clear: what makes them special is their
revolution started with graphene, a one-atom layer of carboall surface nature. This leads to novel paths in physics as in-
extracted from graphite [3, 6]. A 2D crystal was thought toteractions are maximized. Afterward, new 2D materials were
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discovered, and now they are classified in families [7, 8]. Atopological properties and time-dependent topological prop-
short-list of these main 2D families is the following, erties. Also, we try to focus on questions that our group in
. Mexico pursued systematically, even a few months after the
1. Almost flat structures. Graphene |s_t_he most represenaiscovery of graphene in 2004; for example, why do Dirac
tative case. Other examples are Silicene, Germanene

hexagonal Boron Nitrate (h-BN), Borophene, Stanene.CbneS appeatr, a question that the reader will probably not find

A in other reviews as somehow is bypassed as a legitimate ques-
Most of the early research was made in this area. . . : .
tion and eclipsed by the mathematics. Other questions posed

2. Puckered structures that are not completely flat. Theluring such period with Ph. D. students at the Instituto de
most famous examples are transition metal dichalcoFisica, UNAM were the effects of the disorder, electromag-
genides (TMDs) with a general formula MXwith M netic radiation and time-dependent strain without using per-
a transition metal (Mo, W, Ti, Nb, etc.). Atod¥ can turbative methods, a subject that now is mainstream but was
be a chalcogen element (Se, S, or Te), or group llI-VIstarting at that moment. After many years we developed tools
or IV-VI elements, producing materials as InSe, GaSeand results that have been proved to be useful in the study of
GeSe, SnSe, SASSnSe. other 2D materials. And more importantly, in this review,

N ) o we stick with the idea that most of the complex properties

3. 2D transition metal carbides and nitrides, also knowngre contained in simple models that give a lot of insights into
as MXenes. Their general formula is M X,,. Here  physics, and eventually give a physical sense to mathematics.
M represents a transmon_metal, and X represents C o particular, here we include our new results on producing
N (wheren is 1, 2, or 3) with a surface terminated by the simplest hamiltonian that describes twisted graphene at
O, OH, or F atoms. magic angles, bringing to the forefront its topological nature

The other three families are in the process of being inves@nd the three main physical driving forces: quantum confine-
tigated, 2D oxides and hydroxides, group-IV monochalco-Ment, frustration balance and non-Abelian gauge fields.
genides (MX with M = Ge, Sn, and X = S, Se, Te), and 2D  The layout of this work is as follows. We start with a sec-
organic materials as pentacenecor- T3 graphene. From tion devoted to defining the structure and diffraction proper-
there, one can stack layers to form heterostructures agMoities. Then we study Dirac materials and their variants, mul-
patterns [9], twisted bilayer and trilayer graphene [10], etc_tilayere.d 2D materials, and finally, we discuss superlattice
At this moment, there is a lot of research in this area due t®roperties.
the recent discovery of superconducting phases [11]. This re-

sults in a quantum phase diagram akin to those seen in highy  strycture and diffraction of 2D materials
T. superconductors [10-12]. An important area is the study

of how strain affects the electronic and optical [7, 8, 13-17].Compared with its 3D counterparts, the study of 2D materials
The reason is twofold. On the one hand, the substrates irstructure and diffraction may seem to be simple, but in fact,
duce lattice deformations, and on the other hand, the cont has its particularities and difficulties. If we stick with fam-
trol of strain allows to modify the characteristics of a ma-ily one of our list,i.e., almost flat structures, we describe its
terial. This results in a field known as straintonics. Simi-structure using the point lattice,

larly, there are other ways to control the optical and electronic

properties: twistronics [11], valleytronics [18], origami and Tnin, = N1Q1 + Noagz, )
kirigami, and spintronics [19].

An important feature of 2D materials is the use of rela-wherea, » are the Bravais unitary vectors (see Fig. 1) and
tivistic quantum equations as the Dirac and Weyl equationg1, 72 integers. The most simple case is graphene, in which
[20]. Moreover, strain can be included as pseudo magnetithe point lattice is given by a trigonal one that we will call A
fields with the notable property of producing fields muchsublattice with vectors,
higher than real ones [20]. As expected, the marriage of a a
solid-state physics with high energy approach has been very a; = 5(\/3 3), ax= 5(—\/3’ 3), 2
fruitful as allowed to produce in the lab effects that were .
impossible to be seen in otherwise much experimentally dewherea = 1.42 A is the distance between C atoms [26].
manding systems [21]. We can cite the Klein effect [20], ef-Also, we need to add a basis vectgrthat points to the dif-
fects of the Dirac equation in curved spaces [22], and eveferent atoms of the unit cell; in other words, it describes the
analogies to black holes [23]. so-called decoration of the unit cell. In graphene, if C atoms

As expected, many reviews and books are covering alare at sites-,, ,,, the others are made by a simple transla-
these topics [24, 25]. Now the question is why to make antion §; of these points, forming the B sublattice. As seen
other one. There are many answers to this question. The firgt Fig. 1, the lattice turns out to be a honeycomb one. For
is that the present review is focused on developing the tools tturther reference, it is useful to define the vectors,
understand heterostructures and, from there, allow the reader a a
to dig into complex quantum phase diagrams. It also coversd: = 5(\@» 1), 6= 5(*\/5, 1), d5=a(0,-1), (3)
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FIGURE 1. a) Graphene honeycomb lattice showing the unit cell (shaded), the Bravais wectmdas, which define a trigonal lattice. The
first-neighbor vectoré1, d2, andds are also indicated. The bipartite sublattices A and B, which define two trigonal lattices, are shown. b)
First Brillouin zone (shaded) of graphene and the high-symmetry p&ntsand K _. The Fermi level and the Dirac points coincide with

the inequivalent high symmetry poinks; and K _

As an example, we consider a decorated version of the
honeycomb lattice as in h-BN. Here thesublattice can be
occupied by Nitrogen atoms while the other sublattice is oc-
cupied by Boron atoms. These atoms each have a scattering
potentialVy andV;, from where

V(k) =Y [Vo+ Vie®]o(k - G).
G

The vectors), andd; can be written using the basis and Bra-
vais lattice vectors,

(4)

An important property is thatl sublattice atoms only
have as neighbor® lattice atoms andiceversa Such lat-
tices are called bipartite and are fundamental as they give an
extra symmetry that proves relevant in all of its properties.
Figure 1b) presents the reciprocal lattice vectors:

G, = %(\/g’ 1)7 Gs = ?))77;(_\/?;71)7 (5)

and the first Brillouin zone (1BZ). Two high-symmetry points
K. = (+47/(3v/3a),0) are observed, each related by time-
reversal symmetry. Other authors label themkasnd K';
however, when considering strain this notation leads to con-
fusion as we have explained in other works [14, 16]. Points
K andK _ are at intersections of the diffraction Bragg lines
2k -G = i|G1|2,2k -Gg = :‘:‘GQP and2k - (Gl + Gg) =
+|G1 + G2|?. As usual, the physics is dominated by such an

52:51+a2—a1, 63:51—a1.

®)

As seen in Fig. 2, the diffraction is made from spots
at the trigonal lattice reciprocal vectors. A spot in location
G + hG4 has intensity,

F(l,h) = (Vo — V1)? + 4Vo Vi cos? (g[zz - h]) )

k.a
1,27 +7°

2,1
® 6 ’

(L, h) &

intersection as the Fermi surface falls exactly there, leading
to a singularity in the density of electronic states (DOS) due
to the vanishing electron group velocity [27]. The singularity
is known as the Dirac cone.

The diffraction can be obtained from the form and atomic
structure factors. A simple example is to consider Dirac
delta-function scatterers centered at each lattice site:

V(ir)=Vy ) é(r—m), (6)
l

wherer; are the atom positions. The diffraction pattern is
given by the norm of the Fourier transform{r),

(-1,1)
—0—

(0,1)
G,

G,

(1,0)

(1,-1)

(-2,-1) 1

(-1,-1)

e
xa/
(-1,0)
L]

(-1,-2)
o

FIGURE 2. A typical diffraction pattern for a 2D materials, in this
case graphene. The Miller indexeésndh label each diffraction
spot position and the amplitude is given BYl, h).

V(k) = /S V(r)e®ds. 7)
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wherel, h are the Miller indexes. If we now make the atoms even at room temperatures due to the absence of backscatter-
the same as in grapheng = V3, we recover graphene’s ing[24] and the possibility of changing the carrier concentra-
case, tion by electric doping. In other words, while semiconductors
F,p(I, h) = 4V2 cos? (3[21 _ h]) . (10)  are doped chemically with p or n donors, in graphene, such
3 doping is tuned dynamically by an external field to generate
with two possible intensitiegV;Z or V2 for the diffraction  holes or electrons. This property has not been fully used in
peaks. Foil; = 0, the spots have the same amplitude andelectronic devices, but it stands out as unique.
therefore correspond to the diffraction of a pure trigonal lat-  The electronic properties of graphene are surprisingly
tice. A comparison with the experimental results is found inwell described by a one-band tight-binding Hamiltonian
Ref. [28]. Observe that experiments are performed in 3D, s§26, 33]. As what matters is the Fermi level, a low-energy
the spots are, in fact, rods. The flatness of graphene, as welpproach leading to an effective Dirac Hamiltonian turns out
as the number of layers, can be tested by looking at moduo be very useful. As we will see, this idea permeates to other
lations of the rods’ intensities [28]. This simple picture is 2D materials. Below we present a minimal approach to these
modified by several factors: models.

e Strain and flexural deformations. The recipe is to add3.1. Dirac materials: graphene

a strain vectorial fieldu(r).
Carbon has four electrons in valence orbitals, but three of

e Stacking of multiple layers. Diffraction is just the sum them are used to make in-plagg, covalent bonds with its
of each layer diffraction. three neighbors [34]. The remaining electron half-fills each
Carbon7— hybrid orbital [34]. Neglecting the three va-
The strain and flexural deformation field can be periodic,lence electrons as their energetic contributions are far from
random, or quasiperiodic and has been studied in a previhe Fermi level, this leads to a one-band tight-binding (TB)
ous review [29]. For periodic strain, satellites peaks appeaHamiltonian [26]:
close to the Bragg lines, while for disordered cases, the spots 3
broaden. Also, the Brillouin zone can be folded back as seen — T
in Kekulé bond patterns [18, 30]. Ho=t0) > albryss, + He. an
In the multilayered case, with rotated layers and if we - . . i,
suppose that the lattices are not deformed, the diffraction pat¥N€rer; indicates atoms in thel sites positions. The hop-
tern is a superposition of the rotated reciprocal lattices corPiNd Or ransfer integral ity ~ 2.7 €V by fitting experimen-
responding to each layer [9]. Rotations and displacementi! data [26]. ay, andb,, 15, are creation and annihilation
lead to different space groups [31] (known in 2D as wallpa-Oper""t(?rS on thel ;ublattlce at positiom;, and on theB .
per groups). A very powerful method, originally developed sublattice, rgspectlvely. To'repr'oduce thg energy dlspe:'rsmn
to treat quasicrystals, allows describing the lattice positiond 9raphene in the whole Brillouin zone using a TB Hamilto-

and diffraction using higher-dimensional lattices, even pro_nian,_it is req_uired the use of second an(_:I third ne_arest neigh-
viding extra information as the coincidence lattice, which de-POrs inteéractions [25, 35]. These corrections are important to

termines many physical properties of heterostructures [32]. study the transport properties [_36_38] and to describe strain
and surface effects [39]. Equatichl] is further reduced to

a2 x 2 operator using the following Fourier transform,

1 ,
ar, = 20 (12)
The experimental values of the electronic properties of N5
graphene and other 2D materials have been extensively digsherek is a wavevector, and a similar transformation holds
cussed in several reviews [20, 25]. Here we only made fevwfgr brs, , resulting in,
useful remarks. In particular, what matters for the electronic 5
and optical properties are the most energetic electrionsg, ik, T
. i o i . Hy=—t "a,bg + H.c. 13

those with energies within a band of widkhpT (being T’ 0 0 Z Z ¢ @bk 1 (13)
the temperature anklz the Boltzmann constant) around the _ o
Fermi energy Er). Their velocity, concentration, and mean 1he leads to an effective x 2 Hamiltonian H (k). The
free path will control such properties. Schidinger equation is now,

A!though in graphene’s we use rglativistic qqantum me- 0 Hap(k) ar
chanics to describe electrons, in reality, the Fermi velagity H (k) 0 b,
is aroundc ~ v /300 with ¢ the speed of light, which is by ,
no means unusual and is comparable to other 3D material, Y'€reHan (k) = —to f(k)

r; n=1

3. Electronic properties of Dirac materials

k n=1

=B (k) (Z:) . (1)

,andf (k) is a complex function:

for example, Silicium. Moreover, as we will see below, the 3
charge density is very low. This points out to the most two HOED P (15)
remarkable properties of graphene, the large mean free path n=1
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~§ Conduction band This leads to a linear DOS:

\ 2|E|
:Fcrmi pO(E) - W7 (21)
/ Energy r

and to the following carrier density:

¥4
T __~"Valence band

. 2| 2
E(p) =+ }j@l A no(E) = sgnE) ‘2 |2 . (22)
Bp) = VEE T IR mh* v

Density of states

. ~ 106 @
™o Orem vr M 0TS Dirac cones are disorder protected by topology [41].

FIGURE 3. Energy dispersion obtained from Ed.7|. To the left,  Graphene nanoribbons are studied using similar techniques
we show its corresponding DOB(()). A zoom-in atthe Fermi  |a5ding to gaps that depend upon the width allowing to de-
energy showing a cone is displayed as well. The vertices of thesign electronic devices [42].
cones touch at the Dirac point, here at the high-symmetry points
K with linear dispersion. The Fermi energy is/at= 0. At ) . i o
the Dirac cones, the DOS behaved®) ~ E, while the saddle  3.1.1. Rise of Dirac cones as a frustration effect in triangu-
points of Eq.[17) produce the Van Hove singularities, which are lar lattices
the two peaks in the DOS. They correspond to highly degenerated
dimer states and signal the energy where frustration plays a roleAn important and legitimate question is, after all, why do
therefore depleting the DOS and producing the Dirac cone. physically Dirac cones appear. Not many people ask this
important question, so here we discuss how this is a conse-
The energy dispersion is readily found from the eigenval-quence of the bipartite nature of the lattice and, more impor-
ues of Eq.[14): tantly, to the wavefunction frustration due to the triangular
symmetry [38,43]. To see this, consider the squared Hamil-

3
Es(k) = %to| f(k)|> = £to| > e (On=0)p2 (16)  tonian obtained from Eq1Q):

n,s=1
H2 _ HEXB(k) 0 Qe
= ito\/3—|—2 cos (V/3k,a)+4 cos (V3kza/2) cos (3kya/2). 0 0 H2p(k)) \ by
(17) .
2 k
For a system withV sites, the eigenfunctions in real space = E*(k) (bk) . (23)
are, .
Wps(r) = et ( 1 s > (18) Now the wave function components on theand B sub-
N e attices are decoupled. There escribes a triangular
TN A\ | decoupled. Therefd describ |

Figure 3 presents the surfacE(k) obtained from lattice as it removes one bipartite sublattice [38, 43]. As il-
Eq. (17). First, notice the symmetry arourfd = 0, known lustrated in Fig. 4, the spectrum B2 is obtained by folding
as the particle-hole symmetry. This is a consequence of tharoundE = 0 theH, spectrum.
bipartite property and can be understood from the Cyrot- The eigenstates dfl, at £ = 0 have zero amplitude in
Lackmann theorem as a result of the absence of odd-ringsne bipartite lattice (see Fig. 4). A state with= 0 is a
in the lattice [40]. Without charge doping by external fields, ground state oH2. Nearby states have an antibonding nature
the 7 orbitals are half-filled, and therefore, the Fermi en-in the sense phases differences are maximal for neighbors.
ergy (Er) lies atE = 0. As indicated in Fig. 3, Eq.1f)  We can see this by writing Eq17) without any reference to
displays a conical dispersion near = 0. The condition the first neighbor vector&, by using Eq.4),
E = 0 produces two special points labeled K/, known
as Dirac points. For pristine graphen&,” coincides with E?*(k) =t3[3+2cosk-a; +2cosk - as
K. For strained graphene, these points do not coincide,
and there have beegl nl?any confusionps in the literature about +2cosk - (a1 — as)]. (24)
this point [14, 16]. The existence of two inequivalent Dirac

points leads to the concept of the valley to classify the regions Equation 24.) gives the energy in terms of one of t.he tri-
around each cone tip [26]. Let us see how Equatidiy pro- angular sublattice amplitudes and phases. The cosine terms

duces cones: for a crystal momentkn= K2 + q with in Eq. (24) give the bond contribution due to triangles while

: ) ) o o
ga < 1, the energy dispersion Eql{) can be developed in the first term IS the self energy @, which is always the
powers ofga: local coordination [40], in this case, = 3.

The ground state of Eq.24) can be estimated from a

E(k) = E(q) = +hvr|q, (19)  variational procedure by considering a wave function with a
wherev is the Fermi velocity: maximal phase difference to decrease frustration, such as,
3t
UFZTOH“. (20) k-ai=k-as=m, (25)
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graphene, it leads to the Dirac cone where the DOS goes lin-
early to zero toward& — 0. Once graphene’s periodicity is
broken by impurities or edges, confined zero-energy modes
appear.

TheseE = 0 flat-band modes appear due to disorder
or boundaries and are associated with topological proper-
ties [37,40]. Zero-energy modes are strictly localized and
confined [40, 44]. For doped graphene, the number of zero-
energy modes is obtained by summing disordered configu-
rations [37]. Such flat bands are especially prominent at
graphene on top of twisted graphene, inducing superconduc-
tivity [11]. The Lifshitz tail produces a pseudo mobility edge
near the Dirac cones [43, 45], as confirmed in ARPES ex-
periments [46]. Resonant states are seen near the Fermi en-
ergy [45,47,48], and the wavefunctions are multifractal [38].

To further quantify the frustration, especially for the con-
Antibonding Bonding E? tinuous models, no_tice how the electron_ dispe_rsion depends
only on the phase difference between neighboring bonds. Us-

FIGURE 4. Sketch of the Hamiltonian eigenvalue renormalization ing Eq. [18), this suggests defining a function to measure
from a graphene hexagonal lattice into a triangular one by the transfrustratioh '

formation?: the graphene’s density of staigd) is transformed
into p(E?), resulting in a folding aroundZ = 0 that is indicated etk-01

by arrows. Band edges, central states, and phase differences among 9k (rj) = tar(r;)by(r;) = £ N (28)
sites are represented Hy signs. Central states # = 0 have a

zero amplitude in one sublattice [37]. When one of the sublatticeswhere the labeb, was dropped i}, (r; + d;) as on to each

is renormalized, states neAr= 0 result in edge band states with  site in A, we assign only one neighbor site The minus sign
an antibonding nature in a triangular lattice [38, 43], as indicatedis now irrelevant in the squared Hamiltonian. Now we sum
in the triangle that appears inside the hexagon. Due to frustrationg|| bonds contributions and observe that,

states are pushed to higher energies, leading to van Hove’s degen-
eracies seen as peaks.

k)2 = &

from where 2

k- (a1 — 0,2) =0. (26)
hile i 2 the fi ) il ai h In the previous expressiorg, denotes second neighbors
While in Eq. 24), the first two cosine terms will give eac in H,, which are first-neighbors ind2, ie, a, =

a contribution—2t¢, the third cosine increases the energy byjm1 +ay,+(ar — az). The last term in Eq. 29 is the

ifo];arldfthushf_ruhstraf[ed_,das shor\]/vr;]ln\llzlg.:. Th|s_ res:*“? Ir%elf-energy obtained from the the interaction of the phases
.( ) = o, which coincides with the Van ove singular- ot the same site. Notice that it corresponds to the coordina-
ties of graphene. They are made from localized uncoupleﬂon Z = 3, and for quasiperiodic or disordered lattices is

di.n:]ers, discor;pected frr10m the lattice ,by having nﬁighborﬁhe local coordination, acting as a space-dependent repulsive
wit zero amp |tuFie._ The degeneracy is given by the num-potential [40,49]. Using the energy dispersion,
ber of dimers, which is alwayd'/2.

To further reduce the energy beldd? = 1, the frustra- E2(k) — 3t2 = t2F (), (30)
tion needs also to be reduced. To see this, again, we use a
variational wave function by proposing in Ec24j the fol-  where the bonding (frustration) plus antibonding contribu-
lowing phases, tions are,

6
S oi(ri)ge(r; +as) + 3. (29)

Tj s=1

6
k-ai=¢, k-a=—¢ —k-(a; —ay) =26, (27) Fk) = %ZZQZ(""j)gk(Tj“‘as)~ (31)

where¢ = 27/3, and finally we obtainE(k)? = 0. It rj s=1
turns out that this special wavevector is precisely the poinirhe ground stat@ = 0 is obtained when the frustration and
k = K. We get the other Dirac poiit = K_ by cho0S-  antihonding contributions balance the self-energy in such a

ing the other possible combination of phases. ASHOE 0, \yay thatF (K, ) = —3. The frustration increases as the mo-
the states are pseudo-spin polarized, the minimal frustrateg,entum depart from th& .. points.

state is four-fold degenerated. Then, as the energy goes from

E? = t§ to E* = 0, the DOS goes from a massive degen-3 1.2 Low-energy approximation: Dirac equation

erated state to a four-fold degenerated state. For disordered

systems, the probability of finding regions without frustra- As what matters most is electrons around the Fermi energy;, it
tion decreases exponentially, and a Lifshitz tail appears. lis very useful to find an effective hamiltonian by considering

Rev. Mex. Fis67 050102



ELECTRONIC PROPERTIES OF 2D MATERIALS AND ITS HETEROSTRUCTURES: A MINIMAL REVIEW 7

k = K+ + g. The expansion of the hamiltonian EQ.4f up 0T 0 o\ /[y,
to first order ing and around . is [50, 51]: 13 g 00 (18
Gz — 19 % °°
— z Y = . o0 —
Hy, = hvp ( o + iy 0 ) =vpo-p, (32) 5
iz
whereo = (0,,0,) are Pauli matrices. The momentum is [1=f(px +ipy)
p = hq. A similar expansion can be made arould to
give, Hye_ = vp|plht

Hx_ = (Hk,)"' =vpo™ - p, (33)

with o* = (04, —0,). Now replaceq — —ihV in cor- HElielty OpREssos;

respondence to thie - p approximation. The hamiltonians
(32) and B3) are two-dimensional Dirac-like hamiltonian for .
massless fermions [52]. Notice that we used the word Dirac- LSpin
. . . . . L . > Momentum 2.Psendospin
like as in a strict sense, there is no Dirac equation in; despite Pseudospin 3 Valley
this, most people refer to this 2D version as the Dirac hamil- ] ) ) o
tonian. The description given so far was in terms of Pauli™'GURE 5. Energy dispersion obtained from E4.7j considering
aé! degrees of freedom: spin, pseudo spin, and valley. The arrows

matrices. They operate on spinors that here describe the WaYndicate the direction of the pseudospin along the with momentum

function on each sublattice instead of a real spin. The term) " .t birac cone and each band. For a given Dirac cone, the
pseudospiris thus used to call this sublattice degree of free'helicity is inverted on each band.

dom. In fact, before we kept both valleys separately, but the

h=oc &
|7l

Degrees of freedom:
N £

full structure of the hamiltonian taken into account both val- The index¢: = 1 indicates valleyK ; and¢ = —1 valley
leys is, K_. ¢ is known as the valley degree of freedom. The he-
licity operator has eigenvalués = 1 andh_; = —1 with
o It o0 o eigenvectors,
Im o 0 0
H=vel v o o m | (34) I >:1( 1 ) (40)
0 0 1 0 G2 sert

Figure 5 presents a short summary of how the pseudospin,

wherell = & ipy ), andH operates into a bispinor wave- )
(Pa+ipy) P P Band, and valley are related to each other in the band struc-
ture

function. Their components now describe pseudospin an
valley,

(|\I/K+,A>7‘\I’K+,B>,|\I/K,7A>a|‘I’K,,B>)T- (35) 3.2. Measuring frustration in continuous models

Let us show how frustration ideas translate into continuous
low-energy models [53]. Consider first the Dirac low-energy
model. To evaluate frustration, we look for the least frus-
trated state, which occurs fd... Then we expand’ (k)

(36) usingk = K + q wheregay < 1,

The full hamiltonian structure is sketched out in Fig. 5.
One interesting property is chirality. To see this, write
Eq. (32) and Eg.83) as,

HK+ :’UF|p‘iL HK_ :’UF|p‘iLT7

2 2

whereh is the helicity operator, Fk) = F(Ky) + (ve/to)°q (41)

. b The Fermi velocity can be thus interpreted as the rate of

h=a- ol (37)  frustration growth withg. For other 2D materials, it is use-

p ful to introduce a technique to measure frustration in such a
It represents the projection of pseudospin on the momenway that although the energy dispersion may not be known,
tum, and ash commutes withH, is a conserved quan- the ground state is reachable by using a variational proce-
tity. This is understood by writingg = |p|expl[if,], with ~ dure [53].
0, = tan"'(p,/p,). Then Eq.182) and Eq. [83) are written The method relies on noticing that still for continu-
as ous models, the phases between neighbors are given by
He(p) = vp|plhe. 38) the components of the spinor, and it follows thatr) =

Y () x5 (r) where the site index was dropped as we deal

and the valley helicity (chirality) operator is with a continuous. Then we compare phases with the renor-
) malized lattice first-neighbo#, i.e., with g (r+a,). Using
~ 0 efzcgp . . . —
he = ( oA ) ) (39) a Taylor series and by summing over neighbgisyr + @)
esr 0 results in,
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. B, A > [59]. The energy dispersion is,
Z 3 F k2
I
i E,(k) = -—= + En, 43
- Jul ‘ _ (k) = 5+ (43)
= 3 10U herek)| is the wave-vector parallel to the graphene plang,

o

is the effective mass.
E, is found by solving the Scbdinger equation of an

Energy (eV)
S

-5 Az L
A electron attracted by its image charge [67]. This leads to the
10 A B / Rydberg like series of states seen in Fig. 6. To better treat the
e ———] regions close to the plane, LDA calculations are needed and

1 matched with the analytical solutions, resulting in [54, 58],
Aly ’

-20

'
—
&

5 /

= T

T - r E, = —0.85eV/(n + a?), (44)

FIGURE 6. Graphene bands evaluated numerically using the full \yhereq? is the matching distance of the analytical and nu-

potential linearized plane wave method (FP-LAPW) and the local'meric solution. This Rydberg series has been confirmed by
density approximation (LDA). The lines are single graphene bands, h e .

. ° oton photoemission spectroscopy [68]. A very important
while the gray background corresponds to the continuous spectrump P P py [68] y Imp

Each band is classified according to the symmetry group repre-Wamlng is in play here because the long tail of the image

sentations. The nearly parabolic free-electron bands are indicate&harge Coulomb pc_)ter_]t'al is not well described in DFT cal-
with labels B.,,. Their shape is well approximated by Eq. (43) and f:ulatloqs [60], a point |gnored by many vvprkers who model
Eq. (44) usingr = 0 andn = 1. Reprinted figure with permis-  interactions of graphene with other materials.

sion from Ref. [55]. Copyright (2012) by the American Physical
Society. 3.2.2. Disorder effects

The coupling of the valley and pseudospin degrees of free-
2 dom is important in charge transport. As seen in Fig. 5, con-
N o 1 _ duction electrons near a given valley, say Kie valley, have
F(k)N/Ad 95 (T) <9k(7°)+2 ;as : ng(ﬂ) > 42} omenta anti-parallel to the pseudospin. For back-scattering
= to occur, the momenta need to be reversegdto change from
whereZ, is the number of neighbors and the integral is madep to —p. This requires to invert the pseudospin and therefore
in the unitary cell. The ground state is thus the one withvalley, but valleys are far away in momentum, so backscatter-
Vg (r) =0. ing is not possible, explaining the graphene’s long coherence
lengths [24].
3.2.1. Graphene’s nearly free electron bands: charge im-  Disorder effects are understood through the study of the
ages near a conducting plane Dirac equation and the induced broken symmetries [69, 70].

) , _ i Despite this, the Dirac equation does not capture all effects
While many of graphene’s electronic properties are extremelyy ihe disorder. Vacancies and impurities with enough self-

well described by the Dirac approach or the TB approxima-energy can produce backscattering [43, 46]. Based on the

tion, it turns out th_at not all pr.operties are well describ‘?dfrustration picture, a quasi-mobility edge was predicted in
under such approximations. Figure 6 presents a numericglyneq graphene [43] and was experimentally confirmed [46].
calculation of graphene’s bands showing parabolic nearlypjs topic is still controversial, as according to the orthodox
free electron bands eV above the Fermi energy [54-57]. {heory, no mobility edges are seen in 2D systems. However,
The explanation of why this happens comes from a simpléy apnene has many symmetries, and disorder induces multi-

physical mechanism. If we think of graphene as a conductfy4cta| power-law localized states [37], for which the general
ing plane, electronic clouds outside the plane will induce IM+heory used may not be valid.

age charges [54,58-60]. When graphene interacts with sub-

strates, adatoms, free molecules, etc., such states are imparp 3. Electromagnetic, strain and flexural fields

tant. As an example, graphene can become metallic with wa-

ter, as the dipolar water layer lowers the nearly-free electrodo understand the interaction of 2D materials with electro-
charge until it touches the Fermi energy [61]. This mechamagnetic fields, there are two paths. One is to use perturba-
nism is akin to the flat band seen in twisted graphene bilaytion techniques in which the field does not induce changes
ers, and we believe that such mechanism is in play for supein the band structure. The first approach allows to calcu-
conductivity in doped graphene laminates [61-64]. Furthefate the transmittance, optical, and ac electrical conductiv-
evidence is provided by recent reports of high-temperaturéy for weak fields [19, 71]. One can also include second-
superconductivity for water-treated graphite [65, 66]. By us-nearest-neighbors in the optical conductivity calculations us-
ing a simple model of an electron interacting with its chargedng the non-equilibrium Green'’s function formalism [72]. For
image, a model akin to an effective Hydrogen atom is foundgraphene, the transmittance is almost frequency independent.
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ELECTRONIC PROPERTIES OF 2D MATERIALS AND ITS HETEROSTRUCTURES: A MINIMAL REVIEW 9

Here we do not follow these paths are they can be found else deformation wave made of an out of plane displacerhent

where [71,72]. Instead, we focus on using a Floquet approachnd an in-plane displacememnt The strain tensor is,

that fully includes the space-time periodicity of the external 1 1

field and material [73, 74]. euv = 5 (0uhOyh) + 5 (Ouuy + yuy) . (48)
Also, related to this topic, we add that strain and flexu- e

. . .. .The out-of plane deformation is,

ral deformations enter as a pseudo-electromagnetic field in

the Dirac equation, and therefore, many results found for the h(r,t) = hg cos ¢, (49)

electromagnetic theory can be applied to strain fields [20]. . )

Despite its similarities, a real electromagnetic field breaks thd/ith @ phase of the wave given by,

time-reversal symmetry while a pseudo electromagnetic field p=Q r— Ot (50)

does not. From a formal point of view, this only changes _ )

some signs on each valley; however, the resulting current$(7¢) measures the deformation with respect to the normal

induced by the pseudo fields on each valley are canceled oflf flat graphene an@ is the deformation wave vector with

This not happens for electromagnetic fields, as the curren@mMponentyQ1, Q2). The time-frequency of the strain is

have the same sign on each valley [73, 74]. given by, which is related withQ = [Q| as2/Q = vs,

We remark here that in 2013 we showed that the basié"her?vs is the deformatio_n propagation velocity, uspally _the
equations used in the continuous low-energy Dirac approxy_elqc'ty of sound. Then in-plane strain can be written is a
imation had a problem as they were not able to solve evefimilar way,
the simplest case, an isotropic uniform expansion [14]. The u(r,t) = € - + ucos ¢. (51)
reason was found in Ref. [14]; when making the low-energy
approximation in the tight-binding problem, one needs first ~ The electron dynamics is now dictated by the equation,
find the Dirac points and then perform the approximation, 0 .
as strain moves the Dirac points. Other groups done the ap- Zh&‘l’n(ra t) = [vroy - (b —nA(r,t)
proximation in the inverse order, and thus many results were
wrong. This problem was fixed in Ref. [14] by producing +V(r, )]y (r,t). (52)
the proper form of the hamiltonian for uniform strain. From The method to find its solution is the same that we used
there, a solution for general strain fields was constructed [16}o solve the analogous of Ed63) for electromagnetic fields

The analogy between strain and electromagnetic fields ig73, 74]. The idea is to combine a Floquet theory with a
very useful; for example, one can find solutions for Dirac\olkov approachi.e., the solution is made from a plane wave
fermions in magnetic fields [75] and translate them to strainand a function that depends only on the phase of the field.
Strain leads to many effects, for example, a light-inducedrhis is equivalent to solve the Dirac equation in the reference
Faraday effect [76], tunable dichroism [17,77]. Moreover,frame of the wave [73, 74],
strain and real magnetic fields can be combined to build new

kinds of devices; for example, there is a theory that proposed ¥, =exp [zk - — zit} (), (53)
guantum engine based on the gauge fields formalism [78] or
valley-polarization of currents by nanobubbles [79]. where ®,(¢) is a function to be determined for each sub-

We started in 2007 working in non-perturbative meth-latticep = A, B, andE = vgh|k|. This ansatz transforms
ods for electromagnetic waves [73, 74]. Afterward, somethe partial differential equation§2) into an ordinary second-
results were extended for deformations. For example, riperder differential equation. In all cases that we studied, the
ples in graphene can be studied by using the minimal couresulting effective equation turned out to be a Mathieu equa-
pling in the Dirac hamiltonian as if it were an electromagnetiction that describes a classical parametric pendulum [73, 80].

field, [73,74,80], Here we offer a simplified version for the case of an electron
. with momentum parallel to the wave propagation,
H =vpo, - (p—nA(r,t)) + V(r,t), (45)
d*T ,(¢
wheren = +1 labels thek , andK . Dirac points.A andV/ d;g )4 [ax —2qcos (20)]Tp(4) =0,  (54)

are pseudo-vector and pseudo-scalar potentials [20], - )
wherel',(¢) = e™"1® ,(¢) and the signs- labels each val-

V(r,t) =g (epe +€yy), (46)  ley equation. The vectdt = (k,, k,), defined ak = k/Q,
13 is projectgd into para]lel and perpendicular directions of the
2 (€xw — Eyys —2€4y), (47)  propagating corrugation. The.paramgteg and g depend

ce upon the momentum and field intensities [73] but can be bet-
where the strain is characterized by the 2 tensore,,, with  ter understood in terms of the parametric pendulumrep-
componentsy = z,y andv = =z,y, defined below. The resents the ratio between the frequencies of the pendulum and
dimensionless @meisen coefficient ~ 3.0 gives the mag- forcing, while ¢ is the amplitude of forcing. In Fig. 7, we
nitude of the coupling between deformations and hopping papresent the stability regions of the Mathieu equation. Here
rameter, and the parameteranges from 0 to 20 eV. Consider represents the allowed spectrum of periodic solutions and is

A(r,t) = (A, Ay) =
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Q‘L Unstable
g region
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q 5/ Stable
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38
2.
1
0
0 5 10 15 20 25 30
ai FIGURE 8. Energy dispersion in borophene resulting from the

i . ) hamiltonian |65) near one of the Dirac points. The cone is tilted
FIGURE 7. (Color online) Spectrum of the Mathieu equation show- and anisotropic.

ing the allowed and forbidden (shaded area) regions. The order

of the gaps is indicated. This structure is known as the Arnold . . .
tongues. This diagram represents the stability of solutions for  Notice that here there are three different velocities along each

parametric pendulum, wherg. is the ratio between the period of coordinate axis, where bf,, v,,v;} = {0.86,0.69,0.32}

forcing and the natural pendulum frequency, aiisithe magnitude i Units ofvp = 10° m/s, and the valley index is = +1 de-
of the external forcing. gree of freedom(o,, o)) andoy is the identity Pauli matrix.

The resulting bands are,
made from resonance gaps known as Arnold tongues. The
solutions are the Mathieu special functions. ¢ [02k2 4 2k2
Whenever the frequency ratio is an integer, a gap is open X i = Choekey = Al Juzks + vgky, (56)
in the spectrum, and resonance occurs. In the present aa/-ith eigenfunctions
proach, the role of the natural frequency is played by the en- 9 '

ergy of an electron with a given momentum, and the forcing or
frequency is given by the external fielg.is proportional to YS . = CL L ) (57)
. . o Ak \/§ /\619
the field intensity; whenever = 0, we recover the case of
graphene without a field. An algebraic approach to similar ) .
A = =1 denotes the valence or conduction band as in

problems leads to the same conclusion [81]. .
The important result here is that light and strain opend'@pPhene an® = tan='(v,k, /v.k.) is a measure of the
gaps. Light induces currents and even changes the sign 81iSOtropy. In Fig. 8, we plot Eq. 57). Two features
the current depending on the type of polarization [73]. More-2T€ Seen here, i) the cone is titled and ii) there is a strong
over, we found a strong non-linear response in the sense thafisotropy. The tilting is produced by thes, term, while

an ac field induces a huge content of odd harmonics allowingy/ V= controls the anisotropy. Both effects imply many re-
graphene to work as a rectifier [73]. It is important to remarkStrictions for optical transitions, producing a very transparent

that for some angles of light incidence,can be complex, m_aterial and dynamic_al gap opening by electromagnetic rao!i-
and thus the diagram looks different [74]. An interesting ef-ation [84]. To study this system under strong electromagnetic

fectis an electron focusing by sound as gaps are open in sonfi§!ds as well as any other periodically time-driven quantum
preferred directions [21, 80, 82]. system, we developed a very efficient and simple monodromy

approach [85], which numerically is an improvement over
our original analytic algebraic method [81]. The method also
reproduces the results of linearly polarized light at all field
intensities, for which we were able to find an exact solu-
Graphene paved the way to look for other effective hamilto-tion [86]. Finally, this kind of hamiltonian holds in general
nians. The procedure is to solve a tight-binding or performfor other anisotropic honeycomb lattices, including mechan-
a DFT simulation and then use an approximation around théal, acoustic, microwave, etc., analogous systems [77].
Fermi energy. Typical examples are Silicene and Borophene. Interesting models are obtained by decorating graphene.
For the borophene phase with a space groupn@mn, the  An example is thex — 75 graphene, in which an additional

3.3. Other 2D materials effective low-energy hamiltoni-
ans

model hamiltonian is [83] molecule or atom enters at the center of each hexagon, cou-
. . . R pling with just one bipartite sublattice [87—89]. Interestingly,
H = h(vakaby + vykydy + vikyoo). (55)  this is the minimal model that presents flat bands coexisting
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with Dirac cone states. The — 73 Hamiltonian low energy 4. Multilayered 2D materials
approximation is [90],
Multilayered materials are made by the successive stacking
. 0 toCa f(k) 0 of 2D layers [98,99]. Figure 9 presents the results of stacking
H = | toCa [*(K) 0 toSa f(k) ], (58)  two and three graphenes. In Fig. 9b)), theatoms of layer
0 toSa f* (k) 0 2 (B2) lie on top of layer 14 atoms of layer 1 [100, 101].

; Figure 9c) presents the structure of AR A trilayer. We can
withC, = 1/v1 2,8, =a/V1 2, and the parame- . oo . .
tera is in thé int:.\_r\(/lal() < a <a/1 T:eamodel contgins two identify in Fig. 9 that the electronic properties of 2D stacked

inequivalent Dirac points and thus can be written as, materials are ruled by:

HY = hopk - S, (59) o IIntralayer interactions and geometry on each mono-
ayer.
whereS = (¢£5,, S,) with { = £1 is the valley index. The
pseudo-spin operatof, andgy are, e The kind of interactions between monolayers, known
as interlayer interactions.

0 C» O
Se=1[Ca 0 Sol, (60) e The stacking geometry, defined by a translation and ro-
0 Sa 0 tation.
g Zg ﬂOC“ —z‘OS (61) In graphene over graphene, the interlayer interaction is
v 0‘“ is 0 > due to Van der Waals forces, but the stacking geometry leads

to complex electronic phases [11]. For graphene stacked over
When considering the optical and electronic properties, thist metallic substrate as Au, Ag, Cu, etc., strong hybridization

model behaves as a three-level Rabi problem [91]. is seen. Even impurities can induce bond order as the Kekul
2D Materials can also be periodically modulated whenpatterns [102].
interacting with substrates. An example is the Kélqpittern A typical example of a heterostructure hamiltonian is the

seen in graphene [92]. The model can be written as [93],  Slonczewski-Weiss model [103]. Therein, the paramgter
is the usual intra-layer graphene’s interaction, as indicated
e k-o Ao (kg — iky)o0 i‘n Fig. 9b). For bilayer graphe_ne, five hoppings yvith
= ( Ao(ks + ik, ) ko ) . (62) 4 = 0,....4 account for the possible overlaps oforbitals.
Y Four on-site energiesa,ep1,€a2,€42 are used. The pa-
orH =vy(k-o)@10+vrAoo@(k-T), wherer = (7,,7,)  rameters are given byt, = 3.16 eV, 1 = 0.381 eV,
is a second pair of Pauli matrices, the unitary matrix, and ~3 = 0.38 eV, v, = 0.14 eV, ep; = €42 = 0.022 eV and
Ay is the energetic parameter that measures the strength efi; = ¢z, = 0. As Fig. 9c¢) indicates, the case of trilayer

the bond modulation. The corresponding spectrum is graphene requires two additional parametessafdys). The
8 resulting matrix for bilayer graphene is:
€, = asguok, (63)
wherea = +1 labels the conduction and valence bangis- €Al . —tof(k)  7af(k) —ng*lgk)
+1 s a label used to define two velocities, = (1 + 8A). = |t/ S{: ) m n Vglf( k) , (65)
The energy dispersion folds each graphene’s valleys into the | 74/ (k) n " teAf X —tof(k)
T point of the Brillouin zone. This results in two cones that —1f(k)  vafr(k) —tof"(k) €B2

have the same tip, but one cone has a fast Fermi velocit%
vr(1+ Ap), and the other a slow velocityz(1 — Ag). The
eigenfunctions are [93, 94],

here f(k) is given by Eq.15). The bands resulting from
diagonalization of such matrix are presented in Fig. 9b). Tri-
layer graphene is treated in a similar way. The energy disper-
|\I,g’(,g)> = (U, (k)) ® |War (K)), (64)  sion seen in Fig. 9¢) mixes the monolayer and bilayer case.

where| V) is the graphene’s single-valley eigenvector. This

model has several important features. As both valleys havb. Superlattices: twisted and displaced
the same Dirac point in momentum space, it allows to per- graphene bilayers

form valleytronics by strain [18], a fact recently confirmed

experimentally [95]. Also, clear signatures are seen in théNow consider the effects of the stacking geometry due to
optical/electronic conductivities [94,96] and plasmons due talisplacements or rotations. Structures known as &pat-

the Moiré interference between the two-electron gases witherns are produced. At certain angles, periodic superlattice
slightly different velocities [30]. The inclusion of second- are seen with a unitary cell which usually ranges froro
neighbor interactions modifies the picture as a gap opens iB0 nm [104, 105]. Usually, the strain also appears to mini-
one of the cones [97]. mize
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Graphene monolayer Bilayer Trilayer
3 >, i \/
o} o o
. g [}
w AT LE
Momentum Momentum Momentum

FIGURE 9. Unstrained lattice structure (upper panels) and a sketch of their corresponding energy dispersion (lower panels) for a) monolayer
graphene, b) Bernal stacked bilayer graphene, and c) Bernal stacked trilayer graphene. Blue atoms belong to the A bipartite lattice, while red

atoms belong to the B lattice. The arrows indicate the different kinds of interactions that appear in a TB calculation, paramegrioed by
intra-layer interaction, ang; with ¢ = 1, ..., 5 for inter-layer interactions. The Dirac cone seen in a) for graphene is replaced by parabolic
bands in b), while trilayer graphene includes both types of bands.

the elastic free energy. A complete treatment of the probfound using higher-dimensional projections [114], or even
lem requires to include not only the electronic energy but themore surprisingly, from symbolic sequences, billiards, or
elastic energy as well [13,14,106]. Another interesting waySturmian codings of the magnetic flux, allowing to decode
to build superlattices is to consider spatial variations of exterthe global fractality of the spectrum and making clear the
nal electric and magnetic fields [107-110]. connection with quasicrystals [115]. Originally, the prob-

Needless to say, the resulting physics is rich. As examlem without a lattice was studied by Landau, giving levels
ples, we have the first experimental observation of the comwith energyE' = (n 4 1/2)hw andn integer. In a lattice,
plete Quantum Hall topological phase diagram [111], multi-the interatomic distance adds a new scale in the problem that
flavored Dirac fermions [31], and quantum phases similar taccompetes with the magnetic length [112]. The spectrum is
those seen in higlfi, superconductors [11]. This last surpris- controlled by the ratio between the magnetic flux and ele-
ing behavior is due to the appearance of flat bands at certaimentary quantum flux. The problem translates into a one di-
geometrical configurations. Both characteristic behaviors argiensional Harper equation, similar to that seen for uniaxial
seen in their most simple form by using a model producedstrained graphene [13]. For atomic systems, it was impossi-
by our group many years ago and that we reproduce in thele to measure the Hofstadter butterfly as the ratio between
following subsection [13]. fluxes is too low for any real magnetic field. The trick was
to build a superlattice using a rotated substrate [111]. This
allows increasing the unitary cell size and thus the flux by a
dramatic amount while keeping the magnetic field accessible
to available laboratory conditions [111].

5.1. Quantum Hall effect, flat bands and topology in
graphene superlattices

An example of clever use of a M@isuperlattice is the exper- Let us present a simple model able to capture such behav-
imental observation of the Hofstadter butterfly [111]. Suchior. As shown in Fig. 10, suppose graphene over a substrate
fractal spectrum was predicted to occur for electrons in a 20n which the interaction will induce deformation of graphene.
lattice under a constant magnetic field [112]. From thereWe suppose that the deformation is position-dependent only
the Quantum Hall effect (QHE) was explained in terms ofin one direction, a situation known as uniaxial strain. One
topological phases [113]. Recently, this phase diagram wasan take advantage of the uniaxial property by noting that
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The non-strained case can be thought in terms of cells
with four kind of sites (see Fig. 10) and focusing attention to
the right of Fig. 10, one notes that all sites within the pe-
riodic supercell become inequivalent along thelirection
when strain is applied. One labels themAsand B;, where
j is an index for the position in the path, addor B labels
the original bipartite lattice in the absence of strain.

The resulting hamiltonian is that of a one-dimensional
modulated chain [13]:

)
.
£

FIGURE 10. (Color online) A zig-zag nanoribbon modulated by
uniaxial strain as described by E®6J. The wavy line to the left is + t
the applied strain in the-direction. The dotted line represents the H(ky) = Z {tj+1aj+1bj + C(km)tjajbj] + H.c., (66)
period in ther direction. A vertical dotted line indicates the limits J=1

of the unitary cell in thex direction. Carbon atoms positions in

the cells are labeled witH ; and B;, corresponding to the bipartite wherea;, a} andb;, b} are the annihilation and creation op-
lattice andj is the atom-numbering in the vertical direction. The erators in thed and B sublattices, respectively, arid is the
system maps into a chain joined by effective botidandc(k.)t;.  number of sites in thel sublattice along the periodic path.

At a specialk, value,c(k;) = 0 and the system decouple into  For oddj, the effective bonds are defined through:
dimers.

N-1

graphene nanoribbons hamiltonians map into one dimen- t; = toexp [—B(u(ys,) — u(ya,))/a] , (67)
sional effective chains [13] as sketched out in Fig. 10. Con-

sider a nanoribbon in which the atoms’ positiensare trans- ~ and for every as:

formed by the deformation inte; + au(r;), whereu(r;) is

any general strain field. Here we demand the field to be uni- t; =toexp [—B(u(ya,,,) —u(ys,))/2a],  (68)
axial u(r) = (0,uy(y)). As seen in Fig. 10, the symmetry

along the non-strained direction, chosen asitidérection, is ~ Where the Grunesissen parametes is: 3. The factore(k,,)
not broken. The solution to the Sdlinger equation can be contains the phase in the-direction:

proposed a¥ (') = exp(ik,x)¥(y). The resulting hamil-

tonian thus depends updn and is labeled a#l (k). c(kz) = 2cos(V3kza/2). (69)
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FIGURE 11. (Color online) Left columns, energy as a function/of, and right columns, the corresponding DOS for uniaxial strain in
graphene as described by the hamiltonian E66).( Panels a) and b) correspond to unstrained graphene, panels c¢) and d) contain an
incommensurate strain for the unit cell. Panels e) and f) are for conmmensurate strain. On each DOS we include labels to denote the
conductivity behavior: semimetallic for graphene, metallic for incommensurate strain and insulator for commensurate strain. The Van Hove
singularities and Dirac cones are indicated, as well as the flat band that appéars di for c) and d). A vertical line going through

panels a),c) and d) indicate the special momient 2/+/3a where the equations are decoupled. Observe how the Van Hove singularity for
graphene is a highly-degenerated dimerized system, while the effect of the strain for the incommensurate case is to spread the states formir
many peaks and a flat band due to lines of quantum dots. In case f), the commensurate strain produces a gap and Van Hove singularities
band edges. This case results in two effective linear chains forming a Luttinger liquid.

Rev. Mex. Fis67 050102



14 G. G. NAUMIS

Figure 11 presents the resulting energy disper&iéh,)  and
and the corresponding DOS for the hamiltonian (11) us- hy(k) = (1 4+ A\/2)sin(3k, /2). (74)
ing a periodic substrate using a strain fieldy) =
A(0, cos(2mAy)). HereA controls the spatial wavelength of

the deformation and its amplitude. Figure 11 panels c) and logical phases are seen for amplitudes 1/2. For a gapless

d) presents the spectrum and DOS for an irratiohabith case f < 1/2), the topological modes are flat bands joining

respect to the graphene’s unitary cell distance. The sp_e<_:tru irac points with opposite topological charges [106, 118], as
presents a flat band. The model allows to track the origin o : :
appens in Weyl semimetals [119, 120].

the celebrated flat-band to find that they are due to lines o . .
. . Also, this 1D model can be used to study time-dependent

guantum dots which confine states [13]. Also, the Van Hove . . .
séram. The results lead to very complex topological phase di-

singularities of unstrained graphene (panels a) and b)) Spre‘%\grams, with new kinds of topological modes which are still

along the spectrum producing peaks. For a conmmensirate. L X -
we can obtain the spectrum and DOS shown in Fig. 11 panel'é1 the process of being investigated [121-123].

€) and ). The spectrum ShO.WS agap. and _the DOS ‘.”di‘%at%stz. Magic angles and superconductivity

that the system decouples into linear chains, resulting in a

Luttinger ||qU|d Figure 11 indicates the amaZing pOSSib”i'AS seen in F|g 12, we can build a M'e"pattern by stack-

ties as we can tune the SyStem to be Semimeta”ic, meta”lq”g graphene on top of graphene rotated by an aﬁg|bet

or insulator by using strain or a suitable substrate. us derive the corresponding hamiltonian. For simplicity, we
An interesting situation arises fdr, = 2/v/3a, where  only consider a single valley. The hamiltonian is made from

c(k;) = 0. In this case, the chain is decoupled into dimerstwo rotated single layer Dirac hamiltonians and an interlayer

[13]. For unstrained graphene, the dimers produce a magoupling between them,

sive degeneration leading to the Van Hove singularities ob-

served atfl = +3t,. They are saddle points of the energy . — [HUU HUD:| (75)

dispersion. For strained graphene, the degeneracy can be * Hpy Hpp|’

completely or partially removed [13], leading to the peaks

observed in panels ¢). When the substrate is another straingé]e up (U) and down (D) labels are used to denote each layer,

and displaced graphene, the resulting hamiltonian is the sa

Equation 72) is the celebrated Su-Schrieffer-Heeger
model for polyethylene [117]. Therefore, non-trivial topo-

as the Harper equation that appears in the Quantum Hall ef- Hyy = vp(—iV — KY) - 092
fect problem [112]. Such equation is known by mathemati- _ b (76)
cians as the Almost Mathieu Operator, as is a discretized ver- Hpp = vp(—iV —K")-0_g)2

sion of the Mathieu equation which describes the parametric . . .- .
) . are the two rotated versions of the single-layer original Dirac

pendulum. The nature of its spectrum for the incommensu; _~ . ~ . : .
) ; o hamiltonian. We have taken into account the shift of ke

rate case was one of the famous Simon’s Ten Martini prob-

lems, finally solved in 1996 by Jitomiskaya and Last [116]. D']rgac point to produce the h|gh'-symmetry poirks’ a'nd
. o . K™ on each layer. Also, we defined two rotated versions of
The previous model contains interesting consequences . .
) o L . the Pauli matrices,
for electronic localization [13] and non-trivial topological
properties. To show the non-trivial topology, consider again a
strain fieldu(y) = A(0, cos(2wAy)). For a wavelength such

thatA = 1/(2a), t; takes only two values. By performinga  The Dirac points are now coupled together by an inter-

T9/2 = e~ 40 (Ugg,ay)ei%"z. (77)

Fourier transform of Eq/66) using: layer hopping term such thafp = HJ, , with [9],
a; = ﬁzlv/z ; e 2y, (70) Hyp = To(r)o® + Tap(r)o* + Tpa(r)o~  (78)
! whereTy(r), Tap(r), Tap(r) are the tunelling matrix ele-
and ments. To gain a better understanding of how to build these
b = # Zefiky(j)?)/%kw (71) terms, we consider first the case in which electrons tunnel
VIN/2 k, ' only when the atoms of both layers coincide or when an atom

coincides with the center of a hexagon in the other layer. As

the hamiltonian becomes: seen in Fig. 12, there are three cases: both bipartite lattices

H(k) = ha(k)ow + hy(K)oy, (72) coincide, as in the stacking pointsA or in an quivalent
way BB, the A atoms of the upper layer align with the
whereo, ando, are ther andy Pauli matrices, atoms of the layer4 B stacking) andsiceversa(B A stack-
ing). The AA stacking points form a triangular lattice and
he(k) =2(1—)\) COS(\/ﬁkx/z) unfavour tunneling between lattices. TH& and B A points
form two sublattices of a big Maér honeycomb. Therein,
+ (14 A/2) cos(3ky /2), (73)  the electrons are prone to interlayer tuneling, a fact that will
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FIGURE 12. Panel a), twisted graphene over graphene geometry. The stacking points AA, AB, and BA (deneig¢diayindicated. The
Moiré vectorsa, » are indicated. Panel b), the MérBrillouin zone (usually known as a mini-Brillouin zone). The point is at the origin.
The reciprocal Mo# vectors aré; » and the translation vect®r > 5. The K’ point is given byK’ = K — q.

prove to be very relevant for the phenomenology of the sysmodel, only the lowest order harmonics are kept [9]. Also
tem. and as the original rotation symmetry is broken, it is cus-
Now consider, for example, thd A stacking point; the tomary to move the Dirac points in both layers to the ori-
tuneling is given byly(r) = wo >, 6(r — R,,), whereR,,  gin by using a unitary transformation with diagonal entries:
is the location of thed A points andw, the energetic cost of W = ¢ik" 7 ¢iK”7 This leads to the following hamiltonian,

tunneling there. Using the Mdrreciprocal vector&s,,,, the .
g g p H[IJU :'UF(—ZV)~09/2

delta function is written as a Fourier harmonic superposition (80)
§(r— Ry,) = (1/Am) Y., e "G ", whereA,, is the area Hiyp = op(—=iV) - 0_g/a-

of the Moiré unit cell. A similar procedure holds to the other

stackings, but due to their displacements fromAhepoints, Defining the vectoty; = KV —K” = ky(0, —1) and the

vectors related by = 27/3 rotationsqz, gs, the interaction

the other stacking points acquire a phase, : :
between layers is now written as,

w1
Tap(r) ~w d(r — R, —74) = —
ne | Aut Hip = wolUo(r)o’ + wiUap(r)ot +w Upa(r)o™ (81)
. Z e Gn AT with the following definitions,
wy Uo(r) = eI | pid2 T 4 o—iqsr
TBA(T) Nwl&(r_Rn_rB) - Af . -2 . cAm .
M UAB (’I") — e tarr + et s etz + el emias T (82)
_iG'm‘ —le
X Z e TBe r, (79) UBA(T) — e*iqrr + eiizTﬂefi(h'l‘ n e*i%{e*iqa-r7

m

where the Moié lattice vectorsa;  and reciprocal lattice

wherew, is the energetic cost of tunneling at the3 and .
vectorsb,  are (see Fig. 12),

BA points.
In the real system, the interlayer hopping, (r) is a con- An V31
tinuous function of the position, and thus we need to include a2 = 3k < + 5 2>,
6

in the sums over the Mdirreciprocal vectors a modulation
factorty p(G,,). A very useful approach to build such hop-
pings is to identify the coincidence lattice from a higher di-
mensional cut and projection method [32]. In any case, the , , )
interlayer hopping depends on the separation between layers, After a_II these transformations, we finally obtain the cel-
which is more than twice the intra-layer atomic separationsfebratEd Bistritzer-Mac Donald (BM) model [9],
As the hoppings depend exponentially on the distance [14], I —ivog) - V T(r)
the Fourier components decrease rapidly. In the most simple - ( Tt (r) —ivo_g3 - V)

V3 3). (83)

bio = — =ko| £ —, =
1,2 =d1,2 —d1 9( 59

(84)
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where, The corresponding parameters gie= kq(0, —1),
’U)()Uo (I‘) w1U1 (I‘)
T(r) = V3 1
(I’) (wlUf(r) ’ono(I‘) gz = ]Cg (2, 2)
UQ(T’) — e—iql-r +e—iq2-r +e—iq3~r (85)
‘ o o and
Up(r) = e '01T | pldpmidaT 4 pidp—ideT V31
q3 = kg 99 ;
and which has the translational symmetry,

the Moire modulation vector i%y, = 2kpsin(6/2) with
H(r+ap) = VHr)V! kp = (4m/3a0) is the magnitude of the Dira(lc/wllve vec-
V = diag(l,e i, 1,e7%). (86) tor anday is the lattice constant of monolayer graphene.
The physics of this model depends upon the intensity of
The phase between the top and bottom layers acquired undgte parametery, defined asn = (w;/voky). Herew, is
translations can be understood as an effect of the grapheniee interlayer coupling of stacking AB and BA, and takes
Brillouin zones twisting, as the momenta in the bottom layerthe valuew; = 110 meV, while vy is the Fermi velocity,
are shifted byq; relative to the top layer. This generates thewith valuev, = (19.81 eV/2kp). At magic anglesy =
phase shife’d* 1.2 = ¢~¢, The Bloch States inherit this 0.586,2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345, ...

phase and have the following form, flat-bands appear. These magis have a3/2 cuantization
Silk—K)-r rule [12] fora > 0.586 .
i (r) = ug (1) ( i(kK,)_r> , (87) The chiral hamiltonian captures the “true magic” of the
€ magic angle physics. At poimt B the K point wave function

has a node [12], and thus flat-bands wave functions are writ-
ten using Jacobi theta functions, close to the lowest Landau
state in the Quantum Hall effect [12]. Interestingly, using this

neling, or large angles, the statesatand K correspond to model, one can predict the magic angles for any system with
the top layer and bottom graphene layer, respectively. more Fhan two Iayer; [124]. Very recently, th|_s result has been

The spectrum of the (BM) model presents flat-bands fo£Xperimentally cgnﬂrmed as superponductmty was found ex-
several; these are known as magical angles. As flat-band@ctly at the predicted angles for trilayer graphene [125], re-
imply localization, Bistritzer-Mac Donald suggested an en-Sulting in the strongest coupled known superconductor with

hanced electron-electron interaction at these angles and tifelarge Pauli limit violation and reentrant superconductivity
possibility of having superconductivity [9]. Such hypothe- Phases [10]. _ .
sis was experimentally confirmed in 2018, and surprisingly, IS0, recently, Naumiset al.  showed that the chi-
the quantum phase diagram was found equivalent to thog@ hamiltonian could be further reduced to2ax 2 ma-
seen in high critical temperature superconductors [11]. TherEX; bringing to the front the nature of frustration and the
are many open questions in this field, and one of thestPPology of the system [53]. To do this, we start with
is the origin of magic angles. To tackle this question, inthe Schédinger equa‘uonﬁ%@ = E®, where ®(r) =
2019, Tarnopolsket al. introduced a simplified version of (¥1(7),%2(r), x1(r), x2(r))" are the four components of
the BM hamiltonian by making a very useful approxima- the wave function for twisted graphene bilayer. Here the in-
tion [12]. They switch off thed A coupling completely by ~dex1,2 represent each graphene layer. Then, as we did with
settingw, = 0. This results in a chiral version of the original 9raphene, consider the squared hamiltoriién

BM hamiltonian, 72— (D*(—T)D(T) 0 ) (92)

whereK’ = K — q; is the Moile K’ point wavevector in
terms of the Moié K point wavevector andy(r) is a peri-
odic function such thaty (r) = uk(r £ a1 2). For zero tun-

*(— 0 D(r)D*(—
e P
As before, this transformation removes the particle-hole
where the zero-mode operator is, symmetry, which is an anti-unitary anti-commuting sym-
9 U(r) metry. The resulting2 x 2 effective hamiltonianH? =
—1 aU(r ;
_ U D*(=r)D
D(r) (aU(r) 5 )7 (89) (—r)D(r) is [53],
—V2 4+ 2|U(—7)|? aAt(r)
2 __
and i = ( aA(r) v a2Um)p) O3
* —i0  aU*(—r
D*(—r) = <aU*(r) _Ea )), (90) " The norm of the potential s,
with & = 8, +id,, d = 0, — id,. The potential is, U(r)]* =3+ 2cos(by - — ¢)
U(r) = e '0T 4 ¢idemiarT | o—idp—igs T, (91) +2cos(bs - T+ &) + 2cos(bs -+ 2¢), (94)
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mode band in an equivalent rigidity-phonon problem [126].
These floppy modes occur in flexible systems [127-131]. Fi-

] nally, we add that some of the electronic properties of Eloir

i lattices can be obtained through using analogous systems,
1 for example, fluids in a vessel with nested and rotated ob-
stacles [132].

(2]
T

s
T

n
T

6. Conclusions

A general overview of the electronic properties of 2D mate-
rials was provided making contact with the Dirac and Weyl
equation approaches. We made special emphasis on the un-
derlying frustration that produces the Dirac cone, a fact usu-

] ally bypassed in the literature but that our group in Mex-

a ico pursued systematically. Moreover, this physical mech-

1 anism is in play for twisted graphene bilayers at magic an-

] gles, where superconducting phases are observed. We also
] reviewed a very simple mapping of graphene superlattices
i & o 3 i E into a one-dimensional model that allows to recover the main
features of twisted graphene over graphene, like flat-bands,

serve the trigonal symmetry. For the first magic angles, the fIat—tOpc’IOg'Cé1| States’ fractal qyantum phase QIagram_s, ete. .FI-
band states wave functions tend to confine by tracking the min-na”y' we prowde_d an qverwew of the p_hys_lcs of tW'$ted_t?"
ima of this function, here in blue. The three-light brown maxima layer graphene, including a recent derivation that simplifies

around each minimum act as potential barriers which confine thethe problem and brings the physical and topological origin
wave function, leading to a quantum dot effect. of flat bands to the front [53]. In this review, we empha-

sized the collaborations made with other groups working in
whereb; o = g3 — q1 are the Brillouin zone Mo& vec-  Mexico. Many of these contributions not only helped to un-
tors andbs = g3 — g2. In Fig. 13 we present a contour derstand 2D systems but allowed to develop new techniques
plot of such effective potential, showing its trigonal symme-to deal with periodic time-driven quantum systems, time-
try and the structure of minima and maxima that produce alriven topological systems and methods to quantify frustra-
quantum dot effect by confining electrons. Also, notice thetion, build topological phase diagrams and obtain its phys-
similarity of this function with the frustration functioR'(k) ical properties. Among these, it is of special importance
of graphene. The off-diagonal terms are, in all fields of physics the finding of an exact method to

build the effective Hamiltonian of quantum time-driven sys-

I
N
T

1
IS
T

e,

|
(2]
T

FIGURE 13. Contour plot of the effective potential Ec94). Ob-

3 . .
. T (o tems, allowing, for example, to solve analytically the quan-
_ iq €. _
Alr) = —i 2,:1 € (24 -V = ko), (95) tum harmonic oscillator with time-dependent frequeney,
" the quantum parametric pendulum, for which solutions were
and not known [81].
3
Af(r)y = =iy e T(2G - V + ky), 96
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