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In this paper, the deformation of special relativity within the frame of conformable derivative is formulated. Within this context, the two
postulates of the theory are re-stated. Then, the addition of velocity laws are derived and used to verify the constancy of the speed of
light. The invariance principle of the laws of physics is demonstrated for some typical illustrative examples, namely, the conformable wave
equation, the conformable Schrodinger equation, the conformable Klein-Gordon equation, and conformable Dirac equation. The current
formalism may be applicable when using special relativity in a nonlinear or dispersive medium.
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1. Introduction

N . f et — f(b) . d

The Einstein’s special relativity plays a corner stone in mod- Dif(t) = ll_{% € =t ﬁf(t)' (1)
ern physics. As stated in 1905 by Einstein, itis based on tWerps definition is simple in the sense that it meets the general
postulates. The first postulate is about the constancy of the,onerties and rules of the traditional derivative, whereas the
speed of light: the speed of lightis the same in all iner- e fractional derivatives do not satisfy them. From these
tial frames of references. The second postulate is about theoperties the Leibniz, chain rules, and derivative of the quo-
invariance form of the laws of physics under Lorentz rans+jent of two functions. Because of its ease of use, general
formations. As a consequence of this, any theory of Spacg ¢ res, and preservation of general properties including the

and time should be compatible with the theory of special reho ity property, the conformable derivative has a wide range
ativity. There are some other aspects that were studied af; applications in a variety of fields of science.

ter the emergence of theory of relativity [1,2]. In Ref. [3],_ In Refs. [19,20], this CFD is re-investigated and new
the Lorentz transformations were re-stated for an observer igrqperties similar to these in traditional calculus were derived
a refracting but non-dispersive medium was proposed, angyq giscussed. The CFD has been used to study various phys-
some physical consequences were discussed. In Ref. [4}5) problems with possible nonlinear or diffusive nature. In
Laue and Rosen theories of dielectric special relativity werggqf. [21], the mass spectroscopy of heavy mesons were inves-
derived, and argued that both are true but with different rangggated within the frame of conformable derivative searching
of applicability. In Ref. [5], the non-local special relativity tqr any ordering effect in their spectra that varies with the
is introduced to overcome the difficulties accompanied thgractional order. In Ref. [22], the fractional dynamics of rela-
non-local electrodynamics problems. tivistic particles was studied, and it was found that fractional
In the last two decades, the fractional calculus approackdynamics of such particles are described as non-Hamiltonian
to model or resolve various physical problems has attractednd dissipative. Possibility of being Hamiltonian system un-
many researchers. There are a number of definitions or sensdsr some conditions was also presented. In Ref. [23], a new
for fractional calculus such as Riemann-Liouville, Caputo,conformable fractional mechanics using the fractional addi-
Riesz and Weyl [6-9]. The most important definitions aretion was proposed and new definitions for the fractional ve-
the Riemann-Liouville and Caputo definitions. These definidocity fractional acceleration are given. In Ref. [24], defor-
tions have many applications in various fields [10-17]. Themation of quantum mechanics due to the inclusion of con-
fractional derivative has lately been given a new definition.formable fractional derivative is presented and investigated
This is the first definition to use the limits definition, and it with some physical illustrative examples. Recently, Pawar
is called conformable fractional derivative (CFD) [18]. For aet.al. [25] introduced Riemannian geometry through us-
given functionf(¢) € [0,00) — R, the conformable deriva- ing the conformable fractional derivative in Christoffel index
tive of f(t) of ordera, denoted a®Dy* f(¢) with0 < a < 1,  symbols of the first and second kind. The conformable cal-
is defined as [18]: culus has been used in making an extension of approxima-
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tion methods to become applicable to conformable quantum We now state the two postulates of conformable special
mechanics [26-28], and to find solutions of related differen-relativity as follows.

tial equations such as the conformable Laguerre and associ-
ated Laguerre equations [29]. In Ref. [30], the Hamiltonian
for the conformable harmonic oscillator is constructed using

e Postulate 1(Constancy of the speed of light): The speed
of light is the same for alk—inertial frames of refer-

fractional operators termedg-creation andv-annihilation op- ences.

erators. e Postulate 2(Invariance Principle): The laws of physics
Later, in Ref. [31], pointed out the conformable deriva- are invariant undeti—Lorentz transformations.

tive is not fractional but it is an operator. Thus in the present _ . _ .

paper we call it conformable derivative. The following subsections purpose is to clarify theses two

The purpose of this paper is to investigate the deformaPostulates.
tion of the theory of special relativity within the frame of
conformable fractional derivative. This means that, we will 2-1-
adopt a new set ak—Lorentz transformations and use them Following [23], we define thev—velocity of an event with
to re-state the postulates of special relativity, and to verify th‘?espect to thes andS’ frames as
validity of the invariance principle to various laws or equa-
tions of physics. t dx

Thea—velocity addition law

uo = D = (D)0 (6)
t g dx
2. Theory up = Dy’ = ()T o ©)
Deformation of Lorentz transformations using conformablerespectively. To calculate the velocity using E@®).4nd B),
derivative is reported in Ref. [24]. we have
. I?elﬁfnmons';heo:j; /I_orerétzf.trar:jsfom;iu_ons between two dr'™  To(da® — vadt®) (c(l% .
inertial framesS and.S’ are defined as [24]: dre T (e — Sde®) 1 %d;;‘;)'
o o fe%
@' = Lo (2 —vat®), @ By interpretingdz’® /dt'® = !, anddz® /dt* = u,,, we thus
1o = Ty (10 — e gy, (3 op@n
C (o7
’ (o — va)
y' =y, 4) Yo T 1= 2w, ®
7% =2, (5) In caseu, = ¢, we have
wherel', = 1/4/1 — (v2/c2%) is thea— deformed Lorentz @’ ot o= () uy — va)
factor andv, is the a—relative velocity between the two t (1= B (R)euyy,)
frames. o1
By adjusting thex values, we can see that the influence = ((?)v Zfai}o‘l) , 9)
of a on thea-Lorentz factor has kept its behavior with the (1= (%) 1o

gradient of its value and that this effect fades whes 1. where we have made use of Ed8) &nd [7). With the real-

izationz/t = c andz’/t' = ¢, we have

oy — (ca_lc_va)
~r (1= Zmeele)
o ‘ _ (7)) )
of (1-2=) (c* —va)
b from which we obtain
; Al = —ul, =% =, (11)
; or
OOj\ L L L L L I L L L 1 L L L 1 L L I L L L
0.0 0.2 0.4 , 0.6 0.8 1.0 u; = c. (12)
FIGURE 1. Plot of the relation betweea-Lorentz factor and3, This verifies that thev—Lorentz transformations proposed in
wherev, = 5%c®. Egs. 2-5) leads to the constancy of the speed of light.
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2.2. Conformable wave equation

Here, we verify the covariance of the wave equation undenthd orentz transformation. The— wave equation in + 1
dimension is Ref. [24]

1
DDV — —— Dy DU = 0. (13)
C (e
Using thea—Laplacian [32], then
2a 1 % pYe’
VU — DD} =0, (14)
whereV>* = D¢ D$ + D¢ Dg 4+ D¢ D¢ Using of the chain rule [20]
D2V = 2/~ 1D%' DU + 1D D,

and then using the—Lorentz transformations Eq@)@and 8), 2’ = T\ (2@ —v,t@)(1/@) ¢ = T/ @) (10|, /c2o]z@) (/)
we have

1 d
DOV = (T3 (z* — vata)é)aflxlfa%m (2% — vot®)= DO
é @ Vo ayiva—1_1—-« d é @ e ayt Ha
+(Fa(t _6270‘ )0‘) X @ a(t —Czaﬂf )“Dt/\I’,
_1 11
= Lo * (0% —vat®)' %2 "OTE ~ (2 —vat")* ez DLV
-3 Va ayi-1 1-apil Vo 11 % —1
— Fa (ta — 027 Oc) o aFa a(ta — 027 a)“ CQ(XO[Z'OC Dﬁ\I}
=T,D%0 — Fa%Dﬁlll. (15)

Operating again ooV by D¢, yields

Vo

[ o Ye _ « « fe Vo «
DDV = (DY = Ta 5o DE)(Ta D ¥ — Lo 5o DET),

Vo o o 2 ’ng [ 2 Ye
e DI DRV + T4~ DEDYY. (16)

=12D% D%V — 212

From egs.4) and 5), it is clear that

Y=yt eyl =y iy =y = yl‘“d%,
and thus
Dy, = Dy a7)
Therefore,
Dy Dy = DyDy. (18)
Same procedure yields,
D2 = D, (19)
and
D¢ DS = DD, (20)

Rev. Mex. Fis68 050705
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For thet dependence of Eq16), We implement the chain rule [20]:
DY = 2/ 1D’ DY + ¢ DY DY,

1 d
= (T& (2% — vat™)= )a71t17“$F5 (2% — vat*)= DSV
1 d
+ (D5 (¢~ — c% °)E) IS (¢ Jo ) DY,

_1 1]
- (x* — vato‘)lfétlf‘)‘FS —(x — vata)éflavato‘*ng,\D

«
170 «a Vo a\l—=,1—« é 1 « Vo ayL—1 a—1 Nna
= 0o D%V — T, DAV (21)

Thus,
DEDYV = (—vaTo DS — Ty D) (—vaTo D&Y — T, DEW),
= v2T2D% DYV — 20,12 D2, DSV + T2 DS Do, (22)
Substituting Eqs!16),(18),(20)and 22) in Eq. (14), we obtain

2
T2 D% DS — 2T2 2% D2, DEW + T2 22 DS DG + D DS + DD
C C

v2 v 2
a 172 Nna No a M2 na o a a o _
— e TADY DYV + 25 T2 DY DEW — —2 DEDRY = 0.

Rearranging,
2 2 v

2 Uoc Fa i C _
UsingT2 (1 — [v2/c**]) = 1, we finally obtain

D?/D%/‘I""D?/D?/W"‘D?/D?/\II— toflp :O,

c2a
or
vy _ L papag—g
2o v E =0

which shows that the— wave equation is invariant under the- Lorentz transformations. In the following three subsections,
we provide three examples that are in support of the second postulate.

2.3. Conformable Schibdinger equation

The conformable Schdinger equation [24] is

~2
p()z o QO «
<2ma + V(,(xa)) U = {hy DU, (23)
In 3 4+ 1-dimensions, we have
hia « «@ « « « « ol Q0 «
~5a [DSDS + Dy Dy + D3 DS + Vo (2)V = ihS DY 0. (24)

wherep® = —ihqV® [24]. Applying thea— Lorentz transformation by substituting from Eq6),(18),(20)and 21) in
Eq. (24), we obtain
h2a U2

v ~
2ma[r§ 2, g,\yﬂric% o 3\1/+Fic4% 0DV + DYDY, + DS D] + Vo (2a)¥

= ih%[~valo D&Y — T D).

Thus, the conformable Sabdinger equation is not invariant under the Lorentz transformations.

Rev. Mex. Fis68 050705



THE EFFECT OF DEFORMATION OF SPECIAL RELATIVITY BY CONFORMABLE DERIVATIVE 5
2.4. Conformable Gordon-Klein equation

We firstly propose the following definition of conformable relativistic energy.
Definition The conformable relativistic energy is defined as

E?oz _ p2a62a 4 m2a64o¢. (25)
Quantization can be achieved by substituting for the conformable operatéi$ asiht Dy andp® = —ih&V® [24]. The
conformable Klein-Gordon equation is then
1 - o mQaCQa
Za DIDI =V 4 —n U = 0. (26)
«

Substituting Egs!1(6), (18),(20) and 22) in Eq. (26), we have

2 2
v ) T
a 72 na o a n2 na PHo o a o 2 na No
e LaDL DYV — 22 T8 DL DRV + 2 DR DRV + T4 DY DY

2 2 2
2 Vo o «@ 2 Ua a Mo «@ «@ « «@ m=c o
+2F0‘0270¢ ! t/qjiracélioc t t/\Ilny/Dy/f 2! Z/‘i’W\IIfO
Then,
Fi /U(% a o 2 Ug a o a Mo a o m2ac2a
627 (1 - 620¢> t/ t/\:[l - Fa <1 - 62a> I’DJL’/\I/ - Dy/Dy/ - Z/Dz’ + Taa\y = 0.
Thus, we have
1 m2a62a
or,
1 , m2a02a
CZ—QDﬁD?IJ—VQ‘*\IJ—DS,Dj,\I'—i— V=0 (28)

Thus, the conformable Klein-Gordon equation is invariant unde«thé orentz transformations.

2.5. Four vector in conformable form

We firstly present the definition of conformable position.
Definition.
1-Thea—covariant notation for positiony is defined as

{Eﬁ = (:vg‘,x‘f,xgﬂxg‘) = (Catav -z, —y“, _Za)' (29)

2- Thea—contravariant notation for positiart"“ is defined as
e — (xO,oz’xl,(x, m2,o¢7x3,a) — (C(xta7xo¢7ya, Za) (30)

So, the relation betweerf; andz/ is given by

o e N V_«
Ty = g or = gtal (32)

whereg,,, is the metric tensor which is in cartesian coordinates given as [25]

1 0 0 0
o |0 =1 0 0
I =9" =10 0 -1 0
0 0 0 -1

Thus, the displacement in conformable four vector is given by

Rev. Mex. Fis68 050705
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1- Thea—covariant displacement
d%z, = (d%xo,d"x1,d"xs, d%x3) = (¢*d“t, —d%x, —d"y, —d"z). (32)
2- Thea—contravariant displacement
d®zt = (d*2°,d*z', d*2?, d*z?) = (c*d“t,d"x,d"y,d"2). (33)
The conformable differential line element is then given as
dz,d*a" = (*d**t, —d**x, —d**y, —d**2). (34)

Secondly, we present the definition of operators in conformable four vector.
Definition. The dell operator in conformable four vector is defined as
1- Thea—covariant dell operator is given by

(67 (63 (67 (67 o\ aa —_ 1 80‘ [e%
au —(80,81,82,82)— a(zu)a - (CO‘ ataﬁv ) . (35)
2- Thea—contravariant dell operator is given by
¢ 1 0¢
My 0,0 gl,a 92, 93,0\ _ Y N v I 36
0 (07, 00%,0°%,0>%) FERE (caata’ V) (36)
Thus, then— D’Alembert operator is given by
leY NeY 1 8204 20
8M8y" - 0278152& - V . (37)

So, usinge— D’Alembert operator, the conformable wave equation and the conformable Klein-Gorden equation are

0, 0"V = 0, (38)
oo mQaCZa
[au o 4 e } v =0, (39)

respectively. Thus, the energy-momentum four vector in conformable form can be obtained as follows:
1- In a—covariant form

(87 e gale] Q0 1 aa «
P'u = 'Lhaa'u = Zh(l (caata,v ) . (40)
2- In a—contravariant form
1 90«
Pma — ~ho¢ap,,a — 'hoz _vOé . 41
? « ? (6% (Ca 8t“’ ) ( )

In case independent time of the conformable Schrodinger equation [24], we get

6()1
ihe— U = BV, 42
i e (42)
So, Egs.40) and 41) become
E'Ot
PS = (7_1304) ) (43)
CO(
and
E()t
P = <a7ﬁa> ) (44)
C

respectively, wherg,, is calleda— momentum operator [24], in one dimensiopis= —ii% DS and in 3-D isp, = —ihS V.

Rev. Mex. Fis68 050705
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2.6. Thea-Lorentz transformation in Minkowski Space

Minkowski space is the most popular mathematical framework on which special relativity is formulated, and it is strongly
related with Einstein’s theories of special relativity and general relativity. It is also called Minkowski spacetime and it is a
combination of three dimensional Euclidean space and time into a four-dimensional manifold [33].

The a-Lorentz transformation in Minkowski Space is given by

1- In thea—contravariant form

x/l”“a — (XA/I;Lxu,a (45)
where “A% is thea—tensor and defined as
I, -T.3* 0 0
A — o0* zh*\ | -Tap” T, 0 0
o)\ a 0 0 1 0|’
0 0 01

where® = v®/c® and its inverse ig” = ( “A#) "1ty e,
2-Thea—covariant form

z) = "Ny, (46)
where “A}; is given by
I, TuB8* 0 0
apv o~ "\ [T T, 0 0
B Oz a | 0 0 10
0 0 0 1
Proof. Using
T = gusz >, (47)

we can writez s using Then—Lorentz transformation in contravariant form as E4E)(

x5 = NS0 (48)
Substituting in Eq.l47), yields
x;f* = Gus gz, (49)
Then, we can write:’ as
200 = gg”xl‘f. (50)
Substituting in Eq.49), we obtain
2% = gus “Njg? xl. (51)

Thus,g,.s aAgge” is the multiplication of three matrices

1 0 0 0 | PN —I'yp* 0 0 1 0 0 0 Lo Top* 0 0
g A3 0 -1 0 0 ~Taf* Ta 0 0|[0 =1 0 0| _[Faf* Ta 0 0| o
ps 6 0O 0 -1 0 0 0 1 0 0O 0 -1 0 0 0 1 0 ®
0o 0 0 -1 0 0 0 1 0o 0 0 -1 0 0 0 1
Taking the inverse of*A% yields
I, Tu6* 0 0
_ I, T, 0 0
appy—1 «@ o _ aps Ov _ apzv
(“AEY = 0 0 1 o] = 9us Agg™" = A (52)
0 0 0 1

Therefore, Eq/31) is equivalent to Eql46).

Rev. Mex. Fis68 050705



8 AHMED AL-JAMEL, MOHAMED AL-MASAEED, EQAB. M. RABEI, AND DUMITRU BALEANU
2.7. Conformable Dirac Equation Comparing Eq.%8) with Eq. (54), we obtain
In Mozaffari et al., [34], the Dirac equation using the con- SyrS1 AL =AY, (59)

formable derivative is investigated and it is introduced as

. o o o So,v* “A¥ = S~1~4¥§. The inverse Lorentz transformation
HoT — Pz ) =0 53 ’ H ;
[0y = m®](2") ’ (53) must correspond to the inverse®{36], namely,

where~* are the famous matrices of Dirac equation [35].

Similarly, the Dirac equation is Lorentz covariant, namely, YA =89S (60)
[iv" 9" — m* W' (") = 0. (54)  Therefore, we demonstrated that the conformable Dirac

However. when we do a Lorentz transformation. the wa equation is covariant in-Lorentz transformation. For more
wever, w W z s ion, WaV8hformation on theS matrix, one can refer to [35,36].

function changes. Because the Dirac equation and Lorentz
transformation are linear, we require that the transformation
between¥ and¥’ be linear too: 3. Summary and conclusions

U (2'Y) = SU(x%), (55) ) ) . . .

In this paper, we have investigated the deformation of Ein-
whereS denotes ar—independent matrix whose properties stein’s special relativity using the concept of conformable
must be found. The Dirac equation in Lorentz covariance inderivative. Within this frame, tha-Lorentz transformations
dicates that the matrices are identical in both frames. Using were defined, and the two postulates of the theory were ex-

tended and re-stated. Then, the conformable addition of ve-

oy = “A0;. (56)  locity laws were derived and used to verify the constancy of
From Eq. (55) we foundi(z) — S—19(z/@) and substi- the spe_ed_olf IigfhthforI any f][acr':iorjal ordar.I The invgri-
tuting in Eq. 63), we obtain ance principle of the laws of physics postulate was demon-
strated for some typical illustrative partial differential equa-
[i7"0% — m®)S™H (2'%) = 0. (57) tions of interest, namely, the conformable wave equation, the
conformable Sclidinger equation, the conformable Klein-
Substituting from Eq.56) and then multiply withS from the  Gordon equation, and conformable Dirac equation. For a

left, yields wave equation where time and space appeared with the same
e v o] on e s e «a-order, it is found that it is invariant underLorentz trans-
1597577 “ALO — m® W (2™) = 0. (58)  formations. Otherwise, it is not.
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