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Initial value problem for a Caputo space-time fractional
Schrodinger equation for the delta potential
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In this paper, we consider a Caputo space-time fractionald8aiger equation for the delta potential. To solve the equation, we use the
joint Laplace and Fourier transforms on the spatial and time coordinates, respectively. After applying the integral transformations, we use
the special initial and boundary physical conditions obtained by trial and error; these special initial conditions involve considering the initial
spatial wave function in terms of the Mittag-Leffler function. Consequently, using the fractional calculus, we obtain the wave functions and
corresponding eigenvalues. Finally, to verify the solution, we recover the standard case correspanding andg — 1.
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1. Introduction tive was solved using the scaling transformations. Also,
the numerical solution of fractional Séitinger differential
The fractional calculus is a generalization of the usual calcu€duation with the Dirichlet condition has been investigated
lus, where derivatives and integrals are defined for arbitrargaRef' [31]. The space-time fractional S6ainger equation
real numbers. In some phenomena, the fractional operatof¥S Peen obtained by replacing the space and time derivatives
simulate the phenomena better than ordinary derivatives arfef nteger order by the derivatives of non-integer order. There
normal integrals. Fractional calculus has been widely use@'® Séveral ways for generalizing an integer-order derivative
in science and engineering [1-3]; in particular, the study of© the arbitrary case including the Riemann-Liouville and Ca-
fractional differential equations such as fractional wave equaPUto definitions. In Ref. [32], the definitions of the fractional
tions have received great deal of attention due to the imporc@Puto and Riemann-Liouville derivatives and p-Laplacian
tance of propagation of electromagnetic waves and vibratin§Perator, have been used and the existence of solutions for
strings [4, 5]. Moreover, the fractional Sétinger equa- nonlinear frac.nonal d|ﬁerentlal has been mvestlgateq. An-
tion has been recently studied in many fields, such as thgther application of f_ractlonal calculus can be found_ in Ref.
obstacle problem, phase transitions and anomalous diffusidi$s): Where the fractional order model HIV/AIDS with the
[6-12], etc. Fractional calculus began with Leibniz (1695-Liouville-Caputo and Atangana-Baleanu-Caputo derivatives
1697) and Euler's speculations (1730); later on, Riemann}as been considered. In this paper, we use the Caputo frac-
Liouville, Grinwald and Letnikov [13—16] provided the gen- tional derivative, defined as [13]
eral definition of fractional derivatives. In 2000, Laskin pro-
vided the first application of fractional calculus in quantum 1 £ (1) dr
mechanics by employing the path integral formulation over oD f (1) =T / o gl
Lévy paths and showed that the corresponding equation of (n—a) ) (t—r)
motion is indeed the space fractional Sudinger equation
[17-20]. In Refs. [21-24] the authors used the method de-
veloped by Laskin to study some new physical applications,
its non-locality and the consistency of its solutions. On thewhere for the casa — n, the Caputo derivative becomes an
other hand, Naber introduced in 2004 the time fractionalordinary n-th order derivative of the functigi(t).
Schibdinger equation [25], where he investigated the wave  \we consider the space-time fractional Satinger equa-
function of the time fractional Scbdinger equation for free  tion for the delta potential, then, by imposing a special initial
particles and potential wells, and obtained the correspontkondition we obtain the corresponding wave function by us-
ing wave functions in terms of the Mittag-Leffler function. jng the joint Laplace and Fourier transforms with respect to

An overview of quantum mechanics and quantum dynamicgme and coordinates, respectively. The Laplace transform of
with time fractional derivatives can be found in Refs. [26,27].the Caputo derivative is given by [13]

In Refs. [28, 29] the authors solved the space-time fractional
Schibdinger equation for free particle and for square potential 1

well using the integral transform approach; moreover, in Ref. - (SDOf (1)} = s°F (s) — Z sa—k=1 ¢ (), )
[30], the Schidinger equation with Riesz fractional deriva-

(n—1)<a<n, 1)

k=0
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where - derivative, here, we intend to investigate the Caputo space-
. time fractional Schidinger equation for the Dirac delta po-
F(s) = /6 f () dt. tential V (z) = —vd (z), that is

0
The paper is organized as follows. In Sec. 2, we introduce
the space-time fractional Sditinger equation and a special
initial condition. In Sec. 3, we obtain the wave function cor-
responding to the imposed initial condition in terms of Fox’s —vod (z) ¢ (2,1). ®)
H-function by applying the joint Laplace and Fourier trans-ye solve the problem analytically by using the joint Laplace
forms. In Sec. 4, the time dependent energy eigenvalues atg,q Fourier transforms; to this aim, first we consider the fol-

determined by an asymptotic expansion of Fox’s H-function.bwing physical boundary and initial conditions
The paper ends with the conclusions in Sec. 5 and two appen-

28
1“n §Df o (z,t) = —lmc2 N cD?*Py (z,t)
oMt P T, 5 me ol ® T,

dices. ¢ (z,0) =g (z),
o (x,t) =0 as |z| — oo, ©)
2. The space-time fractional Schédinger ©(0,t) =0 n>1,
equation for delta potential o™ (2,0) =0,
The one-dimensional time-dependent Sclinger equation Choosing an arbitrary function faj(xz) one can solve the
is given by problem numerically, but in this article we try to choose a
0y (z,1) B2 92 specific function for the special case fdrr) so that the prob-
lhT = "o 92 ? (z,t) + V()¢ (x,t), (3)  lem can be solved analytically. As a result, we shall show that

wherem is the mass of the particle arids the Planck’s con- for the special case = (3 = 1, the solution of the ordinary
chibdinger equation for Dirac delta potential is obtained.

stant; in an analogous way, the one-dimensional space-tin)% ¢ ve the Eq. 5 v the ioint Lapl 0
fractional Schddinger equation is written as [25] ow'o solve the £q. ), we apply the joint L-aplace trans-
2 form on the spatial coordinate and the Fourier transform on
1 . : : :
0 D% (2,) = —Sme? () cD2 s (2, 1) the time coordinate defined by [35]
2 mce +oo o
_ 1 _
+V(z)p(z,t), (4) p(k,s) = Wors / e_””dx/e_”go (z,t)dt, (7)
a s

where0 < o < 1,05 < 3 < 1, n = mc? (h/ch) . —0o0 0
The scaling factors*n and—(1/2)mc? (h/me)*” have been  where the symbols for<) and () are used to denote the
added to equalize units on both sides of the equation. It igaplace and Fourier transforms, respectively, arhds are
easy to see that for the special case= 1 and3 = 1,  the Fourier and Laplace transform variables.
the space-time fractional Sdinger equationd) reduces
to the ordinary Sclidinger equation3). In Ref. [22], Eq. . . .
(4) was studied for a free particle and for a potential Well3' \_Nave fun_Ctlon of Or,].e'_dlmensmna_l Space-
assuming only the space fractional state; the wave functions ~ tIme fraCt'On_aJ_ _Schrodl_n_ger equation for
and the corresponding eigenvalues were calculated. It was the imposed initial condition
observed that in the case of the free particle, the wave func- ) o ]
tion could be obtained in terms of the Fox’s H-function while BY @pplying the joint Laplace and Fourier transforms to
for the potential well, the method of separating the variable€d- ©) and using the boundary conditions of Ecg),(we
was used and the solutions of the system were obtained {APtain the following equation

terms of the space fractional parameter; the some problems _ w1 Gk
were investigated in Ref. [25] assuming that only the time ¢ (k,s)=s T FR)P (8)
fractional case was taken into account. The wave function 5%+ =iy

in the case of the free particle was obtained as the time 28 .
dependent Mittag-Leferrﬁunction multiplied by the spatial wherel” = (1/2)mc* (/mc)™". The inverse Laplace trans-
function of the free particle, while in the case of the poten-
tial well, energy dependent on the time fractional parame-

ter was obtained. Further, in Ref. [34], the space fractional ¢ (k,t) = g (k) Ea <—
Schiddinger equation for single and double Dirac delta po-

tential was considered; the wave functions were determineth the above calculation, we have used the following for-
in terms of the Fox H-function, and the energy eigenvaluesnula [36]

were obtained by using the Fourier transform and the Riesz

fractional derivative; while the authors assume only the spa- r-1 mls* 0 — pam+B—1p(m) (anzta) (10)

tial derivative of Schivdinger equation as the Riesz fractional (s £ a2)™ ! @:f ’

form of Eq. B) gives

F ke tQ) . ©)

1%n
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whereFE, s (z) is the Mittag-Leffler function defined as [37]

o0 z"
E = — . 11
a8 (2) ;F(mwm, a>0,4€eC (11)
Now, we assume the function(z) as
9(@) = AB (-Als]"),  o'ccC. (12)

This choice, as mentioned above, can help us to solve the problem analytically and obtain the analytical solution of the ordinary
Schibdinger equatione = 1 and8 = 1. Needless to say, for other choice of the), the analysis is difficult, and perhaps
impossible; accordingly, the problem must be solved numerically. Applying the Fourier transform to the rai2tiove(get

(0,1)

~ —ika o 24 i o
g (k \/ﬂ / B )\|x\ )da: = \/—2?/005 (kx) Hll21 [/\x ' 0,1),(0,a) ] dx, (13)
0

whereH,"." [x|—] denotes the Fox's H-function, which, in terms of the Mittag-Leffler function is given by [38]

(0,1)
(0,1, (0, o) } = Bar(2)- (14)

In Appendices A and B, we have reproduced some useful relations about on the Fox’s H-function and its integral according to
Ref. [38]; usingB.3), Eq. (13) is calculated as

1,1
HL’2 [—z

(1-2.,1),(0,&)

_ V24 k o
g(k) = ”\inz?} Y (|2|> o ) L o (15)
5 (0,7>7(1*y,1)7<§,7)
Hence, by substituting Eq1§) into Eq. ©), we get
o 1-— /; ) (O 07 ) .2 \20
~ V24 1(|k (-3 F(ik)™
s =220 15 (5) | oy o | B ) (16)
- (O,T)a(lfy’l)a(ivi) K

Now by calculating the inverse Fourier transform of E6)( using the integral containing of two Fox's H-functions, an taking
into account the properties of Fox’s H-function [38, 39], we get the wave funetient) in the following form

4 (£ 45
2A‘.r|_1 0,1:1,1;2,1 M (;’171) (0;171) : (O ﬁ) (1 O(L’O%) ’(072)
@ (x,t) = — oz Haoi2s |z|? . 1 al. 12y (1 - (A7)
aﬂAu )\,% . (Ovﬁ)a(oa ﬁ>’(071) (1 oT’oT)’(?’]')
e
wheres > —(1/2), (a/3) > 0, a+ 3 < 2, &’ < (4/3); the definition of the Fox’s H-function of two variables
| ]
L Y

is given in Egs./A.4-A.7). It should be noted here that the acceptable valuesanid 3 above are consistent with the values

of « andg, i.e,, 0 < a < 1and0.5 < g < 1. Before calculating the energy eigenvalues, let us show that the obtained wave
function coincides with the wave function of the ordinary Schinger equation for the delta function potential; to this aim, we
inspect the wave functiofi(x, t) in limits of « — 1,3 — 1,a’ — 1. Using the integral relations of the Fox’s H-function, Egs.
(A.4-A.7), and after some calculations, we arrive at

—4Ft 1 . ..
2A|;1;| 0,1:1,1;1,1 in|z|? (27131) (07171) . 77(071)
@ (,1) a—1 = ?H2,0:0,1;1,1 N2 .
ﬁ —1 1=? - - ( ; )7( 5 )
o —1

’

24 (1N (art TN Gt (22"
W (%)Z nl (in|x|2>,/ Tn ) o) A 09

=0
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FIGURE 1. Plot of Eq. L7) as a function ofr for o = 1, @’ = 1, t = 0.1 and different values oB; for simplicity, we have chosen

Then, using the properties of the Gamma function and Fox’s H-function given in Ref. [40], the function b8E (
simplified to

24Jx| "t N 1 [ —AFt ! 0,2 4 (3-n,1),(-n,1)
o (2,1) _ 2l L 0 | ——| ).
51 T 2o \per) "0 | e -
o =1
— A R oAl gt el (19)

Therefore, up to a normalization coefficefitit is easy to see that the above equation is in agreement with the wave function
of the ordinary Schidinger equation for the delta function potential; choosing= v x m/A? and A = /v x m/h, the
normalized wave function is obtained.

In Fig. 1 we have plotted the probability of the particle presence for some valydsyofonsideringy = o’ = 1. Also, the
time-dependent effect for different choicescofind is illustrated in Fig. 2. From Fig. 1 it can be seen that by increasing the
parametep, the probability of the particle presence decreases; the result coincides with Fig.1 in Ref. [36] for the non-fractional
time derivative of the Sckidinger equation. It can be seen from Fig. 2 that the probability of the particle presence decreases
over time; the probability decreases in the central points-(0) and increases at the points far from the center. In Fig. 2 the
dependence of the probability on time at those points close to theawvell() illustrated for both fractional modes, space and
time. Also, it is seen that by decreasing the fractional statez(1 andg = 1), the dependence of the probability on time
disappears.

In the next section, we shall obtain the energy eigenvalues of the system.

4. The energy eigenvalues of the delta potential for the imposed initial condition

According to Ref. [41], for the space-time SoHinger equation, the energy eigenvalues can be obtained from the equation
“+o0

Ea=i*n [ ¢ (0.05DF¢ (@) da. (20)

— 00
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FIGURE 2. The probability of presence of the particle in dependence for different values of time.
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6
First, let us rewrite the wave functiof8) in another form of the Fox’s H-function as

Ai 0,1:1,1;2,1
@ (x,t)= - z . Hy'o12075
BN (:ﬁ) t25
%
—4 (%) 5 . 1. (1 o1). 12
n (17171>7<2a171)' 28° 3 ’(1_a”a')7(0’2)
1 1 a o). 1 2 1
k_% - (%73)7(%75)7(071)7(1_?7?)7(571)

Then, using the Caputo fractional derivative of the Fox’s H-function, given in Ref. [40], one can calculate the derivative of the
first order of the Fox’s H-function of two variables; substituting the obtained result inta2Ey.vwe get

1
oo 4 (E )45 : 1. 11 12
E A /H0,11,1,271 4((*@“") t (LL1), (3:11) <2ﬁ’ﬁ)’(1 v ) (0,2)
22 (F2) 7P 20223 2% (A1) (2 2) 001, (- 1, 2) (5)
(a)ﬂ)\/(F) 0 ,\;’ \28°8)°\23' a(7)7( oo ) \2
x
7 a
0,1:1,1;2,1 - (%> b (1;1,1), (3;1,1) (%v%)§(1— v o) (0,2)
X Hy'.172:5)3 ) L L X dz. (22)
N —i(Fh) (ot g58):0). (0 5. 2). (31

To compute the integral, we first express both Fox’s H-functions of two variables in terms of the Mellin-Barnes type integral

given in Egs.|A.4-A.7); then, following the procedure in Ref. [35], we obtain

F (t’)F (1-L 4+ 2¢) (}\%)t/

Ba=— v a“g <4w2>/// — )T (2t

( )62)‘ Ly Lo L3
5/
Xf(l—*—f) (B3 (0 ) r@-znrenre- g
a o F e (-T2
P(ice-g-5¢)  \a[e] 6 e
3y g ) /( L) [ 0 D=5 35)r (& +4)
1 2 a a
F(2+5,+77/) 47T La F +S+t/ F(l—ﬁ—ﬁs
_ 2 ' 1oyt
‘” ds | 2272642 g0\ gerar any (23)
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Now, if we use the Mellin transform theorem and substitute —’' — ¢’ — ¢’ — (1/2) in Eq. 23), the energy eigenvalue is
obtained in terms of the Fox’s H-function of three variables as

-y 2—a—% . %
2t s (o] )
292\ (E)" o

(o) A (£)

1 (_1)%
2i%nA* F 17 .\’ L11,01,251,2 | %( F )%ﬁ
- ol R t5 ) Hinoulsnss |~ (0w ) £
(/)" B2No7 (E) _ANZ ( F )B 5
(=1)%n
11 11 a a). 12 11). 12 1
(O’Eaﬁa ) (1fﬁaﬁ>v(1fa7%7ﬁ)ﬂ(lvl) (?a(,/)7(271)’(171)3(?7?)7(571)

which is valid under the following conditions

1 1 , 4

—= - = 2.
8> 7 2<a <3, a+ <

Thus, it is seen that the energy eigenval@4) {s time dependent. Also for complex values of the parameiensd 3, the
energy eigenvalu& may be complex for an unstable system.

Now, let us investigate the energy eigenva24) (for the special cases — 1, 3 — 1 anda’ — 1, that is

o = () [ [reesr-on(esd)

8 —

o =1

t/ !/
DY (1= )T ()T (1) (1) (Aft) (Aft) dedt'd — ...

3,01 oo . i _1_ . .
—4(p)? A2(0) 3 (i) ZLHO’(}:}J?“ [ i ’ (=32 —n):(0,1);(0,1) 1
1,0:1,1;1,1

N(F): ! Tk —:(0,1);(0,1)
_A)? A1) E(0)E N i o | AR (1,1)
a A7 (F)? = On'H“ | (2 4n,1),(2,1) ] (25)

In the above relation, we have used identities of the Fox’s H-function of two variables given in Refs. [38—40]. We also need to
use the expansion of the Fox’s H-function at small and large times. For small values 6f using the Fox’s H-function [40],

the energy is obtained & = —A%2F)\ = —muv?/2h?, which is in accordance with the energy eigenvalue of the ordinary
Schibdinger equation. On the other hand, the energy eigenvalue tends to zero as

5. Conclusions

In this paper, we have studied the Caputo space-time fractionabdoer equation for the delta potential. To solve this
equation, we have used the joint Laplace transform on the spatial coordinate and the Fourier transform on the time coordinate

Rev. Mex. Fis68040703
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then we have obtained an assumption by trial and error, so that the problem can be solved analytically. In other words, assuming
that the initial wave function is the Mittag-Leffler function, then the wave function and the energy eigenvalues can be obtained
in terms of the Fox’s H-function of two and three variables, respectively. On the other hand, assuming other functions as the
initial wave function, solving the corresponding equation is difficult and it must be solved numerically. We also investigated
the wave function for particular values of the fractional parameters 1 and — 1 and obtained the results of the standard
Schiddinger equation with the delta potential. Moreover, we studied the behavior of the particle presence probability. In Fig. 1,
for the case of non-fractional time derivative € 1), it was observed that by increasing the spatial fractional pararfigtee
probability of the presence decreases which is consistent with the result given in Ref. [36]. In Fig. 2, we have demonstrated the
dependence of probability on the time while it was not the case in the standaiatigar equation. We have also shown that

the probability of presence is decreased as time increases such that the probability is decreased in the cenirat pdiaisl(

at points farther from the center, the probability of presence is increased. It was also observed that by decreasing the fractional
state e ~ 1 andg =~ 1), the dependence of the probability of presence on time disappears. In the end, we investigated the
energy eigenvalue for the special cases> 1, 5 — 1 anda’ — 1; then, we checked the approximate behavior of energy
eigenvalue at small and large times. It was observed that while for large times, the energy of the system dissipates, for small
times, the energy is in accordance with that of the standard8irtger equation for the delta potential.

Appendix
A. The Fox’s H-function

According to Refs. [38,41], the Fox’s H-function of several variables is defined as

z 1 , r
grelmen | (a305,5),, {(f’%) L O TT0: (&) 28 aes Al
paipad N Gt ), @), b | O / / ol [l emras

where
oy Tt (L) 87 .
Ty-vesQr) = - s .
§:n+1F (aj - Z: 1a fz) Hj:m+1r (1 —b; +Z;:1 ﬁ]('l)fi)

bi(&:) = [T (16 + ) I T (47 - 3)7%) (A3)

fl ni+1 r ( ( : ’YJ( )fl> ?i:mﬁl r (1 B dg'l + 51(' )&)
An empty product is always interpreted as unity. Heten,p,q, m;, ni,pi,qi,i = 1,...,r are non-negative integers such
that0 <n < p,0<m < ¢q,q>0,0<m; <g and0 < n; < p;; the parameteray),ﬁj(.l),yj@,5§” are all positive. For
Vi=1,...,rz1,...x, are complex variables and,. is a suitable contour of the Mellin-Barnes type running fresio to
+io0, in complexg;-plane.
For the Fox’s H-function of two variables, by considering- 2, m = 0 in Eq./A.1, we have
H[Jf,y] - H |: z :| — HO,nyﬁLg,ng;mg,ng l: X (al;ahA )1 D1 : (67777)1 D2’ (elvE )1 ,D3 :|

P1,91:P2,492;P3,93

y (j?ﬂja )1 ,q1 (d d; )1,q2 (fj’ )1 ,q3
- / 61.(&1) 02 (€) O (n) ay"dechn, (a9)
where
[[L,T(1—a;+ Oéjf + A;n)
A5
¢1(&m) = i T(ay— oy — Ajn) T(1—-b;+ 3§+ Byn)’ (A3)
I;2, T (1 —c; + 8 I} F( - 0;8)
0, (¢) = i , A6
0y (n) = psl_[ T (L= + Em) 172 T (f; — Fym) (A7)

j= n3+1r( j EJU)HJ —ms+1 (1_fj +Fj77).
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Also for the Fox’s H-function of one variable we have

9

aj, 0 a1, 01),...,(ap,
H[aj} :H;T(}n . ( J ])l,p :Hﬁq’" r ( 1 1) ( P q)
(bj7ﬁj)1q (blaﬁl)a”'v(bqvﬁq)
7L/ ords = L / = Bis) [ T (1 = aj + a;s) A8)
2 2mi HJ i1 L (1 =b; + B;s) j:mg—l—lr(aj —q;s)
B. Some Useful Relations and an Integral of the Fox’s H-function
Some useful properties of the Fox’s H-function are listed below [36].
Property 1: Transformation of Fox’s H-function with argumertb one with argument/z.
[ ] (ap,A,) ] 1| a=»,B
e o] @A) ] Z e [1] =0 B -
L (bq, Bq) i | Z (1—ap, Ap)
Property 2: Ifo € C then we can write
[ ap, A,) ] [ a, +0A,, A
2" W | (@, Ap) | _ Hre |z (@ ) (B.2)
L (b, Bq) i ' (bg +0Bqg, By)
Property 3: Cosine transform of Fox’s H-function
7 ay, A p—1 ol (222,92 (a,, A,), (12,2
/xp_lcos(ax)HlTé" ba® ( P p) 2 \FH;_L‘F;L-:I-l |}) <2> ( 2 2) ( P P) ( 2 2) . (B.3)
0 (bQ’Bq a (bq?Bq)
wherea, A,o > 0,p,b € C;|argd| < (1/2)7A
R(p) +0 min = >0;  R(p)+ it (B.4)
P g lg}lgnm Bj ’ P 7 1?;2(71 Aj ’ '
and
n P m q
A=Y"A;— > A;+> Bj— > B (B.5)

t

j=1 j=n+1

j=1

j=m+1
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