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The cosmic microwave background and mass power spectrum
profiles for a novel and efficient model of dark energy
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In a previous work [1] it was shown that by considering the quantum nature of the gravitational field mediator, it is possible to introduce the
momentum energy of the graviton into the Einstein equations as an effective cosmological constant. The Compton Mass Dark Energy model
proposes that this momentum can be interpreted as dark energy, with a Compton wavelength given by the size of the observable universe
RH , implying that the dark energy varies depending on this size. The main result of this previous work is the existence of an effective
cosmological constantΛ = 2π2/λ2 that varies very slowly, beingλ = (c/H0)RH the graviton Compton wavelength. In the present work
we use that the dark energy density parameter is given byΩΛ = 2π2/3/R2

H , it only has the curvatureΩk as a free constant and depends
exclusively on the radiation density parameterΩr. UsingΩ0r = 9.54×10−5, the theoretical prediction for a flat universe of the dark energy
density parameter isΩ0Λ = 0.6922. We perform a general study for a non-flat universe, using the Planck data and a modified version of the
CLASS code we find an excellent concordance with the Cosmic Microwave Background and Mass Power Spectrum profiles, provided that
the Hubble parameter today isH0 = 72.6 km/s/Mpc for an universe with curvatureΩ0k = −0.003. We conclude that the Compton Mass
Dark Energy model provides a natural explanation for the accelerated expansion and the coincidence problem of the universe.
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Without a doubt, one of the most important problems facing
science today is that of explaining the accelerating expansion
of the universe. Since 1998, with observations of SNIa-type
supernovae it was established that the universe is experienc-
ing a clear accelerated expansion contrary to the belief that
the expansion must be slowing down due to the gravitational
force of all matter in the universe itself. Since that time sev-
eral independent tests have been conducted for the same ob-
servation, today there is no doubt that the universe is accel-
erating. The question has provoked an enormous amount of
hypotheses and explanations, from the simple cosmological
constant, proposed by Einstein himself to the modification of
Einstein’s equations, massive gravity, hollographic universe,
etc.

One of the beliefs is that the explanation for the acceler-
ation of the universe could come from quantum mechanics,
that is, from a theory of quantum gravity. This possibility
is robust and has been explored by various scientific groups
around the world, sadly without success. In the Ref. [1] they
proceeded in an alternative way, because up to now we do not
have a theory of quantum gravity, in this reference the authors
propose an effective way to introduce the quantum character

of the graviton, using analogies with other fields and interac-
tions. They show that with this proposal the system behaves
very similar to theΛCDM case. The similarity was excel-
lent and this hypothesis led to further studies. In this work
we will show that the predictions of theΛCDM and CMaDE
models are indistinguishable, at least at cosmological scales,
since the CMB and MPS profiles, the two strongest observa-
tions we have in the universe, are exactly the same, but the
CMaDE model using an explanation of quantum mechanics
without dark energy.

In this work we want to study a possible solution given in
Ref. [1] for the last problem using very simple arguments for
the gravitational interaction. The main goal of this work is
not to convince the reader of the arguments given in Ref. [1]
to find a form for dark energy, but to use this form as an ef-
fective function, a proposal to fit all the observations without
free constants. In what follows we remain the main ideas
of [1], but then we use the functional form of the dark energy
in effective way.

The main arguments of [1] is that in the case of a mass-
less particle, such as the gravitational interaction mediator or
graviton, the energy due to its momentumE = pc, is not con-
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tained in the Einstein equations. In the Einstein’s equations
it is implicit that the mass of the mediator of the gravitational
interaction is zero. On the other side, the energy of the gravi-
ton due to its moment comes from the quantum mechanical
character of the graviton. But everything in nature gravitates.
The claim of [1] is that this energy also gravitates and must
be counted as extra energy.

The hypotheses in Ref. [1] are: if Gravitation is a quan-
tum mechanical interaction its mediator has a Compton ef-
fective mass and its corresponding wavelengthλ is limited by
the size of the observable universe. Using these arguments,
they found that the cosmological constant is given by

Λ =
2π2

λ2
. (1)

We will useΛ as indicated in Ref. [1] as an effective result,
whereΛ varies very slowly, as we shall see.

For an observer today, the gravitational interaction trav-
els a distanceRH during its life, the wavelength will be
λ = (c/H0)RH long, whereRH is the unitless length

RH = H0

t∫

0

dt′

a
=

N∫

−∞

H0

H
e−N ′

dN ′, (2)

given in terms of the e-folding parameterN = ln(a/a0) and
the Hubble parameterH = Ṅ , beinga the scale factor of the
universe anda0 its value today.

In order to obtain the Friedmann equation for our model,
we consider that

H2 +
k

a2
=

κ2

3
(ρm + ρr + ρΛ) , (3)

hereρm represents the matter density,ρr corresponds to radi-
ation density,k is the curvature parameter andρΛ = Λc2/κ2

is the dark energy density, whereκ = 8πG/c4 is the Einstein
constant. Using Eqs. (1) and (2) in the derivative of (3), we
get that [1]
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= 0, (4)

where, for any given variableq, the prime meansq′ =
dq/dN = q̇/H andΩ0x = ρ0x/ρcrit, with the critical den-
sity of the universe today given byρcrit = 3H2

0/κ2. In par-
ticular

ΩΛ =
2
3

π2

R2
H

. (5)

From the above we have that the CMaDE Friedmann equa-
tion is given by (4).

Here it is important to note that given (1) with (2) for the
functionΛ implies that the CMaDE model only has curvature
as a free constant to fit all observations. If we integrate (4)
and (2) we find thatRH ∼ 3. Also note that, becauseΛ is
not a constant, the Bianchi identities have an extra term

Λ̇ = H
dΛ
dN

= −4π2

(
H0

c

)2

H0
e−N

R3
H

. (6)

We obtain thatΛ̇ = −4.48 × 10−16h3
0/R3

H /Mpc2/yr; its
value today isΛ̇ ∼ −5 × 10−17h3

0/Mpc2/yr, which is re-
ally very small, beingH0 = 100h0Km/sec/Mpc. Note
that just after inflation we can put thaṫΛ = −1.5 ×
10−72h3

0e
−N/R3

H /cm2/sec, which depends on the value of
RH . However, the redshift for inflation isz ∼ 1026, this
means thatN ∼ −60. So, before inflation the wavelength is
small, the exponential factor is big and the Bianchi identities
have an extra term given by (6).

When inflation ends, the wavelength grows up aboute60

times thusRH ∼ λ0e
60 grows very fast and (6) becomes

very small. This means that the Bianchi identities hold up
very well, becausėΛ ∼ 0, i.e., after inflation Λ is almost

constant. So the Eq. (1) can be viewed as a very slowly vary-
ing cosmological constant.

So far, the arguments used in Ref. [1] could be controver-
sial for some readers; the objective of this work is not to dis-
cuss these arguments, but to see Eq. (1) with the integral (2)
as an effective proposal and check if they can explain the ob-
servable universe, leaving for future work the possible quan-
tum gravity explanation of the Eqs. (1) and (2) [2]. Note that
this λ is similar to the proposal of holographic dark energy
where we know that this model is not able to explain the dark
energy behavior of the universe [3]. The difference of (2)
with the holographic model proposal is that the holographic
wavelength is the distance to the horizon of the universe, this
integral has an extra scale factor outside the corresponding in-
tegral (2). The other main difference is that the holographic
model has a free constant in the cosmological functionΛ,
while the Eq. (1) has no free parameters. So, let us think of
the Eq. (1) as an effective proposal and its justification are the
results that we find in this work.

Figure 1 we compare the numerical solution of (4) with
the evolution of the Hubble parameter inΛCDM, HΛCDM =
H0

√
Ω0me−3N + Ω0re−4N + ΩΛ. Note thatH has the

same evolution for both models implying same predictions.
Note too that the CMaDE density remains subdominant for
large redshifts and is a bit different than the evolution of
ΛLCDM for small redshifts.

Solving Eq. (4) numerically for a flat space-time we carry
out the integral (2) and we find thatRH = 3.083 in Eq. (1).
With these results we obtain that
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FIGURE 1. In the upper panel we show the evolution of the Hubble
parameter using the CMaDE (Eq. (4), point line) and theΛCDM
model (solid line). We used the Planck valuesΩ0m = 0.315,
Ω0r = 10−4, H0 = 67.3 km/s/Mpc in both plots and the value
Ω0Λ = 0.684 for theΛCDM curve and (7) for the CMaDE model.
In the lower panel we show the proportional difference between
both curves(HCMaDE −HΛCDM )/HΛCDM .

Λ = 2
( π

3.087

)2 H2
0

c2
=

3H2
0

c2
Ω0Λ, (7)

where we can see that the value ofΩΛ strongly depends on
the size of the wavelength (2).

We can use the size of the universe horizon to determine
the value of the wavelengthλ. Thus we can determine the
value of the CMaDE now and give an explanation of the cos-
mological and coincidence problems.

In what follows we want to study the possibility that the
CMaDE model is capable of reproducing all the observations
of the universe that we have so far. Strictly speaking we have
to solve Eq. (4) and solve the whole cosmology using it [1,6].
However, in this work we first solve the entire cosmology
using an approximation. Here we will focus on the tem-
perature fluctuations of the cosmic microwave background
(CMB) and the mass power spectrum (MPS) only, leaving a
more in-depth analysis of the rest for future work. [6]. In
order to find a suitable approximation to the Eq. (4), we pro-
ceed as follows. We know that during the epoch dominated
by matterH = 2/(3t) = H0/a3/2 [7], so we found that the
evolution ofRH is given byRH = 2

√
a. Thus, during this

time we have that

ΛMD ∼ π2

6
3H2

0

c2

1
4a

. (8)

So, we find that the field equation forΛMD is Λ̇MD +
HΛMD = 0. We use this approximation to get the Hubble
parameter evolution, given as follows

H=H0

√
Ω0me−3N+Ω0re−4N+Ω0ke−2N+Ω0Λe−N . (9)

However, this approximation is not good enough for the nu-
merical solution of (4). Instead of that we will approximate
it with the function

FIGURE 2. Evolution of the1 −H/Happ using the numerical in-
tegration of Eq. (4) (H) and (10) (Hap), with q = 0.695. We plot
log(|1−H/Happ|), observe that this ratio is always less than10−3.

FIGURE 3. Evolution of theΩ’s using Eqs. (9) and (10) and the
corresponding ones using theΛCDM model.

Happ=H0

√
Ω0me−3N+Ω0re−4N+Ω0ke−2N+Ω0ΛeqN .

(10)
whereq andΩ0Λ are constants that fit the numerical solution.
The similarity between the function (10) with the numerical
integration of (4) is very good everywhere, see Fig. 2.

The radiation content of the universe, CMB photons plus
neutrinos, is given byρr = 2(1 + 3 × 7/8(4/11)4/3)T 4.
The CMB observations indicate thatT = 2.7255 K, thus
Ω0r = 9.54 × 10−5. We setΩ0Λ such thatHapp = H0 at
N = 0. These values, again, are very close to that obtained
in ΛCDM.
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FIGURE 4. Profiles of the CMB for a flat universe (upper panel)
and for a closed universe withΩ0k = −0.003 (middle panel)
and MPS (lower panel) observations using an amended version of
CLASS code [4]. We compare them with the best fit of theΛCDM
model, using data from the Planck satellite. Note that the CMB
temperature fluctuations for the flat universe are the same as the
ΛCDM, the only difference is in the first maximum. For the MPS
there are very small discrepancies for the small structure. The
CMaDE model settings areΩ0r = 5.67 × 10−5, q = 0.694,
H0 = 72.6 km/s/Mpc andΩ0b = 0.044 for the flat universe
and q = 0.695, Ω0k = −0.003, H0 = 72.6 km/s/Mpc and
Ω0b = 0.043 for the closed universe. Observe that the value of
H0 is very close to the observed one from the local distance lad-
der [5].

In Fig. 3 we see the evolution of theΩ’s for the CMaDE
model, using the function (10) and theΛCDM model, where
we can observe the similarity of the evolution.

Thus, the next step is to see whether this approximation
gives us the correct behavior of the CMB and MPS profiles.
In Fig. 4 we show the comparison between the profiles of the
CMaDE andΛCDM models using an amended version of
CLASS code [4], where, again, the similarity between both
models is notable. The only difference we find for the flat
universe is an excess of temperature predicted by the CMaDE
model in the first maximum, but in the rest, of the two pro-
files, the coincidence with the observations using the Planck
data is very good. It is remarkable that the value ofΩΛ in the
CMaDE model is completely theoretical, so it is quite rele-
vant that this match with the observations is so good. We
believe that the small differences could be due to the fact that
we are using an approximation for the CMaDE model and
not the solution of the Eq. (4) or by some extra phenomenon.
However, in this work we want to present the main character-
istics of the CMaDE model, the observational aspects of the
model will be found elsewhere [6].

Finally, considering the gravitational field quantum na-
ture we found that if it has a quantum Compton effective mass
we could see it as a variable “cosmological constant”. With
this result, we could explain the actual value of the density
parameter of the dark energy and the coincidence problem.
Nevertheless, we think that this hypothesis opens a new win-
dow of research and must be further studied.
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