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From a previous paper where we proposed a description of general relativity within the gravito-electromagnetic limit, we propose an al-
ternative modified gravitational theory. As in the former version, we analyze the vector and tensor equations of motion, the gravitational
continuity equation, the conservation of the energy, the energy-momentum tensor, the field tensor, and the constraints concerning these fields.
The Lagrangian formulation is also exhibited as an unified and simple formulation that will be useful for future investigation.

Keywords: Classical general relativity; fundamental problems and general formalism; modified theories of gravity.

DOI: https://doi.org/10.31349/RevMexFis.68.010702

1. Gravito-electromagnetism

Is general relativity (GR) a final theory or it will be super-
seded by another theory in the future? We expect that it will
survive while its explanatory power is strong enough to de-
scribe the available experimental data. However, even if its
explanatory power was not strong enough to understand ev-
ery known phenomenon, we would keep it in the absence of
an alternative theory. At the present time, general relativity
is a very successful gravitational theory, but we also know
that there are several open questions about it, particularly re-
lated to their quantization and to to their cosmological appli-
cations. Furthermore, we do not know whether GR is suitable
to solve these open questions, or whether a different theory
is needed. In this situation, it can be interesting to modify
the old theory in order to explain singular data effectively or
to introduce a different conceptual idea [1]. From a theo-
retical point of view, it is interesting to study what kind of
modification can possibly be done to a theory and keep its
mathematical and physical consistency.

In this article, we propose an exercise concerning a re-
cently published gravitation theory that modifies GR within
the gravito-electromagnetic precision order [2]. In summary,
we will analyze an alternative to this previously proposed
modified theory in order to exhaust the possible alterations
that are coherent to the original idea. Before considering the
new formulation, we give a brief explanation of the origin of
gravito-electromagnetism (GEM) using the Chapter 3 of [3].
As the name announces, in this theory an analogy between
GR and electromagnetism is established. GEM comes from
the weak field approximation to GR, where thegµν metric
tensor is

gµν = ηµν + κhµν , κ =
√

16πG

c2
(1)

is a constant in cgs units andhµν represents the perturbation
of the ηµν flat space tensor, whose components are respec-
tively η00 = 1, and ηii = −1 for i, j = {1, 2, 3}. Within

the weak field limit,|κhµν | ¿ 1, the physical law

dvvv

dt
= ggg + vvv × bbb, (2)

describes the motion of a massive particle of velocityvvv in
a gravitational fieldggg, and whose gravito-magnetic field is
bbb. The boldface characters denote vector quantities in a time-
like surface, and the vector product satisfies the usual defini-
tion. In terms of components, we have

(
vvv × bbb

)
i
= εijkvjbk, (3)

whereεijk is the Levi-Civit̀a anti-symmetric symbol. The
similarity between Eq. (2) and the electro-dynamical Lorentz
force is evident. In terms of the perturbation of the metric
tensor, the physical law reads

gi = −κ

2
∂h00

∂xi
and bi = −κ

(
∂h0k

∂xj
− ∂h0j

∂xk

)
, (4)

where the space-like components of the space-time index are
i, j andk. Hence, one can establish an analogy between the
covariant electrodynamics and the field vectors in a tensor
formula, so that

f0i = gi and fij = −1
2
εijkbk. (5)

However, the quantities of Eq. (4) were obtained from on the
zeroth component ofhµν , and hence thefµν tensor obtained
from Eq. (5) are in fact the zeroth component of a third rank
tensor. Therefore, the analogy betweenfµν and the Faraday
tensorFµν of electrodynamics is imperfect because thefµν

tensor is not covariant in the same way thatFµν . There are
various proposals to determine this third rank gravitational
tensor, and we quote [4–8] and references therein. This fact
turns the GEM research even more exciting, because it in-
dicates a way to research a more general tensor theory of
gravity, where additional space-time indices would be nec-
essary for tensor quantities. Independently of this feature,
the conceptual idea of GEM evidences the parallel between
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electromagnetism and gravitation, and various ideas to imple-
ment the gravito-electromagnetic approximation have been
elaborated, and a list of references of them can be found in
Refs. [2,9–11].

In Ref. [2], the gravitational fieldggg was decomposed as a
sum of two auxiliary fields, the gravito-electric fieldgggE and
the gravito-magnetic fieldgggB , where

ggg = gggE + gggB constrained with gggE ·g·g·g B = 0. (6)

This decomposition is not usual in gravito-electromagnetism
(GEM), and the field equations are also different from the
previous formulations. This discussion is already been done
in the previous article. However, the previous article does not
exhaust the possible formulations, and this paper intends to
fill this blank. However, we shall see that this task in not a
bureaucratic one. The formulations have a diverse physical
content, and the second formulation is necessary for the the-
oretical comprehension, and for future applications as well.

2. Modified Newtonian gravitation

Modified theories of Newton’s gravitation are not a novelty,
and we mention [12–14] as a recent conjectures of such kind.
In our proposal, the field equations are such as

∇∇∇ · ggg = − 4πρ and ∇∇∇× ggg =
4π

c
ppp− 1

c

∂ggg

∂t
. (7)

whereggg is the gravity field vector,ρ is the density of mass,
ppp = ρvvv is the matter flux density vector. Accordingly, the
gravity forceFFF acts over a particle of massm according to
the physical law

FFF = mggg − 1
c

ppp× ggg. (8)

Equations (7) are identical to that proposed in Ref. [2], while
(8) has a single difference, a flipped sign on of the second
term. The ultimate proposal of the present article is to deter-
mine the differences concerning this single difference. Addi-
tionally, we will confirm that the gravitational field given by
(7) has a physical content comparable to that achieved after
the truncation of Eintein’s field equations. We remember that
truncation of Einstein’s equations generates the Newtonian
theory at its first approximation, while higher order terms
produce (2-4), and this prevision of GR will be recovered
from Eq. (7) using a covariant scheme. As first consequence,
the continuity equation and the conservation of the mass is
obtained from (7)

∂ρ

∂t
+∇∇∇ · ppp = 0. (9)

The energy balance is given by

1
8πc

∂|ggg|2
∂t

+
1
4π

ggg · ∇∇∇× ggg =
1
c

ggg · ppp, (10)

and Eqs. (9-10) are identical to that obtained in Ref. [2]. We
observe the self-interacting termsggg · ∇∇∇× ggg , andggg · ppp and a
conservative gravitational field is obtained if

ggg · ∇∇∇× ggg = 0. (11)

Equation (10) is the gravitational equivalent of the Poynt-
ing theorem, but a gravitational Poynting vector cannot be
obtained. It is interesting to note that every contribution to
the energy balance comes from self-interaction. Differently
from [2], an expression for the conservation of the linear mo-
mentum is not possible in this formulation. Therfore, the field
equations, the gravitational force law, the continuity equation
and the energy balance encompass all the results that one can
obtain from this model. In the following section, the tensor
approach will illuminate this physical model from a different
standpoint.

3. The gravitational field in the tensor formal-
ism

In this section, we will observe many differences between the
model of (7-8) and the previous article. Let us then intoduce
the gravitational field tensor

Cµν =




0 −g1 −g2 −g3

g1 0 −g3 g2

g2 g3 0 −g1

g3 −g2 g1 0


 where

ggg =
(
g1, g2, g3

)
. (12)

The Minkowskian indices areµ andν, and the metric tensor
ηµν , is such thatη00 = 1, ηii = −1 andi, j = {1, 2, 3}.
Accordingly,

Ci0 = gi, Cij = −εijkgk, (13)

whereεijk is the Levi-Civit̀a anti-symmetric symbol. Using
the field tensor, the field equations (7) become

∂νCνµ =
4π

c
pµ, where pµ =

(
cρ, ppp

)
. (14)

We also define the contravariant momentum density
4−vector pµ , that can also be called the matter current
4−vector, and the contravariant coordinate4−vector xµ =(
ct, xxx

)
. Using this formalism, the continuity equation (9)

reads
∂µpµ = 0. (15)

The gravitational force can as well be obtained in the covari-
ant expression,

dpµ

dt
=

1
c
Cνµpν . (16)

The spacelikeµ = i components of (16) furnish the grav-
ity force, and the timelikeµ = 0 component reveals that the
energy density of the model obeys

c2 dρ

dt
= g · pg · pg · p, (17)
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On the other hand, using the anti-symmetric feature of the
field tensor, we obtain

pµ dpµ

dt
=

1
c
Cµνpµpν = 0 thus

d

dt

(
pµpµ

)
= 0, (18)

and thereforepµpµ reveals to be a constant associated to the
rest energy densityE. Therefore, the four-momentum vector
(14) can be interpreted relativistically, so that

pµpµ = ρ2c2 − p · pp · pp · p =
E2

c2
. (19)

In order to obtain the energy-momentum tensor of this self-
interacting gravitational theory, we define theτµν symmet-
ric tensor as

τµν = τµν =
{

1 if µ = ν,
0 if µ 6= ν.

(20)

which has been introduced in [2] and that satisfiesηµν =
τµκτ ν

κ . The equations of motion (14) therefore become

∂λ

(
τλ

µCνκ + τλ
νCκµ + τλ

κCµν

)
=

4π

c
εµνκλpστλσ, (21)

where the anti-symmetric Levi-Cività symbol isεµνκλ. Con-
sequently, using (14) and (16), we get

dpµ

dt
=

1
4π

Cµν∂κCνκ. (22)

Additionally, combining (21-22) produces an equation satis-
fied by theTµν is the energy-momentum tensor,

dpµ

dt
= ∂κTκµ + Iµ + Sµ, (23)

where Iµ gives the self-interaction andSµ represents the
source. Explicitly,

Tµν =
1
4π

(
CηµC η

ν +
1
4
τµντη

κCηλCκλ

)
,

Iµ =
Cνκ

8π

(
τλ
ν τη

κ∂ηCµλ + ∂νCµκ

)
,

Sµ =
εµνκλ

2c
pσCκητν

η τλσ. (24)

At this moment, we point out the major difference of the
model presented in this article. This approach is more com-
plicated than the former model [2] whereTµν = Iµ = 0,
and consequently the previous approach is probably more re-
alistic if we expect that theoretical simplicity and physical
reality are twin brothers. Despite this, we further explore
the model, and the energy-momentum tensor and the self-
interaction term further simplify to

Tµν =
1
4π

(
CηµC η

ν − 1
2
τµν |ggg|2

)
and

Iµ =
1
4π

(
∂0Cµi − ∂iCµ0

)
C0i. (25)

Explicitly, the energy-momentum components are

T00 =
|ggg|2
8π

, Tii =
1
8π

(
|ggg|2 − 4g2

i

)
,

T0i = 0, Tij = −gigj

2π
, (26)

which generate the scalar quantities

Tµντµν = 0, T µ
µ =

|ggg|2
4π

and

TµνTµν =
3|ggg|4
(4π)2

. (27)

Different from electromagnetism, the gravity energy-
momentum tensor is not traceless. This result is in fact ex-
pected from general relativity, and thus a consistency con-
dition is fulfilled. Furthermore, using the field Eqs. (7), we
obtain

Iµ =
1
4π

(
− 1

2c

∂|ggg|2
∂t

,
1
c

[
ggg × ∂ggg

∂t

]

i

+
[
g · ∇g · ∇g · ∇]

gi

)
,

Sµ =
(g · pg · pg · p

c
, −ρggg

)
. (28)

Using Eqs. (26) and (28) in (23), the energy conservation
and the gravitational force components are recovered, and the
physical consistency of the model is assured. We have shown
in this section that the gravitation model that (7-8) comprise
can be consistently described using a tensor language. How-
ever, such a formulation seems unsatisfactory, particularly
because the conservation of the energy is not clear in Eq. (10).
For the sake of clarity, we develop a potential formulation in
the next section.

4. The gravitational potentials in the tensor
formalism

Introducing the gravitational scalar potentialΦ and the gravi-
tational vector potentialΨΨΨ, the gravitational field is proposed
to be

ggg = −∇∇∇Φ− 1
c

∂ΨΨΨ
∂t

+∇∇∇×ΨΨΨ, (29)

and the field Eqs. (7) consequently become

∇2Φ+
1
c

∂

∂t

(∇∇∇ ·ΨΨΨ)
= 4πρ

∇2ΨΨΨ−∇∇∇(∇ ·Ψ∇ ·Ψ∇ ·Ψ)
=−4π

c
ppp+

1
c

∂

∂t
∇∇∇Φ+

1
c2

∂ΨΨΨ
∂t2

. (30)

Nonetheless, we obtain a simpler formulation after defining
auxiliary gravito-electric and gravito-magnetic vector fields,
respectivelygggE and gggB . Therefore,

ggg = gggE + gggB , where gggE = −∇∇∇Φ− 1
c

∂ΨΨΨ
∂t

and gggB =∇∇∇×ΨΨΨ. (31)
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Comparing to the the previous formulation [2], the signs of
the third term in Eq. (29) and, consequently, ofgggB in (31) are
flipped, and the second equation of (30) is simpler than in the
previous paper. In consequence, using Eq. (31) in (7) we ob-
tain the gravitational field equations in potential formulation,

∇ · g∇ · g∇ · gE = − 4πρ ∇ · g∇ · g∇ · gB = 0

∇∇∇× gggE = −1
c

∂gggB

∂t
∇∇∇× gggB =

4π

c
ppp− 1

c

∂gggE

∂t
, (32)

that is similar to previous formulations of GEM [2,4–8], and
also similar to the Maxwell electromagnetic field equations.
Defining the gravitational potential second rank tensor

C µν = τµ
κτν

λ

(
∂κQλ − ∂λQκ

)

where Qµ =
(
Φ, ΨΨΨ

)
(33)

is the gravitational potential4−vector, we directly have

Ci0 =
(
gE

)
i

and Cij = −εijk

(
gB

)
k
. (34)

The potential tensor (33-34) enables us to regain the equa-
tions of motion (30) using

∂νC νµ =
4π

c
pµ. (35)

Equation (35) contains the non-homogeneous components of
(32), and the homogeneous terms come from

∂λ

(
τλ

µCνκ + τλ
νCκµ + τλ

κCµν

)
= 0. (36)

Manipulating the4−vector momentum density, we conse-
quently have

dpµ

dt
=

1
c

C νµpν , (37)

whose components give

dp0

dt
=

1
c
p · gp · gp · gE and

dppp

dt
= ρgggE − 1

c
ppp× gggB . (38)

Analyzing (38) in comparison to Eqs. (8) and (17), two con-
straints emerge, namely,

p · gp · gp · gB = 0; cρgggB − ppp× gggE = 000.

Likewise, gggE ·g·g·g B = 0. (39)

Therefore, the linear momentumppp, the gravito-electric field
gggE and the gravitational force vectordppp/dt are coplanar and
the force law (39) conforms perfectly to (2), and the alter-
nated signs in Eq. (4) may be obtained by a redefinition ofbbb .
At this moment, we point out the more important drawback of
the model. Differently from the previous formulation [2], we
cannot obtain a relation expressing the conservation of mo-
mentum in the same fashion as the electromagnetic formula-
tion. This does not mean that the momentum is necessarily
not conserved, but it may have a more subtle formulation. We

may further explain the conservation of momentum by con-
sidering the tensor expression of the force law obtained from
(35-37), so that

dpµ

dt
= ∂κT κµ + I µ. (40)

The energy-momentum tensor is

Tµν =
1
4π

(
Cλµ C λ

ν +
1
4
τµντη

κ CηλC κλ

)

=
1
4π

(
Cµλ C λ

ν − 1
2
τµν

∣∣gggB

∣∣2
)

, (41)

and the interaction term reads

I µ =
1
4π

(
−1

2
∂0|gggE |2,

[
gggE×

{
∂0gggB

}]
i
+gggE ·∇·∇·∇

(
gggE

)
i

)
. (42)

The self-interaction termI µ does not appear in the previ-
ous formulation [2], and this raises up an hypothesis to ex-
plain the non-conservative character of the momentum. In
electrodynamics, we have to separate the momentum of the
particles and the momentum of the fields, and this works well
also in Ref. [2]. In the present theory, we have the additional
contribution of self-interaction of the fields in (40), and the
four-fource cannot be written as a four-divergence, engen-
dering a more general situation here, because such a terms
is not present in previous formulations, and the conservation
is recovered ifI µ = 0. Maybe we can impose this as a
constraint, but this can be considered as a direction for future
research, as well as the whole this discussion of the character
of momentum in the present theory.

Explicitly written, the components of (41) are

T00 =
1
4π

(∣∣gggE

∣∣2 − 1
2

∣∣gggB

∣∣2
)

Tii =
1
4π

[
1
2

∣∣gggB

∣∣2 − (
gggB

)2

i
− (

gggE

)2

i

]

T0i =
1
4π

(
gggE × gggB

)
i

Tij = − 1
4π

[ (
gggE

)
i

(
gggE

)
j
+

(
gggB

)
i

(
gggB

)
j

]
. (43)

Accordingly, we obtain the scalar quantities

Tµντµν = 0, T µ
µ =

2
∣∣gggE

∣∣2 − ∣∣gggB

∣∣2
4π

and

TµνT µν =
2

(4π)2

[
|gggB |
2

4

+ |gggE |4 − |gggE |2|gggB |2

+
(
gggE ·g·g·g B

)2 −
∣∣gggE × gggB

∣∣2
]
. (44)
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By comparing the scalar quantities (44) and (26), the nullity
of Tµντµν and Tµντµν fits the role played by the nullT µ

µ

in electromagnetism. Finally, from Eq. (40) we obtain

dp0

dt
=

∂

∂t

(∣∣gggE

∣∣2 −
∣∣gggB

∣∣2
8π

)
+∇·∇·∇·

(
gggB × gggE

4π

)
. (45)

Using (38) we generate the energy conservation law that is
directly obtained from the field equations (32) and that does
not produce additional constraints. Finally, following a for-
mulation of quantum electrodynamics, we useQµ from (33),
and also∂µQµ, as the independent variable of the gravito-
electromagnetic Lagrangian density

L =
1
8π

∂µQνC µν +
1
c
pµQµ, (46)

and (35) is immediately obtained from Eq. (46). As a final
remark, the field equations (32) can also be obtained using

ggg = gggE − gggB , where gggE = −∇∇∇Φ +
1
c

∂ΨΨΨ
∂t

and gggB =∇∇∇×ΨΨΨ. (47)

However, this formulation flips the sign ofppp×gggB in Eq. (38),
and so we conclude that (31) is the most suitable choice for
the potential. In the next section, we summarize the results
of Sec. 3 and 4 into a gravity law that is an alternative to (8).

5. The second gravity force law

Let us consider the force law

FFF = ρggg +
1
c
ppp× ggg, (48)

the field equations

∇ · g∇ · g∇ · g = − 4π ρ, ∇∇∇× ggg = −4π

c
ppp +

1
c

∂ggg

∂t
. (49)

and the field tensor

Ci0 = gi; Cij = εijkgk, (50)

where Eqs. (14-17) hold. On the other hand, Eq. (21) changes
to

∂λ

(
τλ

µCνκ+τλ
νCκµ+τλ

κCµν

)
=−4π

c
εµνκλpστλσ. (51)

The energy-momentum tensorTµν is identical to (26), and
consequently the scalar quantities are also identical (27). In
contrast, the source termSµ is identical to that of Eq. (28),
but the spacial components of the self-interaction termIµ

are slightly different, thus,

Iµ=
1
4π

(
− 1

2c

∂|ggg|2
∂t

,
1
c

(
∂ggg

∂t
× ggg

)

i

+
(
g · ∇g · ∇g · ∇)

gi

)
. (52)

Hence, the second formulation is also consistent, and the
proper physical content demands experimental investigation

of Eqs. (8) and (48). Additionally, the potential formulation
is

ggg = gggE + gggB , where

gggE = −∇∇∇Φ +
1
c

∂ΨΨΨ
∂t

and gggB =∇∇∇×ΨΨΨ. (53)

and finally the field equations are

∇ · g∇ · g∇ · gE = − 4πρ ∇ · g∇ · g∇ · gB = 0

∇∇∇× gggE =
1
c

∂gggB

∂t
∇∇∇× gggB = −4π

c
ppp +

1
c

∂gggE

∂t
. (54)

Additionally,

Cµν = ∂λτ λ
µ Qν − ∂λτ λ

ν Qµ, (55)

leads to,

Ci0 =
(
gE

)
i
, Cij = εijk

(
gB

)
k
, (56)

and Eqs. (35-36) are immediately recovered. From (37), we
produce

dp0

dt
=

1
c
p · gp · gp · gE and

dppp

dt
= ρgggE +

1
c
ppp× gggB . (57)

The constraints are

ppp · gggB = 0; cρgggB + ppp× gggE = 000.

Likewise gggE ·g·g·g B = 0. (58)

Essentially, both of the formulations are related by the sym-
metry transformation

gggb → −gggB , or ΨΨΨ → −ΨΨΨ

or Qµ → Qντ µ
ν . (59)

Thus, under the alternative gravity law, the equivalents of
Eqs. (40-45) are immediately obtained using Eq. (59), and
the difference is the alternate sign in the “Pointing vector”
of (45), meaning the reversal of the momentum flux in each
formulation.

6. Concluding remarks

We examined several formal questions concerning gravito-
electromagnetism, and proposed two gravity force laws,
namely (8) and (48), and consistent covariant tensor formu-
lations have been built for both of them. It was also verified
that both of the formulations are related through a symme-
try operation. The results complement the former article [2],
where the force law is identical, but the field equations are
different different. The results indicate that the energy is con-
served in the present formulation, but the momentum is not
conserved. Although this seems a negative result, it is in fact
a very important piece of information. The force laws (8) and
(48) were obtained using a different set of field equations in
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6 S. GIARDINO

Ref. [2], and the choices of the present article introduce the
self-interaction termsIµ in (23) and I µ in (40), and this
kind of interaction does not allow the conservation of the mo-
mentum. Only experimental data concerning the deviation of
the Newton law can decide which deviation model generate
the correct version of GEM. To the best of our knowledge,

the state of the art of the experimental research, namely the
Gravity Probe B experiment [11, 15], was unable to pick the
most suitable GEM model, and therefore the investigation of
the formulations of GEM remains an active field of theoreti-
cal research.
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