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We consider non-autonomous systems of ordinary differential equations that can be expressed in Hamiltonian form in terms of two different
coordinate systems, not related by a canonical transformation. We show that the relationship between these coordinate systems leads to a,
possibly time-dependent, tensor field,Sα

β , whose eigenvalues are constants of motion. We prove that if the Nijenhuis torsion tensor ofSα
β is

equal to zero then the eigenvalues ofSα
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1. Introduction

The integrability of the systems of ordinary differential equa-
tions found in classical mechanics has been studied for a long
time. For a system of ordinary differential equations written
in the form of the Hamilton equations withn degrees of free-
dom, the knowledge ofn functionally independent constants
of motion in involution allows us to reduce to quadratures the
solution of the entire set of equations (see,e.g., Refs. [1–3]).

The so-called bi-Hamiltonian systems have been studied
in connection with the integrability mentioned above. It has
been shown that if an autonomous system of equations can be
written in the form of the Hamilton equations making use of
two different symplectic structures, satisfying certain com-
patibility condition, then one can find a set of constants of
motion in involution, which are related by means of recur-
rence operators (see,e.g., Refs. [4–8]).

On the other hand, in Refs. [9–11] it has been shown that
it is possible to find constants of motion by considering the
so-called canonoid transformations admitted by a Hamilto-
nian corresponding to the system of interest. Here we reserve
the name canonoid transformation for a non-canonical coor-
dinate transformation that preserves the form of the Hamilton
equations for a given Hamiltonian.

The aim of this paper is to extend the results about
bi-Hamiltonian systems already mentioned to the non-
autonomous case, starting from the canonoid transforma-
tions. We show that for a given Hamiltonian system with
Hamiltonian function possibly depending explicitly on time,
and with Hamilton equations expressed in terms of a set of
canonical coordinates, or of a Poisson bracket, each canonoid
transformation leads to a second Poisson bracket related to
the first one by means of a tensor fieldSα

β , such that the trace

of the each power of the matrix(Sα
β ) is a constant of motion

(which can depend explicitly on the time). We also show that
if the Nijenhuis torsion tensor ofSα

β is equal to zero then the
traces of the powers of(Sα

β ) (or the eigenvalues of(Sα
β )) are

in involution, but they may not be functionally independent.
We give examples of systems for which the Nijenhuis tor-
sion tensor ofSα

β is different from zero, but the traces of the
powers of(Sα

β ) are constants of motion in involution.
In Sec. 2 we present some basic facts about canonoid

transformations. In Sec. 3 we review the definition of the
(autonomous) bi-Hamiltonian systems and we show the lo-
cal equivalence between the bi-Hamiltonian systems and the
canonoid transformations in the autonomous case. We then
show that the integrability properties of the autonomous bi-
Hamiltonian systems can be extended to the non-autonomous
systems that admit a canonoid transformation. In Sec. 4 we
present some explicit examples of canonoid transformations
for non-autonomous systems.

2. Canonoid transformations

Let (q1, . . . , qn, p1, . . . , pn) be canonical coordinates for a
Hamiltonian system with Hamiltonian functionH(qi, pi, t),
which may depend explicitly on time. We know that the dy-
namics of the system is defined by a vector fieldX such that
X (dpi ∧dqi−dH ∧dt) = 0, where denotes contraction;
this vector field has the form

X =
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
+

∂

∂t,

with summation over repeated indices. The integral curves
of X are the solutions of the Hamilton equations (see,e.g.,
Ref. [12]).



2 G.F. TORRES DEL CASTILLO AND R. AZUAJE

We are interested in canonoid transformations that may depend explicitly on time, that is, coordinate transformations of
the formQi = Qi(qj , pj , t), Pi = Pi(qj , pj , t) that preserve the form of the Hamilton equations (see,e.g., Ref. [13]), which
means thatX (dPi ∧ dQi − dK ∧ dt) = 0, for some functionK.

A straightforward computation gives

dPi ∧ dQi − dK ∧ dt

=
(

∂Pi

∂pj
dpj +

∂Pi

∂qj
dqj +

∂Pi

∂t
dt

)
∧

(
∂Qi

∂ps
dps +

∂Qi

∂qs
dqs +

∂Qi

∂t
dt

)
− ∂K

∂pl
dpl ∧ dt− ∂K

∂ql
dql ∧ dt

=
∂Pi

∂pj

∂Qi

∂ps
dpj ∧ dps +

∂Pi

∂qj

∂Qi

∂qs
dqj ∧ dqs +

(
∂Pi

∂pj

∂Qi

∂qs
− ∂Pi

∂qs

∂Qi

∂pj

)
dpj ∧ dqs

+
(

∂Pi

∂pj

∂Qi

∂t
− ∂Pi

∂t

∂Qi

∂pj
− ∂K

∂pj

)
dpj ∧ dt +

(
∂Pi

∂qj

∂Qi

∂t
− ∂Pi

∂t

∂Qi

∂qj
− ∂K

∂qj

)
dqj ∧ dt

= −1
2
[pj , ps]dpj ∧ dps − 1

2
[qj , qs]dqj ∧ dqs − [pj , q

s]dpj ∧ dqs

+
(
−[pj , t]− ∂K

∂pj

)
dpj ∧ dt +

(
−[qj , t]− ∂K

∂qj

)
dqj ∧ dt,

where[u, v] denotes the Lagrange bracket, defined by[u, v] = ∂Qi

∂u
∂Pi

∂v − ∂Pi

∂u
∂Qi

∂v . Hence,

X (dPi ∧ dQi − dK ∧ dt) =
(

[pj , pl]
∂H

∂qj
− [qj , pl]

∂H

∂pj
− [t, pl] +

∂K

∂pl

)
dpl

+
(

[ql, qj ]
∂H

∂pj
− [ql, pj ]

∂H

∂qj
− [t, ql] +

∂K

∂ql

)
dql

+
[(

∂K

∂pj
− [t, pj ]

)
∂H

∂qj
+

(
[t, qj ]− ∂K

∂qj

)
∂H

∂pj

]
dt.

Thus,X (dPi ∧ dQi − dK ∧ dt) = 0 if and only if

[pj , pl]
∂H

∂qj
− [qj , pl]

∂H

∂pj
− [t, pl] +

∂K

∂pl
= 0,

[ql, qj ]
∂H

∂pj
− [ql, pj ]

∂H

∂qj
− [t, ql] +

∂K

∂ql
= 0,

(
∂K

∂pj
− [t, pj ]

)
∂H

∂qj
+

(
[t, qj ]− ∂K

∂qj

)
∂H

∂pj
= 0.

We can check that if the first and the second equations are satisfied then the third equation also holds. So, we can forget the
third one and we rewrite the first two equations in the form

∂K

∂pl
= [pl, pj ]

∂H

∂qj
− [pl, q

j ]
∂H

∂pj
+ [t, pl] and

∂K

∂ql
= [ql, pj ]

∂H

∂qj
− [ql, qj ]

∂H

∂pj
+ [t, ql]. (1)

The existence of a functionK satisfying Eqs. (1) is equivalent to the condition that the 1-form
(

[pl, pj ]
∂H

∂qj
− [pl, q

j ]
∂H

∂pj
+ [t, pl]

)
dpl +

(
[ql, pj ]

∂H

∂qj
− [ql, qj ]

∂H

∂pj
+ [t, ql]

)
dql

be exact. Letting(x1, x2, . . . , x2n) ≡ (q1, . . . , qn, p1, . . . , pn), the Hamilton equations are given byẋµ = εµν(∂H/∂xν),

where the lower case Greek letters run from1 to 2n and(εµν) is the2n× 2n matrix

(
0 I
−I 0

)
(εµν is the entry in theµ-th

row and theν-th column). Then, using this notation, we rewrite Eqs. (1) as

∂K

∂xα
= εµν [xµ, xα]

∂H

∂xν
+ [t, xα]

Rev. Mex. Fis.68020706



CONSTANTS OF MOTION ASSOCIATED WITH CANONOID TRANSFORMATIONS FOR NON-AUTONOMOUS SYSTEMS 3

and the exactness condition of the 1-form mentioned above is∂2K/∂xβ∂xα = ∂2K/∂xα∂xβ which amounts to

εµν ∂[xβ , xα]
∂xµ

∂H

∂xν
+ εµν [xν , xβ ]

∂2H

∂xα∂xµ
− εµν [xν , xα]

∂2H

∂xβ∂xµ
+

∂[xβ , xα]
∂t

= 0. (2)

This equation is a necessary and sufficient condition for the local existence of a functionK, such that the coordinate transfor-
mation(qi, pi) 7→ (Qi, Pi) is a canonoid transformation with new Hamiltonian functionK. The coordinate transformation is
canonical if and only if the Lagrange brackets[xµ, xν ] are given by[xµ, xν ] = εµν .

3. Bi-Hamiltonian systems

In this section we begin by reviewing the standard treatment of bi-Hamiltonian systems. Let(M,ω, H) be anautonomous
Hamiltonian system. Ifγ is a second symplectic structure overM , we can define a(1, 1)-tensor fieldS on M by the relation
γ(Y,Z) = ω(SY,Z) for any pair of vector fieldsY,Z. The following definition is due to F. Magri and C. Morosi [4]: We
say thatγ is compatible with the given Hamiltonian system if£Xγ = 0 andNS = 0, whereX is the vector field that defines
the dynamics of the system (that is,X ω = −dH), £X denotes the Lie derivative alongX, andNS is the Nijenhuis tensor of
S, defined by

NS(Y,Z) = [SY, SZ]− S[SY,Z]− S[Y, SZ] + S2[Y,Z]. (3)

Since the Lie derivatives ofω andγ with respect toX are equal to zero, the Lie derivative ofS with respect toX is also
equal to zero, which, in terms of an arbitrary coordinate systemxα of M reads,Xµ∂µSα

β + Sα
µ∂βXµ − Sµ

β∂µXα = 0, where
∂µ ≡ ∂/∂xµ. Introducing the matrixU = (Uα

β ), with Uα
β ≡ ∂βXα (Uα

β is the entry in theα-th row and theβ-th column of
the matrixU ), the preceding equation can be expressed as the matrix equationdS/dt = US − SU = [U, S], whereS = (Sα

β )
is the matrix formed with the components ofS. This last equation implies that the traces of the powers of the matrixS yield
n = (1/2) dim M constants of motion in involution that do not depend explicitly on time [6,7,14] (see Eq. (4) below).

We are interested in extending these results tonon-autonomousHamiltonian systems. To this end, we consider a canonoid
transformationQi = Qi(xµ, t), Pi = Pi(xµ, t) as in Sec. 2, and we define the tensor fieldS = Sα

β (∂/∂xα)⊗dxβ given in the
canonical coordinatesxµ by Sα

β = εαλTβλ, whereTµν ≡ [xµ, xν ]. Then we can see that the functionsKm = (1/m)tr(Sm),
m > 1, are constants of motion and, therefore, the eigenvalues ofS are also constants of motion. For this, we defineUα

β =
εαλ(∂2H/∂xλ∂xβ) and we note that Eq. (2) is equivalent todSλ

β/dt + Sλ
ν Uν

β − Uλ
µ Sµ

β = 0, indeed,

dSλ
β

dt
+ Sλ

ν Uν
β − Uλ

µ Sµ
β

= ελα ∂[xβ , xα]
∂t

+ ελα ∂[xβ , xα]
∂xµ

dxµ

dt
+ ελα[xν , xα]ενµ ∂2H

∂xµ∂xβ
− ελα ∂2H

∂xα∂xµ
εµν [xβ , xν ]

= ελα

(
∂[xβ , xα]

∂t
+

∂[xβ , xα]
∂xµ

εµν ∂H

∂xν
+ ενµ[xν , xα]

∂2H

∂xµ∂xβ
− εµν [xβ , xν ]

∂2H

∂xα∂xµ

)

= ελα

(
∂[xβ , xα]

∂t
+ εµν ∂[xβ , xα]

∂xµ

∂H

∂xν
− εµν [xν , xα]

∂2H

∂xµ∂xβ
+ εµν [xν , xβ ]

∂2H

∂xα∂xµ

)

or, in matrix form,dS/dt = US − SU = [U, S]. Then, making use of the cyclic property of the trace,

d
dt

Km =
1
m

tr
(

d
dt

Sm

)
=

1
m

tr
(

dS

dt
Sm−1 + S

dS

dt
Sm−2 + · · ·+ Sm−1 dS

dt

)

= tr
(

dS

dt
Sm−1

)
= tr

(
[U, S]Sm−1

)
= 0. (4)

It may be remarked that the tracesKm may be trivial constants (even all of them) and that they may not be in involution. The
maximum number of functionally independent constants of motion obtained in this way isn. This result follows from the fact
that the characteristic polynomial of the product of two antisymmetric2n×2n matrices is the square of a polynomial of degree
n (see Ref. [15]).

In order to have an integrable system, it would be desirable to haven functionally independent constants of motion in
involution. As we shall show below, following the discussion presented in Refs. [6,7,14] for the case of autonomous systems,
we show that the vanishing of the Nijenhuis tensor ofS (which now may depend explicitly on time) implies that the constants
of motionKm are in involution. First, we note that the conditions

Nλ
αβ(Sl−1)β

λ = 0, (5)
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whereNλ
αβ are the components of the Nijenhuis tensor ofS, (Sm)β

λ are the entries of the matrixSm, andl is an integer greater
than zero, are equivalent to

Sν
α∂νKl = ∂αKl+1. (6)

Equations (6) are called the Lenard recursion relations (see,e.g., Ref. [14]). In fact, we have the following chain of equivalent
equations, forl > 1,

Sν
α∂νKl − ∂αKl+1 = 0

⇔ 1
l
Sν

α∂νtr(Sl)− 1
l + 1

∂αtr(Sl+1) = 0

⇔ Sν
α(∂νSλ

β )(Sl−1)β
λ − (∂αSν

β)(Sl)β
ν = 0

⇔ Sν
α(∂νSλ

β )(Sl−1)β
λ − Sλ

ν (∂αSν
β)(Sl−1)β

λ = 0

⇔ Sν
α(∂νSλ

β )(Sl−1)β
λ − Sλ

ν (∂αSν
β)(Sl−1)β

λ + (Sl)β
ν∂βSν

α − (Sl)ν
λ∂νSλ

α = 0

⇔ Sν
α(∂νSλ

β )(Sl−1)β
λ − Sλ

ν (∂αSν
β)(Sl−1)β

λ + Sλ
ν (∂βSν

α)(Sl−1)β
λ − Sν

β(∂νSλ
α)(Sl−1)β

λ = 0

⇔ [
Sν

α(∂νSλ
β )− Sλ

ν (∂αSν
β) + Sλ

ν (∂βSν
α)− Sν

β(∂νSλ
α)

]
(Sl−1)β

λ = 0.

The conclusion now follows, using the fact thatSν
α(∂νSλ

β ) − Sλ
ν (∂αSν

β) + Sλ
ν (∂βSν

α) − Sν
β(∂νSλ

α) is the componentNλ
αβ of

the Nijenhuis tensor ofS.
As in the autonomous case, the Lenard recursion relations imply that the functionsKm are in involution. The proof is

identical to that of the autonomous case. Noting that the Lenard recursion relations are equivalent to

εµν∂νKl = Tµν∂νKl+1,

where the functionsTµν are defined byTµνTµα = δν
α (the matrix(Tµν) is minus the inverse of(Tµν) and, therefore, is also

antisymmetric), we have

{Ks,Kl} = εµν(∂µKs)(∂νKl) = Tµν(∂µKs+1)(∂νKl) = (∂µKs+1)εµν(∂νKl−1) = {Ks+1,Kl−1}.

Hence, ifi > j,
{Ki, Kj} = {Ki−1,Kj+1} = · · · = {Ki−(i−j−1), Kj+(i−j−1)} = {Kj ,Ki},

which means that{Ki, Kj} = 0, for all i, j. Thus, whenS has exactlyn different eigenvalues andNS = 0, we haven
constants of motion in involution that may depend explicitly on time (see the examples below).

So far we have only considered the Nijenhuis torsion tensor, but there is another torsion tensor, the Haantjes tensor, which
is also relevant [16]. A new formulation of classical integrability based on Haantjes operators, namely(1, 1)-tensor fields with
vanishing Haantjes torsion tensor has been presented in Ref. [17]. IfNL is the Nijenhuis torsion tensor of a(1, 1)-tensor field
L then the Haantjes torsion tensor ofL is defined by

HL(Y,Z) = L2NL(Y,Z) + NL(LY, LZ)− L(NL(Y, LZ) + NL(LY,Z)), (7)

for any pair of vector fieldsY,Z. It is obvious that if the Nijenhuis torsion tensor ofL vanishes then the Haantjes torsion
tensor ofL also vanishes, but the converse is not true in general [16]. The components of the Haantjes torsion tensor ofL in
local coordinates are

(HL)λ
αβ = Lλ

νLν
µ(NL)µ

αβ + (NL)λ
νµLν

αLµ
β − Lλ

ν

(
(NL)ν

µβLµ
α + (NL)ν

αµLµ
β

)
. (8)

In example 2, below, we show that even if the Nijenhuis torsion tensor and the Haantjes torsion tensor are different from zero,
it is possible to have that the constants of motion found by means of a canonoid transformation can be in involution.

In the autonomous case,S can be viewed as a linear transformation from the tangent space toM at a pointp into itself
(as in Eq. (3)), and it has been established that the eigenvectors ofS for a given eigenvalue define an involutive (and, hence,
locally totally integrable) distribution (see Ref. [3]). This result can be extended to the non-autonomous case: If the vector
fieldsY = Y µ∂µ andZ = Zµ∂µ are eigenvector fields ofS with eigenvalueλ then, assuming that the Nijenhuis tensor ofS
is equal to zero, from (3) we have

0 = [λY, λZ]− S[λY,Z]− S[Y, λZ] + S2[Y,Z] = λ2[Y,Z]− 2λS[Y,Z] + S2[Y,Z] = (S − λ)2[Y,Z],

Rev. Mex. Fis.68020706



CONSTANTS OF MOTION ASSOCIATED WITH CANONOID TRANSFORMATIONS FOR NON-AUTONOMOUS SYSTEMS 5

which implies that(S − λ)[Y,Z] = 0 (sinceS is diagonalizable), that is,[Y,Z] is an eigenvector field ofS with eigenvalueλ
then the eigenvectors ofS for a given eigenvalue define an involutive distribution.

We finish this section by remarking that the equationdS/dt = [U, S] is fundamental for this work, some authors call it a
Lax equation (see for example Refs. [1, 6]). Another concept related to this equation is a Lax pair; for a Hamiltonian system
with n degrees of freedom, a Lax pair is a pair of matricesL,M of ordern × n, functions of the phase space of the system,
such that Hamilton equations can be written asdL/dt = [M, L] (see Ref. [1]). If we have a Lax pairL,M for a Hamiltonian
system then the eigenvalues ofL are constants of motion; note that the pair of matricesS, U in this work is not a Lax pair,
since the Hamilton equations are not necessarily given bydS/dt = [U, S], nevertheless, as was shown, the eigenvalues ofS
are constants of motion.

4. Examples

In this section we present three examples, the first one shows a canonoid transformation where the Nijenhuis tensor vanishes.
The second and the third ones give canonoid transformations which lead to constants of motion that are in involution even
though the Nijenhuis tensor does not vanish.

4.1. Example 1

Consider a Hamiltonian system with canonical coordinates(q1, q2, p1, p2) and Hamiltonian function

H(q1, q2, p1, p2, t) = −5tq1 + 3t2q2 + p2 sin t.

One can check that the coordinate transformation

Q1 = 1
2 (q1)2,

Q2 = p2 + t3 + et,

P1 = p1,

P2 = p2(1− q2 − cos t)− t3q2 − t3 cos t− et,

is canonoid with Hamiltonian function
K = −5tQ1 + (3t2 + et)Q2 + etP2.

(That is,Q̇i = ∂K/∂Pi andṖi = −∂K/∂Qi).
The matrixS = (Sα

β ) is given by

S =




[q1, p1] [q2, p1] 0 [p2, p1]
[q1, p2] [q2, p2] [p1, p2] 0

0 [q1, q2] [q1, p1] [q1, p2]
[q2, q1] 0 [q2, p1] [q2, p2]


 =




q1 0 0 0
0 p2 + t3 0 0
0 0 q1 0
0 0 0 p2 + t3




and the (multiplicity two) eigenvalues ofS are

λ1 = q1 and λ2 = p2 + t3.

One can verify directly thatλ1 andλ2 are constants of motion in involution, which also follows from the fact that the Nijenhuis
tensor ofS vanishes. Furthermore, they are functionally independent.

It may be remarked that, in all cases,detS must be different from zero everywhere. In this exampledetS is zero at
the pointsq1 = 0, andp2 + t3 = 0, but this is a consequence of the fact that at these points the coordinate transformation
considered here is singular.

4.2. Example 2

Consider a Hamiltonian system with canonical coordinates(q1, q2, p1, p2) and Hamiltonian function

H(q1, q2, p1, p2, t) = (t3 − 5t)p1 + 3t2p2 − tq1 − q2 sin t.

Rev. Mex. Fis.68020706
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One can check that the coordinate transformation

Q1 = q2,

Q2 = p2 − 2p1 + t2,

P1 = p1(5
2 t2 − 1

4 t4) + q1(p1 − 1
2 t2) + (p2 + cos t)2 − q2 + 1

8 t6 − 5
4 t4 + t3 + sin t2,

P2 = −p2 − cos t− 4et,

is a canonoid transformation with Hamiltonian function

K(Q1, Q2, P1, P2, t) = 3t2P1 + P2 sin t− 2tQ1 cos t2 + 4etQ2.

Then

S =




0 5
2 t2 − 1

4 t4 + q1 0 −2
0 2(p2 + cos t) 2 0
0 −p1 + 1

2 t2 0 0
p1 − 1

2 t2 0 5
2 t2 − 1

4 t4 + q1 2(p2 + cos t)




and the eigenvalues ofS are
λ1 = p2 + cos t +

√
(p2 + cos t)2 + t2 − 2p1

and
λ2 = p2 + cos t−

√
(p2 + cos t)2 + t2 − 2p1,

so thatK1 = 4(p2 + cos t) andK2 = 4t2 − 8p1 + 8(p2 + cos t)2. One can verify that these are functionally independent
constants of motion in involution. However, neither the Nijenhuis tensor nor the Haantjes tensor ofS vanish. For instance,

N2
12 = Sλ

1 ∂λS2
2 − Sλ

2 ∂λS2
1 − S2

λ∂1S
λ
2 + S2

λ∂2S
λ
1 = S4

1∂4S
2
2 − 0− 0 + 0 = 2p1 − t2

and

(HS)113 = (2t2 − 4p1)
(
1 + 5t2 − 1

2 t4 + 2q1).

The Lenard recursion relations also fail: We have∂1K2 = 0, but

Sλ
1 ∂λK1 = S4

1∂4K1 = 4p1 − 2t2 6= 0.

4.3. Example 3

Consider the Hamiltonian system with canonical coordinates(q1, q2, q3, p1, p2, p3) and Hamiltonian function

H(q1, q2, q3, p1, p2, p3, t) = tp1 + 1
3p2

3 − etp3 − 5q2 − q3 sin t.

The coordinate transformation

Q1 = p2,

Q2 = p1
2 + p3,

Q3 = q3 + et − t4,

P1 = p1(p2 − 5t)(q2 − 1
15p2

3),

P2 = q1 − p3 − t2p1 − et − cos t,

P3 = q3(p3 + cos t + 1) + et(p3 + cos t),

is a canonoid transformation with Hamiltonian function

K(Q1, Q2, Q3, P1, P2, P3, t) = 5P1 + P2 sin t− 4t3P3 + etQ2 + etQ3.
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CONSTANTS OF MOTION ASSOCIATED WITH CANONOID TRANSFORMATIONS FOR NON-AUTONOMOUS SYSTEMS 7

Then one finds that the matrix(Sα
β ) is

S =




−2p1 0 0 0 (q2 − 1
15p2

3)(p2 − 5t) 2p1 − t2

0 p1(5t− p2) 0 (q2 − 1
15p2

3)(5t− p2) 0 0
−1 0 q3 + et t2 − 2p1 0 0
0 0 0 −2p1 0 −1
0 0 0 0 p1(5t− p2) 0
0 0 0 0 0 q3 + et




.

The eigenvalues ofS are
λ1 = −2p1, λ2 = p1(5t− p2), λ3 = q3 + et,

and one can verify that they are functionally independent constants of motion in involution.
On the other hand, as in the previous example, the Nijenhuis tensor does not vanish; for instance, we have

N5
45 = 2p1(p2 − 5t)− p1(p2 − 5t)2.

5. Conclusions

We have shown that it is possible to extend the existing results about bi-Hamiltonian systems to the non-autonomous case, that
is, for a given Hamiltonian system with Hamiltonian function possibly depending explicitly on time, and with Hamilton equa-
tions expressed in terms of a set of canonical coordinates, or of a Poisson bracket. By starting from a canonoid transformation
that may depend explicitly on time, we get a second Poisson bracket related to the first one by means of a tensor fieldSα

β and
we find constants of motion of the given system by taking the trace of the each power of the matrix(Sα

β ). In addition, we
showed that the vanishing of the Nijenhuis torsion tensor of the tensor fieldSα

β is a sufficient but not necessary condition for
such constants of motion to be in involution. Finally we illustrated these results with some examples.
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