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We consider non-autonomous systems of ordinary differential equations that can be expressed in Hamiltonian form in terms of two different
coordinate systems, not related by a canonical transformation. We show that the relationship between these coordinate systems leads to
possibly time-dependent, tensor fiek};, whose eigenvalues are constants of motion. We prove that if the Nijenhuis torsion teSgoisof

equal to zero then the eigenvaluesf are in involution, and that these eigenvalues may be in involution even if the Nijenhuis tensor is not
zero.
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1. Introduction of the each power of the matrix5) is a constant of motion
(which can depend explicitly on the time). We also show that
The integrability of the systems of ordinary differential equa-i the Nijenhuis torsion tensor &g is equal to zero then the
tions found in classical mechanics has been studied for alongsces of the powers @5%) (or the eigenvalues dfS5)) are
time. For a system of ordinary differential equations writtenj, jnyolution, but they may not be functionally independent.
in the form of the Hamilton equations withdegrees of free-  \ve give examples of systems for which the Nijenhuis tor-

dom, the knowledge af functionally independent constants sjon tensor 0f5§ is different from zero, but the traces of the
of motion in involution allows us to reduce to quadratures theygwers of( ) are constants of motion in involution.

solution of the entire set of equations (seg, Refs. [1-3]). In Sec. 2 we present some basic facts about canonoid
The so-called bi-Hamiltonian systems have been studiegtansformations. In Sec. 3 we review the definition of the
in connection with the integrability mentioned above. It hasiautonomous) bi-Hamiltonian systems and we show the lo-
been shown that if an autonomous system of equations can kg equivalence between the bi-Hamiltonian systems and the
written in the form of the Hamilton equations making use of canonoid transformations in the autonomous case. We then
two different symplectic structures, satisfying certain com-ghoyw that the integrability properties of the autonomous bi-
patibility condition, then one can find a set of constants ofygmijltonian systems can be extended to the non-autonomous
motion in involution, which are related by means of recur-gystems that admit a canonoid transformation. In Sec. 4 we

rence operators (see.g, Refs. [4-8]). present some explicit examples of canonoid transformations

it is possible to find constants of motion by considering the
so-called canonoid transformations admitted by a Hamilto-, . .
nian corresponding to the system of interest. Here we reserv%' Canonoid transformations
the name canonoid transformation for a non-canonical coor;

. ) - 'Let(¢',...,q",p1,...,pn) be canonical coordinates for a
dlnatg transformgtlon that preserves the form of the Ham'ltorHamiltonian system with Hamiltonian functiof (¢, p;, ),
equations for a given Hamiltonian.

hich licitl ime. We k hat th -
The aim of this paper is to extend the results abo Which may depend explicitly on time. We know that the dy

. L ! Uhamics of the system is defined by a vector fi¥léuch that
bi-Hamiltonian systems already mentioned to the non-

¢ tarting f th id t ¢ X I(dp; Adq* — dH A dt) = 0, where denotes contraction;
autonomous case, starting from the canonoid transformgg. " o o: field has the form
tions. We show that for a given Hamiltonian system with

o X i ; - : OH 0 OH 0 0
Hamiltonian function possibly depending explicitly on time, X = - 4
and with Hamilton equations expressed in terms of a set of 9pi 0q"  0q" Op; O,
canonical coordinates, or of a Poisson bracket, each canonovdth summation over repeated indices. The integral curves
transformation leads to a second Poisson bracket related @f X are the solutions of the Hamilton equations (s&g,

the first one by means of a tensor fiedfl, such that the trace Ref. [12]).




2 G.F. TORRES DEL CASTILLO AND R. AZUAJE

We are interested in canonoid transformations that may depend explicitly on time, that is, coordinate transformations of
the formQ* = Q'(¢’, p;,t), P, = Pi(¢’, p;,t) that preserve the form of the Hamilton equations (seg, Ref. [13]), which
means thaX J(dP; A dQ* — dK A dt) = 0, for some functionk.

A straightforward computation gives

dP; AdQ — dK A dt

op; 8 8P 8@‘ 8@‘ 8@‘ oK
_op; 8Q1 OP; 0Q* ¢ oF; 6Qi OP; 0Q* ‘ <
_3pjasd ;i A dp aaasd A dg® +((’9pj8q5 aqsapj)dpj/\dq

OPOQ 0POQ 0K\ . (0POQ' OP0Q\ OKY
( )dp]/\dt+<aqj En at a7 8q-j)dq Adt

1 1. . ,
—5[p,j,ps]dpj A dps — §[qj, ¢°ld¢’ Ndq® — [pj,¢°]dp; A dg®

0K 0K
Y d /\dt+< Jt—)dJAdt
(-t - 5 ) .1~ 5 Vg

where[u, v] denotes the Lagrange bracket, defineddyy] = %%i%’; oL 8% Hence,

, OH . .O0OH oK
P AdQF — dK Adt) = ([pj, ] 2= — [
XA 4Q" —di Ad) = (Inspl s — 0 plgr — e+ 5o )
oH ., OH oK\
+ (I 015~ ol — )+ 5o ) o
0

(& -en) g (- 55)

Thus,XJ(dP; A dQ* — dK A dt) = 0 if and only if

5 p) 2 1 ) 22 g+ 2K =0
pi il 55 quapj ot g =0,

OH , OH . B
', q}ap [q,pg]aqu [t’q]+7¢_0’

0K\ \OH (. 9K\ OH _

We can check that if the first and the second equations are satisfied then the third equation also holds. So, we can forget the
third one and we rewrite the first two equations in the form
oK oOH OH 0K g OH . O0H ! B

— = R I — t d — = L — 4 [t .
Ay [plap]]aq] [pl»q ]apj + [ 7pl} an aql q 7p]]aq] [q yd }apj + [ 7q]

The existence of a functioR’ satisfying Eqgs.1) is equivalent to the condition that the 1-form

OH

(il 15+ ol ) oot (ol G~ 5+ )

Pj
be exact. Lettingz!,z2,...,2%") = (¢*,...,¢",p1,-..,pn), the Hamilton equations are given by = ¢**(0H /0x"),
where the lower case Greek letters run froto 2n and(e#”) is the2n x 2n matrix _OI é (e*V is the entry in theu-th
row and thev-th column). Then, using this notation, we rewrite E43.4s

0K

il + [t, x%]
Oz &

ox?

= e [a*, 2]
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and the exactness condition of the 1-form mentioned abo¥&As/ 92’9z~ = 92K /0x*0z” which amounts to

O[z?,x*] OH 0°H vty o O*H o[z?, 2]
—_— — e [z¥, ] +

dxr  Oxzv dx>OxH OxP oz ot
This equation is a necessary and sufficient condition for the local existence of a fuRGtguth that the coordinate transfor-

mation(q’, p;) — (Q, P;) is a canonoid transformation with new Hamiltonian functign The coordinate transformation is
canonical if and only if the Lagrange brackétg, 2] are given by{z#, 2¥] = .

v + e [x”, 1:’6]

=0. @)

3. Bi-Hamiltonian systems

In this section we begin by reviewing the standard treatment of bi-Hamiltonian systeméMl et H) be anautonomous
Hamiltonian system. Iy is a second symplectic structure ovdr, we can define &1, 1)-tensor fieldS on M by the relation
v(Y,Z) = w(SY, Z) for any pair of vector field¥’, Z. The following definition is due to F. Magri and C. Morosi [4]: We
say thaty is compatible with the given Hamiltonian systemfify = 0 and Ng = 0, whereX is the vector field that defines
the dynamics of the system (thatX,/w = —dH), £x denotes the Lie derivative aloX), and N is the Nijenhuis tensor of
S, defined by

Ns(Y,Z) = [SY,SZ] — S[SY,Z] — S[Y,SZ] + S*[Y,Z]. 3)

Since the Lie derivatives af and~ with respect taX are equal to zero, the Lie derivative Sfwith respect taX is also
equal to zero, which, in terms of an arbitrary coordinate systeraf M reads,X*9,S§ + S;;05 X" — S50, X = 0, where
9y = 0/9z*. Introducing the matrixty = (Ug), with Ug = 95X (Ug is the entry in thex-th row and the3-th column of
the matrixU), the preceding equation can be expressed as the matrix eqdafidn= US — SU = [U, S], whereS = (Sg)
is the matrix formed with the components.®f This last equation implies that the traces of the powers of the métyield
n = (1/2) dim M constants of motion in involution that do not depend explicitly on time [6, 7, 14] (seedEbelow).

We are interested in extending these resultsai-autonomoubklamiltonian systems. To this end, we consider a canonoid
transformatiorQ’ = Q*(«*,t), P; = Pi(z#,t) asin Sec. 2, and we define the tensor figtle: S§(9/0x%) ® da? given in the
canonical coordinates* by S§ = €* Ty, whereT),,, = [z#, z”]. Then we can see that the functiofis, = (1/m)tr(S™),
m > 1, are constants of motion and, therefore, the eigenvaluésasé also constants of motion. For this, we defiffe =
e*X(9*H /0x*9x7) and we note that Eq2) is equivalent talS}/dt + S)UY — US4 = 0, indeed,

ds)

— +SUE ~U2Sh
_ a 3[1‘2;10‘] +€Aaa[5§xa;fa] dditﬂ b o) (%?jgfxﬁ _ e 89?5;:“ 2P, 2]
_ Aa <8[xg;xa] + (9[$aifa]cwgg +en| u’wa}% _ e 5’:51,}655%)

or, in matrix form,dS/dt = US — SU = [U, S]. Then, making use of the cyclic property of the trace,

d 1 don) 1 dsS .1 dsS ,._o me1dS
dthmtr<dtS >mtr(dt5 +Sdt5 +--+S T

=tr (i‘jyﬂ) =tr ([U,S]S™ 1) = 0. 4)

It may be remarked that the track$, may be trivial constants (even all of them) and that they may not be in involution. The
maximum number of functionally independent constants of motion obtained in this way fgs result follows from the fact
that the characteristic polynomial of the product of two antisymmeitig 2n matrices is the square of a polynomial of degree
n (see Ref. [15]).

In order to have an integrable system, it would be desirable to hduactionally independent constants of motion in
involution. As we shall show below, following the discussion presented in Refs. [6, 7, 14] for the case of autonomous systems,
we show that the vanishing of the Nijenhuis tensofdfvhich now may depend explicitly on time) implies that the constants
of motion K,,, are in involution. First, we note that the conditions

N2, (S7H5 =0, (5)
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4 G.F. TORRES DEL CASTILLO AND R. AZUAJE

WhereNAﬁ are the components of the Nijenhuis tensoSo(Sm) are the entries of the matriX", andl is an integer greater
than zero, are equivalent to
Se0,K; = 0o Ki41. (6)

Equationsl§) are called the Lenard recursion relations (€eg, Ref. [14]). In fact, we have the following chain of equivalent
equations, fof > 1,

SY 80, K| — 0aKi11 =0

1 1
& fSZ&,tr(Sl) - l—aatr(slﬂ) -0

& 8Y(0,5%) (15 — (9.5%)(SH)E =
& SY(0,55) (15 — 82 (9a85)(S"HY =0
& 8Y(0,5%) (1Y = 82 (9aSH) (S + (8H)295S — (848,52 =0
& S(0,53)(S" ™R = S2(0aSE) (ST + S2(95S5) (S8 — S5(9,.52)
& [S2(8,573) — 52(9a5p) + S(9554) — S5(8,52)]

(5% =0
(573 =
The conclusion now follows, using the fact th#(9,53) — 57 (0aS%) + S, (955%) — S5(0,57) is the componeni, ; of
the Nijenhuis tensor aof.

As in the autonomous case, the Lenard recursion relations imply that the funéfjgrege in involution. The proof is
identical to that of the autonomous case. Noting that the Lenard recursion relations are equivalent to

E'u'VayKl = THVaVKH-l;

where the functiond* are defined by T,,, = 67, (the matrix(7*") is minus the inverse dff},,) and, therefore, is also
antisymmetric), we have

{KSvKl} = 5HV(8uKS)(8uKl) = Tuy(auKs+1)(6vKl) = (8ﬂK5+1)5’“’(8,,K1_1) = {Ks+17Kl—1}~

Hence, ifi > j,
{KiaKj} = {Ki—laKj+l} == {Kif(ifjfl)aKjJr(ifjfl)} = {Kj,Ki}7

which means thaf K;, K;} = 0, for all 4, 5. Thus, whenS has exactly: different eigenvalues antys = 0, we haven
constants of motion in involution that may depend explicitly on time (see the examples below).

So far we have only considered the Nijenhuis torsion tensor, but there is another torsion tensor, the Haantjes tensor, which
is also relevant [16]. A new formulation of classical integrability based on Haantjes operators, fiangfiensor fields with
vanishing Haantjes torsion tensor has been presented in Ref. [1V], i the Nijenhuis torsion tensor of(a, 1)-tensor field
L then the Haantjes torsion tensorlofs defined by

H(Y,Z) = L*N.(Y,Z) + No(LY,LZ) — L(N.(Y,LZ) + N.(LY,Z)), @)

for any pair of vector field', Z. It is obvious that if the Nijenhuis torsion tensor bfvanishes then the Haantjes torsion
tensor ofL also vanishes, but the converse is not true in general [16]. The components of the Haantjes torsion feirsor of
local coordinates are

(Hr)ag = LyLy(NL)b s + (NL)J, LA LY — Ly (NL)LgLh + (NL)Y, ). C)

In example 2, below, we show that even if the Nijenhuis torsion tensor and the Haantjes torsion tensor are different from zero,
it is possible to have that the constants of motion found by means of a canonoid transformation can be in involution.

In the autonomous cas#, can be viewed as a linear transformation from the tangent spatedba pointp into itself
(as in Eq.B)), and it has been established that the eigenvectofsfof a given eigenvalue define an involutive (and, hence,
locally totally integrable) distribution (see Ref. [3]). This result can be extended to the non-autonomous case: If the vector
fieldsY = Y*9, andZ = Z*0,, are eigenvector fields & with eigenvalue\ then, assuming that the Nijenhuis tensoSof
is equal to zero, froni3) we have

0 = [\Y,\Z] — S[\Y,Z] — S[Y,\Z] + S?[Y, Z] = \*[Y,Z] — 2\S[Y, Z] + S*[Y,Z] = (S — \)?[Y, Z],

Rev. Mex. Fis68 020706



CONSTANTS OF MOTION ASSOCIATED WITH CANONOID TRANSFORMATIONS FOR NON-AUTONOMOUS SYSTEMS 5

which implies thai{S — \)[Y, Z] = 0 (sinceS is diagonalizable), that i$Y, Z] is an eigenvector field of with eigenvalue\
then the eigenvectors 6f for a given eigenvalue define an involutive distribution.
We finish this section by remarking that the equatisiydt = [U, S| is fundamental for this work, some authors call it a
Lax equation (see for example Refs. [1, 6]). Another concept related to this equation is a Lax pair; for a Hamiltonian system
with n degrees of freedom, a Lax pair is a pair of matri€ed/ of ordern x n, functions of the phase space of the system,
such that Hamilton equations can be writterldgdt = [M, L] (see Ref. [1]). If we have a Lax palr, M for a Hamiltonian
system then the eigenvalues bfare constants of motion; note that the pair of matrise§ in this work is not a Lax pair,
since the Hamilton equations are not necessarily gived$ylt = [U, S|, nevertheless, as was shown, the eigenvalues of
are constants of motion.

4. Examples

In this section we present three examples, the first one shows a canonoid transformation where the Nijenhuis tensor vanishe;
The second and the third ones give canonoid transformations which lead to constants of motion that are in involution even
though the Nijenhuis tensor does not vanish.

4.1. Example 1
Consider a Hamiltonian system with canonical coordinéiésq?, p1, p») and Hamiltonian function
H(q", q% p1.p2,t) = —5tq" + 3t°¢* + posint.
One can check that the coordinate transformation
Q' ="
Q> =pa+ti+e,
Pl = P1,
Py = py(1 — ¢* —cost) — t3¢® — t3cost — e,

is canonoid with Hamiltonian function
K = —5tQ" + (3t + ") Q* + ' Ps.

(Thatis,Q' = 0K /9P, andP;, = —0K/9Q").
The matrixS = (5§) is given by

lg*,p1]  [4? p1) 0 [p2, 1] q* 0 0 0
g_ | lap2] [a%p2] [p1p2] O | 0 p+t® 0 0
0 [¢"¢° ¢ m] ld" pe] 0 0 ¢ 0

[q2’ ql] 0 [q27p1} [q27p2} 0 0 0 D2 + t3

and the (multiplicity two) eigenvalues 6f are
A\ = ¢ and Ao = po + 13

One can verify directly thak; and\, are constants of motion in involution, which also follows from the fact that the Nijenhuis
tensor ofS vanishes. Furthermore, they are functionally independent.

It may be remarked that, in all caseht S must be different from zero everywhere. In this example S is zero at
the pointsg® = 0, andp, + t3 = 0, but this is a consequence of the fact that at these points the coordinate transformation
considered here is singular.

4.2. Example 2

Consider a Hamiltonian system with canonical coordinéiésq?, p1, p») and Hamiltonian function

H(¢", ¢% p1,p2,t) = (3 — 5t)p1 + 3t*py — t¢* — ¢*sint.

Rev. Mex. Fis68 020706



6 G.F. TORRES DEL CASTILLO AND R. AZUAJE
One can check that the coordinate transformation
Q'=¢,
Q% =p2—2p1 + 1%,
Py =pi (582 — §t*) + ¢ (p1 — 5t°) + (p2 + cost)® — g% + gt® — Jt* + 7 +sint?,
Py = —py — cost — 4et,

is a canonoid transformation with Hamiltonian function

K(Ql, Q?, Py, P, t) = 3t2P, 4+ Pysint — 2tQ' cost? + 4e' Q2.

Then
0 5¢2 — 1t 4+ ¢! 0 -2
g 0 2(p2 + cost) 2 0
- 0 —p1 + 312 0 0
p1— 3t 0 212 — 3t* +q' 2(py + cost)

and the eigenvalues ¢f are

A1 = pa +cost + /(ps + cost)? + 12 — 2p,
and

X2 = pa +cost — \/(p2 + cost)2 + t2 — 2py,

so thatK; = 4(ps + cost) and Ko = 4t2 — 8p; + 8(p2 + cost)?. One can verify that these are functionally independent
constants of motion in involution. However, neither the Nijenhuis tensor nor the Haantjes tesseardgh. For instance,

N7 = 570,52 — Sp0xS? — S30,53 + 530,87 = 510452 —0— 0+ 0 = 2p; — ¢
and
(Hs)1s = (26* — 4p1) (1 + 5¢% — 5% + 2¢1).
The Lenard recursion relations also fail: We hayés = 0, but
SPONK| = S{O4 K| = 4p; — 2t2 # 0.
4.3. Example 3
Consider the Hamiltonian system with canonical coordin&tés;?, ¢%, p1, p2, p3) and Hamiltonian function
H(q", ¢* ¢, p1,p2,p3,t) = tp1 + p2® — e'ps — 5¢° — ¢* sint.
The coordinate transformation
Q' =p2,
Q> =p1® +ps,
Q3 = g3+t — 4,
Py =pi(p2 — 5t)(¢* — £p2°),
Py =q" —p3 — t°p1 — €' — cost,
Py = ¢3(p3 + cost + 1) + e’ (p3 + cost),

is a canonoid transformation with Hamiltonian function

K(Q', Q% Q3 Py, Py, Ps,t) = 5P, + Pysint — 4t3P; + ' Q? + €' Q°.

Rev. Mex. Fis68 020706
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Then one finds that the matri§) is

—2p1 0 0 0 (¢* — £5p2°)(p2 — 5t)  2py — ¢*
0 pi(5t—p2) 0 (¢°— 15p2”) (5 — p2) 0 0
G- -1 0 @+ et 12— 2p, 0 0
0 0 0 —2p 0 ~1
0 0 0 0 p1(5t — p2) 0
0 0 0 0 0 @ +et
The eigenvalues o are
Mo==2p1, X=pi(5t—p2), A3=¢"+¢e,

and one can verify that they are functionally independent constants of motion in involution.
On the other hand, as in the previous example, the Nijenhuis tensor does not vanish; for instance, we have

Njs = 2p1(p2 — 5t) — p1(p2 — 5t)°.

5. Conclusions

We have shown that it is possible to extend the existing results about bi-Hamiltonian systems to the non-autonomous case, the
is, for a given Hamiltonian system with Hamiltonian function possibly depending explicitly on time, and with Hamilton equa-
tions expressed in terms of a set of canonical coordinates, or of a Poisson bracket. By starting from a canonoid transformatior
that may depend explicitly on time, we get a second Poisson bracket related to the first one by means of a tefigarfield

we find constants of motion of the given system by taking the trace of the each power of the(lﬁgyrixin addition, we

showed that the vanishing of the Nijenhuis torsion tensor of the tensorSfield a sufficient but not necessary condition for

such constants of motion to be in involution. Finally we illustrated these results with some examples.
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