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Approximate fractal morphometry of spherical
type essential oil microemulsions: A simple model
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In the present study, the approximate fractal morphometry of spherical-type essential oil microemulsions was performed. The geometric
fractal characterization was carried out by a recently published continuous half-fractal model which allowed to model microemulsions as
systems in their stable thermodynamic equilibrium phase with high degree of homogeneity. Regarding the characteristic of high homogeneity
an equation was developed to roughly describe the volume fractal dimension and the fractal volume of two special cases elaborated from
Rosmarinus officinalisandMelaleuca alternifoliapreviously investigated. In addition, referring to the characteristic of high homogeneity,
it was possible to approximate the fractal dimension of area and the fractal area for each microemulsion. Our numerical estimates showed
coherence with the principles of Hausdorff- Besicovitch geometry and with the experimental evidence about the physical dimension as a
non- integer dimension.
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1. Introduction

The essential oils (EO) are compounds obtained from the
metabolic state in plants [1, 2], and they have a diversity of
applications in the cosmetic, medicinal and pesticides con-
texts (see [3] for a long list of applications). In the medicinal
area, a renewed interest has emerged due to the antimicrobial
and antioxidant effect, exhibited by the EO (see example [4],
a long review about eugenol effect and its microemulsions
(ME) on antimicrobiological activity). In addition, their mul-
tiple applications can be found in the literature.

In each ME, water and oil are the essential ingredients
that interact rising to a tiny interface, which plays an impor-
tant role when surfactants are added. These provide ME with
high thermodynamic stability as long as proper conditions of
adhered surfactants are maintained [5]. These ingredients and
their optimal combination (water, oil and surfactants) form
a transparent optical structure. Such transparency implies a
characterization of its microstructure through length scales
that are submicron, which is, below 100 nm. Likewise, three
types of ME can be found in the literature: water in oil, oil
in water and bicontinuous structures [5]. They can be formed
with oil drops with geometries such as spherical, cylindrical,
flat or sponge, as a consequence of having a small interfa-
cial tension and the degree of curvature that surfactants can
communicate to ME in their own interface [6].

On the other hand, this type of system has been stud-
ied through different types of simplified models [7]. Among
them, there are some which deal with the context of networks
(see, for example ( [8–10], among others). In these models,

descriptions of the ME are made with relative simplification.
An interesting approach to study this type of systems is that
one which regards the fractal morphometry associated with
them that is directly related to the physico-geometric charac-
teristics of such biophysical entities. For example, they are
used in Ref. [11] surfactant-free emulsions, and industrially,
their fractal characterization is used in the task of modify-
ing starch and amaranth. In the Ref. [12], a study is carried
out on the dielectric relaxation of the ME AOT-water-decane,
close to the percolation temperature threshold. The descrip-
tion of such a relaxation process is made taking into account
its fractal structure.

Likewise, dielectric spectroscopy is useful for obtaining
information about the structure of ME at different spatial and
temporal scales, as described in Ref. [13]. Another interest-
ing contribution in the context of fractal characterization of
ME conglomerates was addressed in Ref. [14], where the ef-
fect of different types of surfactants on the sizes and shapes
of ME is investigated. Thus, endless applications at different
contexts can be found where fractal geometry is reflected in
the subject of essential oil ME.

However, isolated ME fractal morphometry (FM) is a re-
maining issue in the literature, which we try to address as a
contribution at least as a first attempt. Achieving this first at-
tempt at an approximate fractal characterization of individual
spherical-type EO ME would increase the knowledge about
their stability, taking into account that its degree of deforma-
tion is closely related to the temporary duration of such sta-
bility. Despite the fact that these types of estimates do not
have a direct relevance in technological applications, their
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determination plays a relatively important role in the gen-
eralized physical-geometric characterization. This may al-
low obtaining a more realistic estimate of associated physi-
cal parameters contributing to the basic scientific knowledge.
For example, achieving at least approximate form of the frac-
tal morphometric structure of individual ME would allow us
to know more explicitly about the relationship between en-
tropy and thermal fluctuations, which contribute to the de-
gree of instability that their curvature may have at one point.
Therefore, our work was distributed as follows: In a second
section, the main characteristics of the formalism associated
with continuous models of fractal media with homogeneity
and isotropy properties are described, which are the basis for
the model proposed in the third section. The reduced model
is described in the third section to obtain an approximation
of the volume fractal dimension (VFD) of an isolated ME,
which assumes ME are highly homogeneous systems. The
application of the model is shown in the fourth section, ob-
taining the VFD and the fractal volume (FV) of two types of
EO ME (Rosmarinus officinalis and Melaleuca alternifolia),
whose effects [15] on humans’ cells and pathogens microor-
ganisms were recently investigated to obtain the ME sizes
because such physical characteristic can support to reference
(visual way) their stability [16, 17]. In the fifth section, the
surface fractal morphometry (SFM) is obtained for these ME.
Finally, a brief discussion of the results and conclusion of the
work and future perspectives are presented in the sixth and
seventh sections respectively.

2. Homogeneous and Isotropic Fractal
Medium

To make the proposal more self-contained, the most impor-
tant characteristics of a homogeneous and isotropic continu-
ous medium model for a fractal medium are described, within
the context of non- integer dimensional spaces.

A constant density distribution is the main characteristic
in every homogeneous fractal medium.

To illustrate the idea of homogeneity in a fractal medium,
a three-dimensional spherical regionWA of the Euclidean
type can be supposed, whereA is the midpoint of such re-
gion, so the volume and average density are given by [18]

V (WA) =
(

4
3

)
πR3

A,

ρ̄ (WA) =
M (WA)
W (WA)

, (1)

whereRA andM are the radius and mass from such region,
respectively.

On the other hand, if two regionsWA andWB are con-
sidered, the fractal medium is regarded homogeneous when
the relationship of volumes and average densities is fulfilled

V (WA) = V (WB) ⇒ ρ̄ (WA) = ρ̄ (WB) (2)

that means, there is no effect onρ̄ due to some type of trans-
lational and rotational movement [18].

On the other hand, the isotropy of a fractal material is
characterized by the relationship between the massM (WB)
of a spherical regionWB of a fractal medium with radiusR
as follows [19]

MD (WB) = M0

(
R

R0

)D

,
R

R0
À 1 (3)

whereD is the mass dimension of the fractal medium,R0 is
a characteristic size of atoms and molecules in general.

In the case of an anisotropic fractal material, it can be
characterized by the power law relationship for the mass of a
parallelepiped-like regionWp as follows [19]

MD (WP ) = M0

(
Lx

R0

)α1
(

Ly

R0

)α2
(

Lz

R0

)α3

,

min {Lx, Ly, Lz} À R0 (4)

whereαk, k = 1, 2, 3 is the non-integer dimension along
the Cartesian axes andLx, Ly, Lz are the sides of the paral-
lelepiped.

The value ofαk is related to the parameterD as fol-
lows [19]

D = α1 + α2 + α3, (5)

whereD is the fractal mass dimension of the anisotropic frac-
tal medium. Also,D can be interpreted as a dimension of
space.

Equations (3) and (4) allow a fractal material to be de-
fined as a medium with a non-integer mass dimension [19].
Finally, as an application to a spherical fractal material with
constant average density in a space of non-integer dimension,
the volume is given by [19]

Vα (R) =
2π

(α

2

)

αΓ
(α

2

)Rα, (6)

whereR is the radius of that sphere in an space of non-integer
dimension.

These properties of homogeneous and isotropic-
anisotropic fractal materials, within the framework of a non-
integer dimensional space, represent the foundation of our
proposal described in the following section.

3. Model description

We supposed to have one ME, obtained in Ref. [15] and vi-
sualized at Fig. 1.

Where
∑k

i=1 Ri represents the ME radii where the exper-
imented anisotropic deformations are found on the micellar
surface during the reached lapse of thermodynamics stability,
r is the radii of the ME in an ideal case seen like Euclidian
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FIGURE 1. The amplified model of one ME shows three superficial
deformations. The dashed line represents the ME without deforma-
tions, and the continuous line with them.

Euclidian 3D sphere. These ME were modeled as homo-
geneous and isotropic fractal (HIF) according to [18, 19] re-
spectively. This ME approximation was expressed through
R1

∼= R2
∼= R3

∼= Ri satisfying the homogeneous condition
in associated regions to each one of the ME deformations.
The HIF model application in ME was based according to
the next supposition:

Ri < r such as r ∼= αjRi, (7)

whereαj is a proportionality parameter pretty close to 1,
0.9 ≤ αj ≤ 0.99999.

The supposition (7) can guarantee when the ME are too
small to achieve a thermodynamics stability (TS). Addition-
ally, the introduction of the parameterαj under the supposi-
tion (7) guarantee a very small anisotropy, which allows to
model such ME as volumetric systems, given by

Vn =
2π

(n

2

)

nΓ
(n

2

)Rn
i , (8)

whereVnrepresents to the ME as fractal sphere,n is its fractal
dimension (FD) andRi the radii. On the other hand, consid-
ering (1) and (2) the next approximation can be made accord-

ing to

lim
r→αRi

4
3
πr3 ∼= 2π

(n

2

)

nΓ
(n

2

)Rn
i ,

V3D
∼= Vn, (9)

whereV3D = (4/3)πr3 is the ME modeled volume as Eu-
clidean sphere into the3D space.

This assumption is easy to understand, taking into ac-
count that, its almost perfect spherical formation, is due to the
energetic formation of the gradient type. This perfect quasi-
sphericity in microemulsions allows to carry out or justify
the approximation (3), which is relevant because of its role to
establish the present model.

The approximation (9) can be used through of the next
interpretation: “An EO ME in a stable thermodynamic state
can be considered as a fractal medium, homogeneous and
anisotropic, where the anisotropy is very small so that the
idealize volume,V3D, can approximate to a real volume, an
approximate fractal volume (AFV)Vn”.

If we consider the approximation (9) and the supposition
(7), they could allow us to obtain FD of the ME resolving the
equation

6π

(n

2
−1

)

4nα3
jΓ

(n

2

)Rn−3
i − 1 ∼= 0, (10)

which may be interpreted as the representation of a “four-
dimensional sphere”, beingRi the physical radial variable of
the ME, andn the variable of the approximate fractal dimen-
sion volume (AFDV).

4. Volumetric fractal morphology

As an application example way, using the Eq. (10), a compu-
tational code was written through the free software Wolfram
Mathematica [20] to obtain the approximate fractal dimen-
sion (AFD), associated with the volume of the ME analyzed.
The radioRi corresponding to these volumes were obtained
from a previous article [15], that are observed in the tables
through the manuscript.

TABLE I. AFDV n = nV = nαj , according to different ME radii of essential oil fromRosmarinus officinaliswhen αj{9.99999,
0.9999,0.999, 0.99, 0.9} respectively. Radii are inµm.

Ri nαj = 0.99999 nαj = 0.9999 nαj = 0.999 nαj = 0.99 nαj = 0.9

2 3.0000023 3.0000233 3.0002326 3.0023369 3.0244966

35 3.0000030 3.0000299 3.0002989 3.0030032 3.0314781

60 3.0000032 3.0000316 3.0003159 3.0031735 3.0332632

85 3.0000033 3.0000328 3.0003279 3.0032943 3.0345286

110 3.0000034 3.0000337 3.0003373 3.0033898 3.0355290
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TABLE II. AFDV n = nV = nαj , according to different ME radii of essential oil fromMelaleuca alternifoliawhen αj{9.99999,
0.9999,0.999, 0.99, 0.9} respectively. Radii are inµm.

Ri nαj = 0.99999 nαj = 0.9999 nαj = 0.999 nαj = 0.99 nαj = 0.9

4 3.0000025 3.0000246 3.0002458 3.0024696 3.0258870

15 3.0000028 3.0000276 3.0002757 3.0027694 3.0290290

16 3.0000028 3.0000277 3.0002773 3.0027860 3.0292021

30 3.0000029 3.0000294 3.0002944 3.0029578 3.0310823

31 3.0000030 3.0000295 3.0002954 3.0029673 3.0311023

45 3.0000031 3.0000307 3.0003066 3.0030803 3.0322860

46 3.0000031 3.0000307 3.0003073 3.0030872 3.0323586

60 3.0000032 3.0000316 3.0003159 3.0031735 3.0332632

The results Tables I and II are shown for the FD regards to
the ME volume of essential oils fromRosmarinus officinalis
and Melaleuca alternifolia, recently studied.

As observed in Tables I and II, clearly a small increment
was more evident in FD according to the ME radii, such as
the Eq. (10) predicted, being reasonable physically.

On the other hand, it is evident thatnαj values satisfy the
Szpilrain’s equalityDT ≤ DHB (whereDT is the Euclidean
topological dimension andDHB represents to Hausdorff-
Besicovitch dimension), being one of the fractal geometry
fundaments [21]. Likewise, we observed that forRi ≥ 30 µ
m andRi ≤ 30 µm , in the fifth model of the proportionality
parameterαj = 0.9, the DF can be represented through of
the Szpilrain’s inequality

DT = 3 < nj=3 ≈
√

πe

2
+ 0.97 = DHB

and

DT = 3 < nj=3 ≈
√

πe

2
+ 0.96 = DHB ,

respectively.
Similar inequalities are obtained when we consider other

αj . These inequalities are represented in terms of
√

πe/2,
that is a combination of a convergent infinity series and gene-

FIGURE 2. Graphic display of the AFDV of the ME ofRosmarinus
officinalis, for the fourαj models, as shown in Table I.

FIGURE 3. Graphic display of the AFDV of the ME ofMelaleuca
alternifolia, for the fourαj models, as shown in Table II.

ralized continuous fraction (fractal fraction), discovered by
the mathematician Ramanujan (see [22]). This way of ex-
pressing our results provided a better display the fractal char-
acter associated with the morphometry of the EM under
study. Likewise, for better display the information shown
by Tables I and II, is exhibited in Figs. 2 and 3, respec-
tively. This visual aid shows the behavior between the radii,
the VFD and the corresponding models of the proportional-
ity parameter. The source code to generate the graphs was
designed in MATLAB Version R2018b [23], and for a bet-
ter visualization the radius was expressed in metersm. It is
notable that for three of theαj models, the evolution of the
AFD is close to the 3D Euclidean volumetric integer dimen-
sion, which shows the degree of importance with respect to
the two remaining cases of proportionality models.

Similarly, using the Eq. (8), a computational code was
written through the free software Wolfram Mathematica [20]
to obtain the approximate fractal volume (AFV)Vn associ-
ated to the analyzed ME. The results are shown in Table III
and Table IV, using 5 models for the parameterαj .

Likewise, for a better display of information in Tables III
and Table IV, Figs. 4 and 5 are shown respectively. The
source code to generate the graphs was designed in MAT-
LAB Version R2018b [23] and for a better display of data,
the radius was expressed inm. Here, the curves show a simi-
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TABLE III. AFV Vn, according to different ME radii of essential oil fromRosmarinus officinaliswhenαj {9.99999, 0.9999,0.999, 0.99,
0.9} respectively. Radii are inµm.

Ri FV FV FV FV FV(
nαj = 0.99999

) (
nαj = 0.9999

) (
nαj = 0.999

) (
nαj = 0.99

) (
nαj = 0.9

)

2 0.0335× 10−15 0.0335× 10−15 0.0333× 10−15 0.0325× 10−15 0.0244× 10−15

35 0.0179× 10−11 0.0179× 10−11 0.0179× 10−11 0.0174× 10−11 0.0130× 10−11

60 0.0904× 10−11 0.0904× 10−11 0.0902× 10−11 0.0877× 10−11 0.0659× 10−11

85 0.0257× 10−10 0.0257× 10−10 0.0256× 10−10 0.0249× 10−10 0.0187× 10−10

110 0.0557× 10−10 0.0557× 10−10 0.0555× 10−10 0.0540× 10−10 0.0406× 10−10

TABLE IV. AFV Vn, according to different ME radii of essential oil fromMelaleuca alternifoliawhenαj {9.99999, 0.9999,0.999, 0.99,
0.9} respectively. Radii are inµm.

Ri nαj = 0.99999 nαj = 0.9999 nαj = 0.999 nαj = 0.99 nαj = 0.9

4 2.0000025 2.0000246 2.0002458 2.0024696 2.0258870

15 2.0000028 2.0000276 2.0002757 2.0027694 2.0290290

16 2.0000028 2.0000277 2.0002773 2.0027860 2.0292021

30 2.0000030 2.0000294 2.0002944 2.0029578 2.0310823

31 2.0000030 2.0000295 2.0002954 2.0029673 2.0311023

45 2.0000031 2.0000307 2.0003066 2.0030803 2.0322860

46 2.0000031 2.0000307 2.0003073 2.0030872 2.0323586

60 2.0000032 2.0000316 2.0003159 2.0031735 2.0332632

FIGURE 4. Graphical visualization of the AFVVn of the ME of
Rosmarinus officinalisfor the four models ofαj , as shown in Ta-
ble III.

FIGURE 5. Graphical visualization of the AFVVn of the ME of
Melaleuca alternifoliafor the four models ofαj , as shown in Ta-
ble IV.

lar behavior, especially in the smallest radii of the ME which
tend to have the most stable volumes.

5. Surface fractal morphometry

In general, for a non-homogeneous fractal material, the re-
lationship between the fractal dimension of area (FDA)nα

and the fractal dimension of volume (FDV)nV given by
nα = nV − 1, is not right [24]. However, the ME system
analyzed in this study are considered as highly homogeneous
systems, so the relationship betweennα and nV shown in
this paragraph can be used to estimate the fractal dimension
(FD) of area associated with each ME under study, at least as
an approximation.

When estimating for the FD of the areanα, interesting
results are shown in Tables V and VI, using the five models
for the parameterαj .

These results on the approximate fractal dimension of
area for the two types of EM, can be better visualized through
Figs. 6 and 7, respectively. The source code to generate the
graphs was designed in MATLAB Version R2018b [23] and,
to obtain a better display of data, the radius was expressed
in m. As in the cases of Figs. 2 and 3, and expected for the
three of theαj models, the evolution of the AFD is remark-
ably close to the 2D Euclidean volumetric integer dimension,
which shows the degree of importance with respect to the two
remaining cases of proportionality models.
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TABLE V. FD approximation of areanα = nαj , according to different ME radii of essential oil fromRosmarinus officinaliswhenαj

{9.99999, 0.9999,0.999, 0.99, 0.9} respectively. Radii are inµm.

Ri nαj = 0.99999 nαj = 0.9999 nαj = 0.999 nαj = 0.99 nαj = 0.9

2 2.0000023 2.0000233 2.0002326 2.0023369 2.0244966

35 2.0000030 2.0000299 2.0002989 2.0030032 2.0314781

60 2.0000032 2.0000316 2.0003159 2.0031735 2.0332632

85 2.0000033 2.0000328 2.0003279 2.0032943 2.0345286

110 2.0000034 2.0000337 2.0003373 2.0033898 2.0355290

TABLE VI. FD approximation of areanα = nαj , according to different ME radii of essential oil fromMelaleuca alternifoliawhen
αj{9.99999, 0.9999,0.999, 0.99, 0.9} respectively. Radii are inµm

Ri nαj = 0.99999 nαj = 0.9999 nαj = 0.999 nαj = 0.99 nαj = 0.9

4 2.0000025 2.0000246 2.0002458 2.0024696 2.0258870

15 2.0000028 2.0000276 2.0002757 2.0027694 2.0290290

16 2.0000028 2.0000277 2.0002773 2.0027860 2.0292021

30 2.0000030 2.0000294 2.0002944 2.0029578 2.0310823

31 2.0000030 2.0000295 2.0002954 2.0029673 2.0311023

45 2.0000031 2.0000307 2.0003066 2.0030803 2.0322860

46 2.0000031 2.0000307 2.0003073 2.0030872 2.0323586

60 2.0000032 2.0000316 2.0003159 2.0031735 2.0332632

FIGURE 6. Graphic display of the AFD of the area of the ME of
Rosmarinus officinalis, for the fourαj models, as shown in Table V.

FIGURE 7. Graphic display of the AFD of the area ofMelaleuca
alternifolia, for the fourαj models, as shown in Table VI.

Regarding that the ME are highly homogeneous, the ap-
proximate fractal area (AFA) is calculated as in [25]

Anα =
(nV

R

)
VnV , (11)

whereR = Ri is the radius of the ME.
This application was carried out after writing a computa-

tional code using the Wolfram Mathematica software [20] to
obtain the fractal area associated with the ME analyzed.

When applying the Eq. (5), the results forAnα were ob-
tained and shown in Tables VII and VIII using the five models
for the parameterαj .

Similarly, data in the Tables VII and VIII, are also shown
in Figs. 8 and 9, respectively to display more clearly the be-
havior of the AFA. The source code to generate the graphs
was designed using the MATLAB Version R2018b [23] and
for better visualization, the radius was expressed inm. Here,
the curves show a similar behavior, especially in the smallest
radii of the EM which tend to have the most stable areas. In
addition, the pattern observed is similar to those in Figs. 4
and 5, showing an increasing trend in the approximate fractal
areas.

6. Discussion

As observed in Tables I, II, III and IV, the AFDVnV and the
approximate fractal dimension area (AFDA)nα respectively,

Rev. Mex. Fis.68051401
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TABLE VII. AFA Anα , according to different ME radii of essential oil fromRosmarinus officinaliswhenαj {9.99999, 0.9999,0.999, 0.99,
0.9} respectively. Radii are inµm.

FA FA FA FA FA

Ri

(
nαj = 0.99999

) (
nαj = 0.9999

) (
nαj = 0.999

) (
nαj = 0.99

) (
nαj = 0.9

)

2 0.0502× 10−9 0.0502× 10−9 0.0500× 10−9 0.0488× 10−9 0.0369× 10−9

35 0.0153× 10−6 0.0153× 10−6 0.0153× 10−6 0.0149× 10−6 0.0113× 10−6

60 0.0452× 10−6 0.0452× 10−6 0.0451× 10−6 0.0439× 10−6 0.0333× 10−6

85 0.0090× 10−5 0.0090× 10−5 0.0090× 10−5 0.0088× 10−5 0.0066× 10−5

110 0.0152× 10−5 0.0152× 10−5 0.0151× 10−5 0.0147× 10−5 0.0112× 10−5

TABLE VIII. AFA Anα , according to different ME radii of essential oil fromMelaleuca alternifoliawhenαj {9.99999, 0.9999,0.999, 0.99,
0.9} respectively. Radii are inµm.

FA FA FA FA FA

Ri

(
nαj = 0.99999

) (
nαj = 0.9999

) (
nαj = 0.999

) (
nαj = 0.99

) (
nαj = 0.9

)

4 0.0201× 10−8 0.0201× 10−8 0.0200× 10−8 0.0195× 110−8 0.0147× 10−8

15 0.0282× 10−7 0.0282× 10−7 0.0281× 10−7 0.0274× 10−7 0.0208× 10−7

16 0.0321× 10−7 0.0321× 10−7 0.0320× 10−7 0.0312× 10−7 0.0236× 10−7

30 0.0113× 10−6 0.0113× 10−6 0.0112× 10−6 0.0109× 10−6 0.0083× 10−6

31 0.0120× 10−6 0.0120× 10−6 0.0120× 10−6 0.0117× 10−6 0.0088× 10−6

45 0.0254× 10−6 0.0254× 10−6 0.0253× 10−6 0.0247× 10−6 0.0187× 10−6

46 0.0265× 10−6 0.0265× 10−6 0.0265× 10−6 0.0258× 10−6 0.0195× 10−6

60 0.0452× 10−6 0.0452× 10−6 0.0451× 110−6 0.0439× 10−6 0.0333× 10−6

FIGURE 8. Graphic display of the AFA of the ME of Rosmarinus
officinalis, for the fourαj models, as shown in Table VII.

both of the ME ofRosmarinus officinalis and Melaleuca al-
ternifolia tend to increase as their radius increase. This be-
havior is observed for each one of the five models of the pro-
portionality parameterαj . This dynamics experienced by the
fractal volumetric morphometry of the ME, has a relative co-
herence, since if volume increases, the interaction forces in
the system produce higher instability tending to move away
from the value 3, corresponding to the Euclidean topology
associated with the ME. Likewise, the parameterαj plays an
important role whenαj −→ 1, the ME tend to behave as less
complex systems with a dimension closer to the Euclidean
one. On the contrary, whenαj moves away from 1, the sys-
tem shows an increase in fractal geometric complexity.

FIGURE 9. Graphic display of the AFA of the ME ofMelaleuca
alternifolia for the fourαj models, as shown in Table VIII.

On the other hand, the AFVVnV corresponding to the es-
sential oil ME under study, can be examined numerically in
Tables III, IV, VII and VIII, respectively. Analyzing the be-
havior ofVnV

, the AFV of both types of ME tend to grow as
their radius grows. Such as trend is observed despite having a
not homogeneous size distribution of ME withRi. This cor-
relation ofRi with VnV

for a fixedαj , is consistent with the
reduced ME model proposed in the present study, where such
correlation would show a similar trend with the case of the 3-
D Euclidean topology. Additionally, for eachRi and withαj ,
an opposite trend is observed as AFV decreases slightly. This
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decrease is visualized by obtaining(AFV )upper−(AFV )lower

per each model.
The Fractal Dimension of Approximate Area (FDAA)

and AFA parameters follow similar behaviors to those associ-
ated with volume, which is a consequence of the model pro-
posed and already described above. They can be examined
numerically through Tables V, VI, VII and VIII, respectively
or graphically in Figs. 6, 7, 8 and 9, respectively. Such be-
havior shows thatnα tends to grow as the radius of the ME
grows, which is a coherent physico-geometric result. Like-
wise, when the parameterαj −→ 1 the FDAA nα −→ 2 ,
which corresponds to the area of a Euclidean sphere.

Similarly, the AFVVnV , the AFAAnα tends to grow as
their radiusRi grow. It is important to mention that this sim-
ple model was inspired on the physico-geometric correlation
and a relatively reduced point of view which can exist in this
type of system to describe and interpret an isolated spherical
ME as a four-dimension-entity, where three of them corre-
spond to the Euclidean space associated with its radius, and
the other one to the Hausdorff-Besicovitch space, associated
to the fractal dimension of the isolated system.

Also, it is important to bring up that the model needs to
take into consideration more parameters associated with this
type of system. Hopefully the scientific community can take
into consideration a possible feedback to the model in the fu-
ture.

7. Conclusions and future perspectives

The combined use of some published models about the fractal
characterization of homogeneous and anisotropic media, al-

lowed us to model the essential oil ME as geometric systems,
which seem to obey this type of physical-geometric charac-
terization. Using this, a reduced simple analytical model was
developed to build an equation to be applied to the ME, and
their AF, AFDA, FV and AFA were estimated respectively.

These results are a small contribution to the physical and
geometric aspects associated with this type of isolated sys-
tems. Likewise, it is important to mention that although the
numerical results were obtained for two types of ME (Ros-
marinus officinalis and Melaleuca alternifolia), the model
can be applied to any type of spherical ME in stable ther-
modynamic equilibrium state. On the other hand, these
results were consistent with the Szpilrajn’s inequality and
the experimental measurements of real physical dimension
n = 3 ± 10−6, as mentioned in Ref. [26], which gives some
support to our proposal. This value ofn is supported by ob-
servational facts within the context of general relativity, as
mentioned in Ref. [27]. On the other hand, as a work to be
continued and future proposal, we intend to establish a sys-
tem of equations of allometric scaling type for the fractal vol-
ume and fractal area, associated to each ME analyzed in order
to establish a system of fractional differential equations and
describe the global evolution of ME in a non-integer dimen-
sion space.
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