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On the existence of the Brillouin peaks in a simple dilute dissipative gas
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Light scattering due to the interaction of photons and acoustic waves present in a dilute inert gas is analyzed through the use of irreversible
thermodynamics. The dispersion relation, which governs the dynamics of the density fluctuation of the gas allows the establishment of
a simple criterion for the corresponding Rayleigh-Brillouin spectrum to be observed. The criterion here proposed allows a clear physical
interpretation and suggests generalizations for other interesting physical scenarios.
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1. Introduction

Density fluctuations in a dilute gas in local equilibrium cause
light scattering due to Doppler interactions between the in-
coming photons and the acoustic modes of the fluid. This ef-
fect was first predicted by L. Brillouin [1] and described the-
oretically by Landau and Placzek [2]. The spectrum reflects
the dynamic behavior of density fluctuations and constitutes
an experimental test of linear irreversible thermodynamics.

The Rayleigh-Brillouin scattering has been studied since
the 1960s [3–5] for several gases, where the description of
light in terms of electomagnetism was described by Rayleig
[6] and Brillouin explained the scattering process in terms of
fluctuations. In this paper we use kinetic theory base on a
rough sphere interation model between rotations and transla-
tions light scattering, we study the linearized system of trans-
port equations when the state variables are perturbed from
their equilibrum values. That is, ifX is a state variable one
considersX0 as the equilibrium value andδX the fluctuation:

X = X0 + δX (1)

(ρ, ~u, T ) = (ρ0, ~u0, T0) + (δρ, δ~u, δT ) (2)

whereδρ corresponds to the density fluctuations around the
equilibrium stateρ0, δT the temperature fluctuations around
T0 andδθ = ∇ · (δ~u) the expansion rate of the gas.

In the Euler regime, the linearized system of transport
equations reads [7]:

∂

∂t
(δρ) + ρ0 (δθ) = 0, (3)

∂

∂t
(δθ) + C2

T∇2

(
δT

T0

)
+ C2

T∇2

(
δρ

ρ0

)
= 0, (4)

∂

∂t
(δT ) +

2
3
T0 (δθ) = 0. (5)

These equations predict the existence of sound waves in
the fluid which propagate with speed characteristic speedCT ,
given by

CT =

√
kT

m
. (6)

In Eq. (6) , m is the individual mass of the particles present
in the system,T is the temperature andk is the Boltzmann
constant.

The interaction of light with the waves present in a dilute
static fluid is rather difficult to measure [8, 9]. For a given
spatial modek, the specific fluid-photon interaction depends
on the density of the fluid. In this context, theBrillouin scat-
tering is far more easy to be detected for high density systems
rather than dilute gases. On the other hand, low density flu-
ids are frequent in astrophysical scenarios in which structures
may be formed at very long wavelengths [10]. This motivates
the analysis of the conditions for the existence of acoustic
waves in dilute fluids.

In the presence of dissipation, Eqs. (3)-(5) must include
transport coefficients that take into account viscosity and heat
conductivity, these effects may prevent the existence of sound
waves in a dilute gas.

The purpose of the present work is to establish a neces-
sary condition that must be satisfied in order to guarantee the
existence of complex roots in the dispersion relation corre-
sponding to the linearized transport system. If only real roots
are present, no Brillouin doublet can be observed in a given
experimental array. To accomplish this task the paper has
been divided as follows: In Sec. 2, the dispersion relation that
describes the dynamics of the fluctuations present in a simple
dissipative fluid is expressed in terms of only one dissipative
parameter, the relaxation timeτr. In Sec. 3, the necessary
condition for the existence of three real roots of the disper-
sion relation is established and a numerical example relevant
in low density physics is presented. Final remarks are in-
cluded in Sec. 4.
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2. Dispersion relation in the presence of dissi-
pation

The system of equations for a simple dilute gas consisting
of hard spheres are obtained introducing Eq. (2) in the set of
transport equations for the Navier-Stokes regime (first order
in gradients). When the flux is studied in the Euler regime,
the dissipative fluxesΠ and heat flux~J[Q] vanish. Then, for
the continuity equation, Eq. (3) remains invariant in the pres-
ence of dissipation, while for the momentum balance Eq. (4)
and the internal energy Eq. (5) become [8]:

∂ (δθ)
∂t

+C2
T

(∇2 (δT )
T0

+
∇2 (δρ)

ρ0

)
=− 1

ρ0
∇ · (δΠ) , (7)

∂ (δT )
∂t

+
2
3
T0 (δθ) +

2m

3kρ0
∇ · ~J[Q] = 0. (8)

In Eqs. (7) - (8), δΠ corresponds to the stress tensor fluc-
tuations and~J[Q] corresponds to the heat flux. If kinetic the-
ory is applied within the BGK approximation [11], two con-
stitutive equations can be established, namely

δΠ = −ηsδσ,

and
δ ~J[Q] = −κth∇ (δT ) ,

whereσ corresponds to the traceless symmetric part of the
velocity gradient,ηs is the shear viscosity andκth the ther-
mal conductivity of the gas.

The introduction of the constitutive equations in the set
(7) - (8) leads to

∂ (δθ)
∂t

−C2
T

(∇2 (δT )
T0

+
∇2 (δρ)

ρ0

)
−Dv∇2 (δθ) =0, (9)

∂ (δT )
∂t

− 2
3
T0 (δθ) + Dth∇2 (δT ) = 0, (10)

denotingτr the relaxation time of the gas, the transport co-
efficients in Eqs. (9)-(10) becomeDv = C2

T τr andDth =
(5/3)C2

T τr. Moreover, if the Fourier-Laplace transform of
the fluctuationδx is defined as:

δX̃(~q, s) =

∞∫

0

∞∫

−∞
δx(~r, t)ei~q·~re−std~rdt,

the system of transport equations can be algebraically ex-
pressed as

A · δX̃ (~q, s) = δX̃ (~q, 0) , (11)

where
δX̃ =

(
δρ̃, δθ̃, δT̃

)
,

and

A =




s ρ0 0
−C2

T q2

ρ0
s + C2

T τrq
2 −C2

T q2

T0

0 2
3

s
T0

+ 5
3

C2
T τrq2

T0


 .

The system (11) governs the dynamics of the fluctuations of
the local thermodynamic variables of the gas. Real values for
s in thedispersion relationdet(A) = 0 are identified with ex-
ponentially decaying modes. The resulting expression reads:

s3 +
8
3
C2

T τrq
2s2

+
(

5
3
C4

T q4τ2
r +

5
3
C2

T q2

)
s +

5
3
C4

T τrq
4 = 0. (12)

In the next section, a simple geometrical analysis of the dis-
persion relation is applied in order to establish a necessary
condition for the existence of two different complex roots,
which in turn correspond to the presence of acoustic waves
in the gas.

3. Analysis of the dispersion relation

Defining Eq. (12) as a function ofs, the resulting expression
reads

f(s) = s3 +
8
3
C2

T τrq
2s2

+
5
3

(
C4

T q4τ2
r + C2

T q2
)
s +

5
3
C4

T τrq
4, (13)

the first two derivatives off(s) read

f ′(s) = 3s2 +
16
3

C2
T q2τrs +

5
3
C4

T q4τ2
r +

5
3
C2

T q2, (14)

f ′′(s) = 6s +
16
3

C2
T q2τr. (15)

The inflection point off(s) is always located ats =
−(8/9)C2

T q2τr ' −C2
T q2τr. In the absence of dissipation,

f(s) is symmetric with respect of the inflection point, which
in this case is located at the origin. A necessary condition for
the existence of three different roots forf(s) is

∆ = −45q2C2
T + 19C4

T q4τ2
r > 0, (16)

or

q2 >
45

19C2
T τ2

r

. (17)

In the case of astrophysical systems such as globular clusters,
densities are quite low and the temperatures are well beyond
the ionization values. In this kind of systems acoustic waves
may appear if the wavenumberq is low enough.

In Fig. 1, the blue line corresponds to the dispersion re-
lation (Eq. (13)) for q = 10−10 1/m, CT = 102 m/s and
τr = 109 s. In this caseCT qτr = 10 and no acoustic waves
are present for this mode. The red curve corresponds to the
dispersion relation for the same values ofCT andτr, but with
q = 10−13 1/m. In this case two complex roots appear, cor-
responding to acoustic waves of very large wavelengths.
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FIGURE 1. Dispertion relation forCT = 102 m/s andτ = 109 s.
The blue curve corresponds toq = 10−101/m (three real negative
roots, no acoustic waves) and the red curve toq = 10−13 1/m (one
real negative root and acoustic waves).

4. Final Remarks

In Ref. [12], the authors computed the Rayleigh-Brillouin
spectrum for a relativistic simple fluid. In this paper, the same
methodology was used for the dispersion relation, where the
Rayleigh peak corresponds for the real root and the Brillouin
peaks are given by the conjugate roots of Eq. (13).

It is very hard to find in the literature simple examples in
which a discussion of the existence of the roots precedes to
the pursue of the solutions of the dispersion equation for di-
lute mixtures. If dissipation is strong enough, it can prevent
the formation of acoustic waves. In fact, the ideas contained
in this paper lead to the establishment of a cut-off wavelength
that depends on the isothermal speed of sound in the gas.

The extension of this criterion in the case of a single self-
gravitating fluid can be analyzed through the dispersion rela-
tion [13] :

f(s) = s3 + (Dv + Dth)q2s2

−
(

5
3
C2

T q2 −DvDthq4 − 4πGρ0

)
s

− 4πGρ0Dthq2 +
5
3
DtC

2
T q4, (18)

and its first two derivatives:

f ′(s) = 3s2 + 2(Dv + Dth)q2s

−
(

5
3
C2

T q2 −DvDthq4 − 4πGρ0

)
, (19)

f ′′(s) = 6s + 2(Dv + Dth)q2. (20)

It is interesting to notice that thenecessary and sufficient con-
dition for the existence of three different real roots reduces to
the inequality:

f(s+)f(s−) < 0,

where

s± = − (Dv + Dth)q2

3

± 1
3

√
5C2

T q2+(Dv+Dth)2q4−3(DvDthq4+4πGρ0). (21)

The simplified expression for the discriminant of Eq. (21) is
given by

b(q) =
5
3
C2

T q2
(
1 + C2

T q2τ2
r

)− 4πGρ < 0. (22)

Taking the value of the Jeans wavenumber as4πGρ0/C2
T

[14], it is easily noticeable that

b(qJ) ' −48πGρ0, (23)

and no unstable modes appear at the ordinary critical wave-
length.

We consider that this algebraic approach to the analysis of
the Brillouin peaks for dilute fluids is promising and useful
for students and researchers interested the subject.
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