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In this paper, switched linear systems are considered dwell and average dwell time for their global asymptotic stability is examined. Dwell
and average dwell time are determined based on the condition number for the global asymptotic stability of switched linear differential
systems. Numerical examples which show the effect of the results obtained are given with the new dwell and average dwell times.
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1. Introduction Determination of the dwell or average dwell time is based
on the calculation of the infimum of the numbersr 7 that

It is important to study the stability of the switched differ- makes the switched system GAS [16-18].

ential systems, since they are used in mathematical physics There are many studies on the dwell and average dwell

of many fields such as power systems, gravity, motor enging e for the GAS of the systenil) [17-22]. These studies

control, network control systems, constrained robotics, autoz ., generally used the eigenvalues of the coefficient matri-

motive engineering [1-15]. One of the ways to examine the,eq of the given system. It is well known that the eigenvalue
stability of switched systems is to study the dwell and averproblem is an ill-posed problem for non-symmetric matrices

age dwell time of the system. , [23-25]. Moreover, if a matrix has multiple eigenvalues, or
We consider the linear switched system described by g ¢jose to a matrix with multiple eigenvalues, then its Jor-
i(t) = Apyx(t), 0 €S, t >0, (1) dan normal form is very sensitive to perturbations. This ill

conditioning makes it difficult to develop a robust numerical
algorithm for the Jordan normal form. So, the Jordan normal
. : . form is usually avoided in numerical computations [24-25].
Ix1 —

{1.2,...,N}, {4, € C*',p € P} is matrix family, § = A new method is proposed to determine the dwell and

{o]o : [0,00) — P, o switching signa}. The amount of . . . . s
time passed between the consecutive switching events fverage dwell time without calculating the eigenvalue, in this

called dwell time of systen]. paper. The proposed method depends omth® parametgr,
Let us give the definition of globally asymptotically sta- Wh'.CT show§ the qzuallty of“the (;’lAS m:thedsy‘stems of glffelrl-
bility (GAS) for the pointz (¢) = 0, which is the trivial solu- e.ntla: ;:quatlonsb[ 6'30]'d. 3\';6 t|mde' an a;erage we
tion and the equilibrium point of the switched systeth ( time ave not een studied depending on &) param-
The trivial solution of the systend is GAS for a given eter yet, in the I|terature._ Therefore, the results obtained in
switching signab if (1) is this stl_de are r?ew and original. o
This paper is structured as follows: In Sec. 2, preliminar-
— Lyapunov stable, and ies are given. In Sec. 3, the dwell time and average dwell
— uniformly globally asymptotically convergerite., for ~ time for GAS are determined. Finally, numerical examples
all r,e > 0 there existsT (r,e) > 0 such that aregiveninSec. 4.
|z ()] < e forallt > T (r,e) whenevel|zo|| < r.

where z(t) = (z;(t)) is | dimensional vector,
x; (t) (i=1,2,..,1) are differentiable functionsP =

If each subsystems are GAS then there exists a minimurQ Prelimi ;

. . Preliminaries
dwell time that guarantees GAS of the systéth (For the
systeml), let the following sets of switching signals be de-
fined, wheret;'s are successive switching time instants and

N, (¢) is the number of switchings before time Let A € CX!, 2 (t) = (x; (¢)) is | dimensional vector and
S = Sawell [7] = {o|tps1 —tr > 7}, x; (t) (i =1,2,...,1) be differentiable functions. Consider
the following differential equation system:

2.1. Criterions of global asymptotic stability

S = Saveragd T, No] = {0|N6 (1) < No+ i} ' i(t) = Ax(t), t > 0 (2
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The differential equation systeri)(is stable if for any > 0
there existsy = ¢ (¢) such thatl|z (¢)|| < e for ¢ € [0,00)
whenever forf|z (0)|] < § . Further, the systen®) is GAS if
it is stable and|x (¢)|| — 0 with increase to infinity for all
x (0).

If the real parts of all eigenvalues of the matrxin the

system?) is less than zero, then the matrlds called a GAS

and
-1 9
a=(9 )

and illustrate that the parametefA) represents the qual-
ity of GAS. The eigenvalues of both matrices arel“and
—7" and it can be easily seen that both matrices are GAS.

matrix and the systen®] is also called a GAS system. This But knowledge of the eigenvalues does not give information
criterion is known as the “spectral criterion” in the literature about the quality of the stability. However, singéA4;) =

[26-31].

7 < k(Ay) = 28.0881, it is seen that the quality of GAS

Lyapunov theorem, another criterion for GAS, is as fol- of matrix A; is better than the quality of GAS of matrits.

lows.

“The matrix A (trivial solution of the systen?)) is GAS
if and only if there is a solutiotH = H* > 0 of the Lya-
punov matrix equatiom*H + HA = —1I".

It means that if sucli/ does exist then all the eigenvalues

of matrix A lie strictly in the left-hand half-plane [26-30].

2.2. Global asymptotic stability parameter

As it is known, the eigenvalue problem is an ill-possed prob-
lem [23-25]. Therefore, instead of calculating eigenvalues

This means that the GAS of the matti% deteriorates than
the GAS of matrix4; with less perturbation. For example;
whenA; and A, matrices are perturbed with matrix

0 0
s=(17)
matrix A; + B is GAS, whileA; + B is not GAS.

As can be seen, while eigenvalues do not give an idea
about the quality of GAS of a matrix, the parameitgrA)

it should be preferred to study with parameters revealing th&@lculates the quality of GAS.

quality of the GAS.
GAS parameter of the systei®) (s represented by(A)
and defined as:

r(A) = 2[| Al H],

where

o0
H = /etA*etAdt
0
is the solution of Lyapunov matris equation,

4] = meax || Az
is the spectral norm of the matrix and ||z|| is Euclidean
norm for the vector: = (z1, 2, ...,a;)" . If k(A) is finite,
then the systen] is GAS. Otherwise, the systeifl)(is not
GAS and we sek(A) = oo [26-30].
Now let’s consider the matrices

-1 0
w=(0 %)

Now, let’s give the upper bound of the mate?, which
depends on the parametefA) given in [27-28].

Theorem 1. The following inequalitiy

Al

e < Vaye H4, ®

is valid for the GAS matrix A27-28].

2.3.  Switching graph for switched linear differential sys-
tems

Let D be a digraph whose nodes are the subsystems
of (1) and arcs are admissible switching. Let =
{(, 7) |switching fromi to j is admissiblé whereP is the
index set for systemlf. Let the weight functions of the
graphD be w™ andw™. In other words, for each switch-
ing, wT andw™ indicate the switching cost and switching
time, respectively on the set A weighted switching graph

is represented by notatidd = {P, e, w', w™}.

The concepts to be used for tiegraph are listed as follows.

Sp.awell [T] = {0 € Sawel [7] | (0, 0k11) €6,k =1,2,...}:

SD,averageFa NO] - {U S Saverage [?7 NO] ‘ (Ukv Uk:—i—l) ce, k= la 27 }

Wn = (01702) ) (027(73) ey (Un70n+1) :

signal set for dwell time (4)

signal set for average dwell time (5)

cycle (walk, path) in the digraph D

w (W,) = Z'w (P, Pr+1): weight of a cycle for a weighted digraph D
k=1

_w' (O -
p(Q)= o (O cycle ratio of C
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C: set of all cycles in D

p (D) = maxp (C): maximum cycle ratio
€

wt ()
#O="a

IC||: length of C

: Cycle mean of C

p* (D) = maxy (C) : maximum cycle mean.
€

These concepts are available in Refs. [18,32-33].

3. Determination of dwell time for GAS

Let us give the following theorem, which gives the upper bound of the solution of the sykxéonuse determining the dwell
time for GAS.

Theorem 2. The following equation is provided for the GAS matdy (p = 1,2,..., N) wherez (¢) is the solution of the
system(1):

—_ HA“n-H H (t—tn)

O < (5(A, . n(Ag,)) e ") @ |z (0)]] (6)

where

Proof. Let the system) be given with GAS matriced,, (p = 1,2,..., N). The solution of systenil] is expressed as
x(t) = eA”"+1(tft")eA”"(t”_t"*l)...eA”l(tl_to)xo, t € [tn,tni1)
or

z (t) = etonir( (He oiti— il)) Zo, t € [tn,tny1) )

wherex (0) = z, is the initial value of the systenil). By taking the norm of the solutior) and applying the triangle
inequality, the following inequality is obtained

n
eArni1 (t=tn) (Heri(ti—ti1)> Zo
i=1

eri(ti_ti—l)

Ag —tn
o ()] = < [Jetonn ol
If we use inequality3), the upper bound of the solution is obtained as:
_ Gt ae, s || » ti—tio )| Ao
lz ()] < y/K(Ag,,1)e  "Fonsr) H\/H R E
| 2 (it Ao |
= (5(Aq, )E(Ag)) Te "o T (5(Ag,)E(Ag)) e "Pad [z (0)]-
1=1
Therefore,
y el 3 et ontan) - Loz o]
lz @)l < (k(Ag, . )6(Ag,)) T e " Hone et Iz (0)1],
holds.

Theorem 3. The switched syste(fi) given by(4) is GAS for dwell times that provide the inequality> p* (D), where
w* (i,7) = (1/4) In (k(As,)6(Aq,) ), w™ (i,5) = || Ao, || /6(Aqy).
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Proof. Suppose that (¢) has infinitely many switching. Because, when the switching signal has finitely switching, the system
works in one of the subsystems after the last switching. Thus, since each subsystem is stable, th&)3gsBhs(

Let o be the weight of the walk¥,, for the weight functionw (4, j) = w™ (i,5) — w™ (4,4) in the switching grapiD.

Any walk with m nodes consists of cycles and a path with a maximum length ef 1. Then it can be written as (n) =

a, (n) + Y ity a; (n). Here fori = 1,2,...,m, «; (n) indicate the sum of the weights of all cycles with lengémda, (n)
indicates the weight of the path. Sinfds finite, o, (n) is bounded.

Let take us )
7 = max (r(As,)r(As,))*
and N
a(n) :Z 111(1 (k(Agiyr)B(As,)) — 4o, (ti —ti—1)] -

i=1 4 o . K(Ag) "

So, we can write@) by the equation
Mol
o (1)) < e T e 1 (0)) (®

, o]
By takingT < t; —t;_; ande ““Aon+1)
Let us consider

7 < 1in (8), we obtaini|z (1) < 7e*(™ [z (0)].

Ozn:n lnﬁ K _”AiT:n wt (i —w (i -
" Z[4l<(A‘”“) (40.)) H(Agi)} Y (w i+ (Gyi+1)7),

i=1 i=1

for the walkW,,. Sincer > p* (D) by the assumption, the limit af (n) asn approaches infinity is-co. This means that
upper bound8) of the solution approaches zerotas> co. Then, in the case af > p* (D), systemll) is GAS.
Theorem 4. The switched syste(t) given by(5) is GAS for average dwell times that provide the inequdity p* (D) /w*,
wherew* = min {|| A, ||/x(Asi)}-
Proof. Assume that (t) has infinitely many switching, as in Theorén

ConsiderV,, as the walk for the weight functiow (i,j) = w™ (i,]) in the switching graptD. Similar to Theorem 3,
for any walk withm nodes, it can be written a8(n) = 8. (n) + > i, 3 (n). Here fori = 1,2,...,m, §; (n) indi-
cate the sum of the weights of all cycles with lengthnd (. (n) indicates the weight of the path. Let us takén) =
S In(k(Ag,,, )K(As,)) '/ and write the inequalityd) by the equation

|l ()] < 7e"I =z ()] ©)
using assumptiow™* = miin{HAgi Il /k(Asi)}
If 5y = yel%xw(w), then the inequalityd) can be written as
2 (£)]| < 2t Bm = i (0) (10)

Sincep; (n) are cycles foi = 1,2,...,m, we gety_", 3; (n) < N, (t) p* (D) < Nop* (D) + t (u* (D) /7).
Let define ugy = FeNor" (P) and rewrite[10). So, the following inequality is obtained:

Iz () <5 ) e o))

Since(p* (D)/7) — w* < 0, the upper boundlQ) of the solution approaches zerotas> co. Then, systemil)) is GAS.

4. Numerical examples

In this section, we give some numerical examples showing the efficiency of the results in Sec. 3.
Example 1.Let us consider the following system consisting three GAS subsystems:

-1 -9 -3 -2 -2 4
A1:<5 —2)’ A2:<8 —4> and A3:<—4 —10>’
#(t) = Aiw(t),  =(0)=[-88", t=0; ie{123}, (11)
Let D be the switching graph of the systét) given inFig. 1.
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_ Example 2. Let us consider the systent) (ith four GAS
_— subsystems. Fare {1,2, 3,4}, let matricesA; be given as
follows
—-11 0.1 —-15 0.02
Al_( 0 10)’ AQ_( 0 14)’
-9 0.3 -83 1
A3—< 0 _9> and A4—(_05 _8>

For systemg1), the switching graph®;, D, and D5 are

D given in Fig. 4.
In Table I, computed dwell and average dwell times for

FIGURE 1. Switching graphs of the Cauchy problem consisting of o .
g grap yP 9% the switching graph®; (i = 1,2, 3) are given.

three subsystems with;, A3, and As.

1H

a) i
i
H
i g
- X
A\l -X
-4
FIGURE 2. State trajectory withr = 0.840262. ;
=17
For the graphD, the minimum dwell time calculated in - g ! - ; y
Theorem 3 is obtained as = 0.840262. For this minimum by : . 4 . 2
dwell time, if the system is switched for graphthe solution _ _
curves given in the graph below are obtained. FIGURE 3. State trajectory withr; a) andz; b) of system/11) .

O—( ()
5 M
offclNo= o

FIGURE 4. Switching graphs of the linear switched systeif)sqonsisting of four subsystems withy, Az, Az, andAy.
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TaBLE |. Dwell and average dwell times for switching graphs of the linear switched sysf@moasr(sisting of four subsystems withy, Ao,

Az andAy.
Switching Dwell time Average Dwell time
Graph Theorem 3 Karabacak [18] Theorem 4 Karabacak [18]
D1 0.0037714 0.0300776 0.0050954 0.0395499
Do 0.00336263 * 0.00435395 *
Ds 0.00479608 * 0.005875524 *

As illustrated in Table I, forD; switching graph, our 5.
dwell time (see Theorem 3) and average dwell time (see The-
orem 4) values are better than the ones obtained by Karabaln
cak [18]. Moreover, forDy and D3 switching graphs, we
are able to calculate dwell time from Theorem 3 and averageof

Conclusion

this paper, dwell and average dwell time, which make dif-

ferential equation systemg)(GAS, are calculated in terms

the x(A) parameter without using eigenvalue. As far as

dwell time from Theorem 4 although these values could notve know, “dwell time” and “average dwell time” have not

be calculated in Ref. [18] (because thk is defective ma-

been studied depending on théA) parameter in the litera-

trix). The values which we cannot calculate are denoted byure. Therefore, the results obtained in this paper are new and

the symbol * in Table I.
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