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Non-perturbative field theoretical aspects of graphene and related systems
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In this article, we review the dynamics of charge carriers in graphene and related 2D systems from a quantum field theoretical point of view.
By allowing the electromagnetic fields to propagate throughout space and constraining fermions to move on a 2D manifold, the effective
theory of such systems becomes a non-local version of quantum electrodynamics (QED) dubbed in literature pseudo or reduced QED. We
review some aspects of the theory assuming the coupling arbitrary in strength. In particular, we focus on the chiral symmetry breaking
scenarios and the analytical structure of the fermion propagator in vacuum and under the influence of external agents like a heat bath, in the
presence of a Chern-Simons term, anisotropy and in curved space. We briefly discuss the major advances and some new results on this fielc
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1. Introduction overwhelming evidence of theelativistic nature of charge
carriers in this material [12] have indeed boosted the interest

Two dimensional relativistic Dirac fermions have been thetoward these systems.
subject of active research for many decades. These are by Therelativistic behavior of this material is rooted in the
no means merely flat cousins of quarks and leptons on therganization of the carbon atoms in honeycomb lattices (see,
high energy physics realm, but rather these particles offefor instance, [13]). This structure is conveniently represented
an opportunity to explore vast and intriguing phenomenol-by two overlapped triangular sublattices (with a bipartite unit
ogy in other branches of physics as well (see, for instancegell), as represented in Fig. 1.
Ref. [1]). The pioneer work of Wallace [2] on the band struc-

ture of graphene paved the way to consider relativistic Dirac

fermions in solid state physics realms. The realization of ( ‘
the quantum anomaly emerging from the electromagnetic dy- a K K,

namics of Dirac fermions anphotonsin two spatial dimen- XN / <
sions was first simulated in the seminal work of Semenoff [3] K

under condensed-matter considerations, whereas one the firs AN

27

3a

glimpses into topological matter was achieved from the dy- 33\
namics of relativistic Dirac excitations in a Quantum Hall set o
up without Landau levels, where the role of parity anomaly V3a

is seen in the quantization of the conductivity as discussed b¥ 1 c I hi  the h b
Haldane [4]. High temperature superconductivity in layered' '¢VRE 1. Crystallographic structure of the honeycomb array.
Ip the left panel, the two overlapping triangular lattices are rep-

cuprates [5__9] has also bfaen natu_rally '?XplamEd in therms ?resented by the red and green points. The primitive veapend
the dynamics of planar Dirac fermions in these systems. All; connecting all points in the crystal structure are shown, and the
of these ideas have highlighted the intricacies and interestingpyit cell of the honeycomb array highlighted in blue. In the right
features of the interactions among Dirac particles constrainefanel, the first Brillouin zone is shown. The reciprocal lattice also
to move on a plane. But the first isolation of graphene memshows a hexagonal structuf and K’ represent the inequivalent

branes by the Cambridge group [10] and others [11] with theDirac points.
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The index labelling these sublattices constitute a degreing a correspondence between PQED and the Chern-Simons
of freedom for the charge carriers. In the tight-binding ap-theory. Further formal aspects of PQED were developed in
proach, electrons are firmly bounded to the atom except foRefs. [19, 20]. On the other side, in Ref. [17], the discussion
one electron per atom belonging to therbital. Considering is focused on the renormalization group aspects of graphene,
that the charge carrier can only hop to the nearest neighb@nd it is shown that the mixed dimensional theory possess a
(which means that only inter-lattice hopping is allowed) onefixed point when the Fermi velocity evolves to the speed of
gets an expression for the energy that vanishes in six pointfight. The renormalization group analysis of this theory ap-
two of them non-equivalent. Those are called the Dirac pointplied to graphene was posteriorly extended in Refs. [21-24].
K andK’, located precisely where the valence band touche®ecently, renormalization group techniques applied to PQED
the conduction band and where the Fermi level is found. Oneould successfully describe experimental data on the renor-
can easily verify that in the vicinity of each of the Dirac malization of the band gap in other two-dimensional ma-
points, the dispersion relation becomes linear, a feature typerials like diselenide (WS¢ and molybdenumm disulfide
ically associated to relativistic fermions. Besides that, thgMoS;) [25].
operators associated to the sublattice degree of freedom ac- A more general procedure that could also be applied to
quire a Pauli matrices structure in such a way that the systemystems where the charged particles are constrained to a
can be represented by a Dirac equation, where the speed lofver dimensional string was proposed a few years later in
the light is replaced by the Fermi velocity-, which turns  Ref. [26]. The theory resulting from this method was named
out to bevr ~ 1 x 10° m/s [13]. For this reason, an ex- reduced-quantum electrodynamics (RQED). Although the
tensive work to characterize and explore graphene has bedéramework developed in Ref. [26] could be used to con-
developed in the framework of quantum field theory (QFT).struct theories in arbitrary dimensions for the fermiehs
Moreover, the analytic structure of the Dirac equation unveilsand gauge bosong, (which then allow to label the ex-
the fact that electrons in graphene have a chirality degree aénded theory as RQED 4,), the major goal in Ref. [26]
freedom, which is another feature associated to relativistiovas to analyse the dynamical chiral symmetry breaking in
particles and which has important implications for the elecssystems where two-spatially dimensional fermions interact
tronic transport phenomena in this material. with three-spatially dimensional gauge fields, focusing on

Although in graphene the charge carriers are constrainedondensed matter systemsFor this purpose, the authors
to the plane, the external electromagnetic fields fermionsolve the Schwinger-Dyson equations within an improved
may interact with are not. Because of that, usual Quantumainbow-ladder approximation and found that the dynamics
Electrodynamics fully defined in (2+1)D (QER does not  of chiral symmetry breaking is rich and nontrivial. Posteri-
provide a suitable description. Among other inaccuraciesprly, the renormalization of RQED to one- and two-loops was
QED; yields to a logarithmic static interaction (see, for in- deeply investigated [27—-30]. The scale invariance obtained in
stance, Ref. [14]) rather than the expected Coulomb interprevious approaches was confirmed in the context of RQED.
action [15-17] between electrons in graphene. Instead of Following [26], some activity involving the chiral sym-
that, in a QFT approach, electromagnetic fields must be repmetry breaking of dimensionally reduced theories took place.
resented by Abelian gauge boson fields in (3+1)D and the inin Ref. [31] the Schwinger-Dyson formalism within the rain-
teracting theory therefore must deal with the subtlety of combow approximation was applied to conclude that there is a
bining particles moving in different dimensionality. critical couplinga. = 7/8 (in the conventions adopted in this

Mixed dimensional gauge theories have been proposework) above which there is room for dynamical mass gener-
in the nineties aiming to explain the then recent discovenyation in the theory. The existence of a critical coupling was
of the Quantum Hall effect [18]. After that, several as- confirmed in Ref. [32]. Additionally, a critical number of
pects of these theories were developed, in both formal antérmion families was determined from the similar structure
applied contexts. The first appearance of theories that praf the gap equation in QEPand RQED.
vide a suitable background to explore fermions in two-space Chiral symmetry breaking was also explored in differ-
dimension interacting with gauge fields in three-space dient external conditions: in Refs. [33, 34] the dynamical
mension occurred almost simultaneously in Refs. [16, 17]symmetry breaking was studied at finite temperature. In
The procedure adopted in both approaches was to perforfefs. [35-37] the dynamical mass generation was studied
a dimensional reduction of the gauge field, integrating ouin RQED and PQED coupled to a Chern-Simons term. In
its third spatial component, obtaining an effective interac-Ref. [38], anisotropy associated to strained graphene was
tion in (2 + 1)D. Among other features, this dimensional shown to slightly affect the critical coupling. Moreover, in
reduction softens the infrared behavior of the gauge bosoRef. [39] perturbative aspects of RQED in curved space was
propagator, which behaves as 1/q rather than the usual analysed.
pole-dependenceé/q?. In Ref. [16] the authors obtain an Additionally, analysis of the Landau-Khalatnikov-
effective Lagrangian in2 + 1)D which for all intents and Fradkin transformations (LKFT) [40, 41] was performed in
purposes corresponds to the mixed dimensional theory d&RQED. These are non-perturbative transformations that con-
scribed above, naming the theory pseudo-quantum Electraiect the Green'’s functions in different gauges and give valu-
dynamics (PQED). In particular, the authors focus on tracable information about the renormalization coefficients in
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multi-loop calculations. Using the knowledge previously ob-tional (in Euclidean space)
tained in QED and QED [42—44] the LKFT for the fermion

2
propagator in RQED were derived in Ref. [45]. Zejp=exp [62 /d4xd4x’j§‘+1(x)G“”(x—a:')jé’H(x’)]
In this manuscript we review the foundations of Pseudo- )
and Reduced-QED and focus on several aspects of dynami- _ € [ a4 su 1, /
cal chiral symmetry breaking explored via Schwinger-Dyson P da d'x j4.(7) —D‘73+1(I )

equations. In Sec. 2 we deduce the Lagrangian of the theory _ "
reviewing formal development as locality, unitarity and scale =P [_Seff(h“)] ’ (3)
invariance. In Sec. 3 we review the formalism of Schwinger-whereJ denotes the d’Alambertian operator.

Dyson equations, analyse general aspects of the gap equa- Considering the definition in Ec2f and the usual photon
tions, deduce the gap equations for RQED in the vacuumpropagator,
analysing the wave function renormalization and renormal-

ization group results. Section 4 is dedicated to study chiral GH = [—Dé”” + (1 - 1) aﬂay} { 1 ] A
symmetry breaking in a medium, including finite temperature £

effects, interaction with a Chern-Simons term and possiblehe effective action can be written as

effects of curved space. In Sec. 5 we discuss how LKF trans-

2
formations can provide information about renormalizability =~ S.f; = f% /dede’j“(x)KE(x — ")),  (5)
of the theory. Finally in Sec. 6 we present an outlook of the _ o
subjects discussed in this work. where the (Euclidean) kernel is given by
d4k eik-(zfm’)
Kpz—2)= | ———
. . E(z v ) / (27T>4 k2 =z/=0
2. Reduced or Pseudo QED: A historical re- FeTET
count = 71 6
82|z — 2'|?’ ©
2.1. The Pseudo- or Reduced-QED Lagrangian and nowz andz’ are defined in three dimensions.

Itis possible to construct a theory fully defined ix1)D
The derivation of PQED in Ref. [16] and RQED in Ref. [26] that mimics this effective action. This can be done noticing
follow a similar procedure, consisting of performing a dimen-that the kernel in Eqi) can be written as a three-dimensional
sional reduction of standard QED, imposing the matter fieldéntegral,
to be constrained to a lower dimensional space. Although
the general case, where an Abelian gauge field in arbitrary ————— = = = ,
dimension interacts with fermions constrained to a generic §rfle —a'2 4 ) (2m)? V2 4v-Ug
manifold, has been explored in Refs. [26, 27], here we focusvhere here the d’Alambertian operator is defined in (2+1)D
on the particular situation where four-dimensional QED is re-and the labeF denotes Euclidean space. This yields the fol-
duced to a three-dimensional theory that represents fermioriewing effective action,
in a plane.

1 [ &3k ebE=D) 1
[ i @

e? » o,
The starting point is the usual QgMDagrangian, Seft =~ /d%d%/f (I)ﬁj’ @).  (8)
1 . It is straightforward to verify that the action in E@)(can be
L= F"Fuy —ej" Ay + Lar + Lar, (1) obtained from the Lagrangian

1 n= 2 s
where the first term is the Maxwell terj#? is a matter cur-  Lreep=— " [\/i} Fu—ej" AutLy+Lar. (9)
rent that couples to the gauge fiedde is the electric charge, o _
L is a generic matter kinetic lagrangian afidy is agauge ~ This is the Pseudo or Reduced-QED Lagrangian. _
fixing term. A remarkable consequence of the dimensional reduction,

In order to describe matter confined to a plane, the cur® that the photon propagator of RQED becomes proportional

5 . :
rent must be defined in such a way that there is no dynamic%:0 1/gtr§thzr thf?.n tkl; usual/q” found thE?t.h TT_'S can
in the third spatial coordinate, e obtained writing the pure gauge sector of the Lagrangian

Eq. (9), including a proper gauge fixing term

: _ ju(x0’$17x2)5(1.3) N:07172 L :_EF'/”’LF'V_Fi aaAa’ 2_ 10
Defining the most general form for the propagator,
An effective interaction can be obtained integrating Ej. ( ) )
AP = a(k*)g"" + b(k°)k kY (11)

over the gauge fieldl,,. This results in the generating func-
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FIGURE 2. Feynman rules for RQED or PQED.

it is possible to find the coefficienis(k?) and b(k?) (see
e.g.[26]),

—1 quU

AP (¢?) = v@gsf”—(l—ﬁ) Z

(12)

A. JULIA MIZHER AND A. RAYA

Integrating over’ andw and takingu = v = 0 to obtain the
potential between static points,

/ d*rd*r' p(r)

&k
(2m)?

2
e
E="
2

gl

Considering the currenflB) and inserting the propagator in
Eqg. (12), one obtains, apart from unphysical self-interaction
terms, that

e EIG0( = 0,10 o).

(16)

e2

E (17)

T dnpx—y[
namely, the expected Coulomb interaction.
2.3. Scale invariance

In opposition to QEDR, in RQED the electromagnetic cou-

Note that this propagator has a softer infrared behavior thapling e? is dimensionless, since it originates from the four-

the photon propagator in QECand QEDR. We notice that

dimensional theory. This can also be seen doing a classical

several groups differ in conventions by a global factor of 1/2power counting of dimensions in E@)( The theory is there-

in this propagator.
The Feynman rules for RQED are represented in Fig. 2.

2.2. Coulomb interaction

fore classically scale invariant.

In Ref. [17], a 1-loop calculation in a graphene motivated
model, similar to RQED, showed that the system flows to-
wards a Lorentz covariant point in the infrared. Perturbative
calculations performed in th&/.S scheme at 1 and 2-loops

A crucial feature of this theory is that it correctly reproducesha@ve shown that at this order the beta function vanishes and
the Coulomb interaction expected for charged fermions, ngonsequently the coupling in RQED does not run [27, 30],

matter if they are constrained to the plane. Naively consigSudgesting the absence of charge renormalization. A general-
ering full QED,, where the gauge fields are also in lower ization of these previous results demonstrated that the RQED

dimension, yields to a logarithmic interaction that does not?€t@ function vanishes at all orders [46]. o
correspond to what is observed in graphene [15-17]. The renormalized fields and parameters can be defined in

This can be seen considering a pair of static point charge$'ms of dimensionless renormalization constants,
with associated current - P
V=2, A=Zz)*A,

o(r—2z)+6(r—y), - -
roa) iy —

0 ={ FCE =21, TR =ZzTE,  (8)

The interaction energy associated to the current defined abo%herez/’ I the fermion field,A s the r_educed gauge field,
interacting with a gauge field is given by IS a gauge fix parametdr# is the fermion-photon vertex and

the indexr refers to renormalized. Because of finiteness of
the vertex and electron charge, there is a relation between the

e
=5 renormalization constants,

E
2

/d%j“(r)Au(r). (14)

Rewriting it in terms of the gauge field propagator, Zo = (Zr2y) 2 Z4" (19)

02 A2k In what follows we briefly review the 1-loop calculation
E=< /dQTdQT/dt'j”(r) /W of the -function performed in Ref. [27]. The 1-loop cor-
rections to RQED propagators and vertex is represented in

Fig. 3. For fermion fields constrained to a spacelindi-
mensions and gauge fieldsdn dimensions, the diagrams in
Fig. 3 are defined as,

dw
%6

</

”‘r')‘““‘f”GW(w,k)]j”(r’). (15)
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FIGURE 3. RQED 1-loop corrections for a) the photon propagator, b) the fermion propagator and c) the vertex.
_y dk RS PPN
il (q) = —/ o) Tr [(—zev“) it tg? (—iey );2} )
[ d%k ip+k), . . i T(l-e) Kk,
Yi1(p) —/W(—ZW”)W(—ZW )(47T)5€ (—k2)1—<e (gfw ¢ Akz )7
. dk i T(l-e vo  KUKP N ik,
—ieAy = / (2m)d (47:)86 (_(kQ)liE)e <9 =80 ) (—iey ),%2(*167”);7(*167‘))7 (20)

wheres, = (4 —d,)/2,e. = (d, —d.)/2,€ = £(1 — £.), ¢ = 1 — a anda is a gauge fixing parameter. Integrating out the
expressions20), after some algebra one obtains [27],

de*(—¢?) "% 1—ey—¢
I(¢*) = — T G(1,1
1(q7) (47)de/? 3—2&—256(}( b,

2 2\—¢ 2
oy _ —e T —e)(=p") " |2(1—ey—ee)* o N
2\/1(17 ) - (47T)d’Y/2 2_25v — e ) 5(1 €y 56) G(171 56)
2 —2¢ 2
p_ el —eg)m™™  12(1—ey—ec)® 7| T'(ey)
A= (47)+/2 2 — ey — e ¢ [(2e.)’ (21)
whereG(v1, 1) is the massless one-loop propagator defined by
Gt vm) = T(—d./24+ 11 + 12)T(de/2 — 11)T(de/2 — 12) (22)

L(v)T(v2)T(de — v1 — 1) '

For the configuration relevant to graphene and further two-
dimensional Dirac/Weyl materialg, = 4, d. = 3,e. = 1/2 this framework, it can be extracted from Ed21) that for

ande — 0. Theg-function is defined as d, = 4andd, = 3,11, is independent of., which implies
dlog o that
Bla(w) = TgE), (29
_ 2
and the renormalized coupling constanis defined as Za=1+0(a”). (25)
a(p) s € 1 e Together with Eqs/23) and 24), it yields to
PR AN y— 7 Y€~ 24 S S ’
47_[_ ,LL (47T)d"f/2 (03 (O((,U))e ? ( )
where,~2%7 is a factor to compensate the dimension of the Bla(p)) = —2&y + yala(p))- (26)
coupling.

At this order, it can be obtained from Eq@l) that Since this theory has no anomalous dimension_associated to

ZrZ, = 1, which indicates that the Ward identity is satis- the gauge field, and, — 0, the beta function vanishes.

fied. Therefore, according td9), the charge renormaliza- A similar but more troublesome calculation can be per-

tion constantZ,, depends exclusively o# 4. The particu- formed at 2-loops [27, 30], showing that at this order the

lar M'S scheme chosen by the author is such that the finitéunction remains vanishing.

terms are absorbed in the coupling and the renormalization In order to generalize this result to all orders, it is argued

constants reduces to unity for finite theories. Conversely, diin Ref. [30] that there is no renormalization of the gauge field

vergent theories are written as a Laurent series,irWithin ~ since it would come from a non-local term in the free part of
the action while counterterms must be local polynomials in

Rev. Mex. Fis68040101
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the fields and their derivatives. Reminding that the chargevhich shows that the contributions from higher orders in the
renormalization depends only o#,, this would imply in  field strength are sufficiently ultraviolet-suppressed and give
scale invariance at all-order. It is pointed out in Ref. [46]only finite corrections. Given that, it is safe to say that the
however that this argument does not hold for the present theenormalization constarf, = 1 in RQED to all orders.
ory, since it is valid only for renormalizable theories, which
does not happen to be the case. For a discussion on this toc4. Renormalization group - RQED as a fixed point of
we refer to [46]. a nonrelativistic model

An alternative procedure was proposed in order to gen-
eralize the result at 1-loop and show that it is valid at all or-Although one of the main achievements of RQED is to cor-
ders [46]. First of all an effective theory for the gauge fieldsrectly describe several aspects of graphene, one point that

is obtained integrating out the fermions in the action, namelydeserves special attention is that usually the calculations are
performed in a relativistic framework, where the Fermi veloc-

[[A] = /dS*Ex {1231:#”11:“”] it)_/ is taken to be the speed of light, or in naFuraI units— 1.
. 2 V=02 Since the actual value of the Fermi velocity /c ~ 1/300,
+InDet(ilp) + S, ;- 27) the standard procedure of recoveringin the end of the cal-
culation must be done with extreme caution.
Invoking gauge symmetry, it is possible to show tﬁ@ﬂ) Previous to [27,30], a renormalization group analysis was

depends solely on the transverse projection of the gauge fielgerformed considering a mixed dimensional non-relativistic
model [17], where the Fermi velocity is taken into account.

Af = <5W — 8“6”> A,. (28) This breaking of Lorentz invariance can be explicitly appre-
! 0 ciated in the action,

ExpressingAf in terms of strength tensor,

) S= /d‘”’mﬂ(—voﬁo +oy- V)Y
AT @Fuyz/d TMFT (29)

v 02 dm |z —r2 M — e / d3r(=v0Ao + vy - A). (34)
it is possible to define the all-order expansion of the effective
action as, Here, a procedure similar to the one adopted in RQED was
B performed, where the gauge field was previously integrated
I'= Z / Bz .. A3z, AT .. AT v dpm) out in the third space coordinate. As expected, this yields to
n>1 the same dependence of the photon propagatdy @fiound
‘ before.
= Z /d?’ﬁ- Py F, F, L (30) In order to fully renormalize this model, the Fermi veloc-
n>1 ity must be also renormalized, and one more renormalization
with constant must be introduced, = Z,vg. This explicitly
modifies the fermion self-energy as:
T1yeesTn _ / dgajl dgxn (wl - Tl)#l
Tuaviseeospinim = Y it 1 S Y(w, k) = Zy(w, k) [w*yo — Zy(w, k)vy - k] . (35)
X (&0 =10 (Gor. gy . (31) The one-loop calculation within this model was the first
|2 =l " to predict the absence of charge renormalization for this type

By power counting and taking into account that the Furryqf mixed dimensional the(_)ry. Be_sides that, t_he renormaliza-
theorem holds for RQED, the only contribution where diver-tion constant for the Fermi velocity was obtained [17, 24],

gences may arise is far= 2. This contribution corresponds 9
to the usual transverse photon self-energy that leads to the Zy=1-— 1 e In A. (36)
following finite correction [26], 167 v
o2 4uq Defining an effective coupling
- _ ApHv
I (q) = 80 ( e ) (32) -
g= : (37)
The effective action for the gauge field then reads dmvp
~ 1 1 whereg plays the role of a fine structure constant withe-
r[A] = /d?’_ex iZf‘FlwﬁF,w placing the speed of light. The Fermi velocities at different
N energies are related by
e? 1 et Ft E
+—F,——F,+0| —— ]| +5S,:; (33 — A
PR o s <m5> 9f v(E) = v(Ep) [1 1 In )| (38)

Rev. Mex. Fis68040101
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It is possible to determine the existence of fixed points, imwhere a phase space factor was introduced to ensure a cor-
posing rect dimensionality. Foi — f the propagator in Eq4()
becomes the Feynman propagator and performing a Fourier
transform, Eq./40) yields to

The Callan-Symanzik equation allows for obtaining an ex-
plicit form for the S-function [17], and89) is satisfied for
Vp = 1.

From this, one can conclude that the Fermi velocity grow
as the energy decreases. Furthermore Stfienction has a
non-trivial zero when the Fermi velocity reaches the spee
of light. This limit corresponds to a Lorentz invariant weak
coupling model whose coupling corresponds to the fine struc- dw 2k o iwt giker
ture constant of QED. RQED therefore can be seen as afixed Dp(t,r) = / / 37 1 i
point of the renormalization group to which the system rep- 2r J (2m)? (w? — k2 +ie)

resented by34) flows. A detailed extension of renormal- A straightforward algebra shows that the optical theoi@8) (
ization group aspects of this mixed dimensional theory wass gheyed exclusively far = 0, which corresponds to QED
performed in Refs. [21-24]. and for RQED, wherex = 1/2, as long as a particular rela-
tion betweerl/” ande is respected. Therefore, unitarity holds
for these two theories, while for other values of the parameter

As it usually happens to theories where some degrees of fre€- it does.not. . .
dom are integrated out and the resulting theory is represented All this reasoning was obtained for the free theory. In

by an effective Lagrangian, RQED is nonlocal. Because ofhe case of intergcting theory a similar prqcedure can be per-
this, it becomes important to check if the theory respectgormed considering a dressed propagator in the random phase

causality and unitarity. approximation (RPA),

In fact, it has been shown that this mixed dimension the-
ory respects both conditions. In Ref. [19], the behavior OfGWZfoQ 5047V+HQ5G(50V)+H"‘5G§£,)H"7G%+... . (44)
the classical Green’s function, advanced and retarded, is in-
vestigated inside and outside the light-cone. Generalizing the
theory, considering a generic poweffor the d’Alambertian ~ Inserting in the above equation the 1-loop expressioflf6f
operator in the denominator of the pure gauge term in thé&alculated in Ref. [48], yields to a result similar to the one for
Lagrangian9), it is shown that the Green’s function van- the free theory. Results beyond RPA were also obtained us-
ishes outside the light-cone. This implies that this familying the 2-loop expression calculated in Ref. [27]. In this case,
of theories respects causality for any value of the paramehe functional form for the propagator remains the same, the
ter o, including RQED, for whichw = 1/2. Furthermore, only modification being the coefficients. Therefore, up to 2-
for this theory the Green's function vanishes inside the light]oops the optical theorem still holds, fulfilling the unitarity
cone as well, being finite only on its surface. This means thagondition.
RQED is constrained by a more strict condition than causal-
ity, it obeys Huygens principle [19, 47]. While causality is . .
found for anyc, the Huygens principle applies exclusively to 3. Chiral symmetry breaking
RQED, not holding for its cousin QED

Working with a more restrict generalization, where the

power of the d'Alambertian operator in the RQED La- schwinger-Dyson equations (SDES) are the field equations of
grangiana = [0,1), the validity of unitarity was explored 5 given quantum field theory (see, for instance [49]). These
in Ref. [20]. To this end, the authors invoke the optical theo-conform an infinite tower of relations among the Green func-
rem as follows. The5-matrix, that relates the initial and the tjgng involved:n-point functions are related to othefpoint
final state in a scattering process, must be unitary so that thgyq higher-point functions, each verifying its own SDE. In
theory is unitary. Representing tsematrix asS' = 1+ iT,  thejr formal derivation, no assumption is made regarding the
this implies that strength of the coupling constant(s) of the theory. Therefore,
i (TT B T) — 7T, (40) these equations are non-perturbative in nature and provide'a
useful tool to understand phenomena like bound-states, chi-
which is the optical theorem. Evaluating the operator in theral symmetry breaking and confinement. The only systematic
above equation between initial and final states, it can be repcheme to truncate the infinite tower of SDEs is perturbation

By(v,€?) = 0. (39)

D% (w, k) — Dp(w, k) = —iT" Dy (w, k) Dp(w, k). (42)

SHereT comes from integrating the phase space factor and is
the characteristic time of the system, and= —2(1 — «).

he generalized Feynman propagator can be easily obtained
rom the generalized Lagrangian,

(43)

2.5. Causality and unitarity

3.1. Schwinger-Dyson equations

resented in terms of the propagator, theory, but in this scheme none of the above mentioned phe-
_ 53 nomena can be addressed reliably. In gauge theories such as
(W|T|f) = (2m)°0° (ki — ky)Diy, (41)  QcD and QED, symmetry-preserving truncations of SDEs
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VAYs ‘ ./ ‘ A. ‘ ‘ \r*./“, ‘
- ; > o - 00000
O :ﬁ“@yﬁﬂ K Ly FIGURE 6. Pertu_rbative expansion of the fermion propagator in
. - P B2, B o 4 - terms of the fermion self-energy.
L "ML, L
*:S c‘{? - + ? C../? —~— + <S Zs tee \\./‘
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FIGURE 4. Radiative corrections to the fermion propagator in gcure 7. SDE for the fermion propagator.
QED. These include corrections to the fermion propagator itself,
to the gauge boson propagator and vertex corrections.

-1 -1 ")\q ;‘
r\\.r\'\./'/] ) ‘ ) ; - ‘
(™~ L7
N ' FIGURE 8. SDE for the inverse fermion propagator.
5 2
. Y It is convenient to re-write the above equation in terms of

) _ the inverse fermion propagator, which then becomes
FIGURE 5. Fermion self-energy. Blobs over the different parts of

the diagram indicate that all perturbative corrections to these pares g1 — (S -1_ % 46
are already taken into account. (p) = (So(p)) (), (46)

and diagrammatically can be depicted as in Fig. 8.
have made a tremendous development in addressing several This equation involves the full photon propagator and
non-perturbative aspects of these theories, which would Ot%rmion-photon vertex. The former, by a similar reasoning,
erwise require other frameworks to be addressed, includingg, pe seen to obey its own SDE depicted in the diagram in
lattice field theory and effective model considerations. Fig. 9.

SDEs are formally derived from the observation of the  This two-point function is coupled to the fermion propa-
vanishing of the functional derivatives of the connectedgator and the fermion-photon vertex which verifies the SDE
Green functions generating functional with respect to theshown in Fig. 10.
fields. An alternative diagrammatic derivation of these equa-  This diagram shows that the three-point function is cou-
tions can be derived directly from the Feynman rules of thepled to two-point and four-point functions, hence illustrating
theory under study. In QED, for instance (see Ref. [50]), thahe structure of the infinite tower of SDE.
perturbative expansion of the fermion propagator, depicted in At first glance, it seems impossible to envisage a non-
Fig. 4 shows three types of corrections, those to the fermioRerturbative truncation of the tower of SDEs without compro-
propagator itself (first row of corrections), those to the gaugenising the reliability of the predictions hence derived. Never-
boson propagator (second row of corrections) and the thirgheless, because of the gauge symmetry, a number of relations
kind corresponds to vertex corrections (third row of correc-exist in which a(n + 1)-point Green function can be written
tions). on terms ofn-point function. That is the case of Ward iden-

The infinite resummation of diagrams is better carried outities in QED [51-54]. Thus, one can attempt to propose a
by defining the fermion self-energ¥(p), which is repre-  symmetry-preserving truncation and explore general features
sented in the diagram in Fig. 5 and upon which the perturef the non-perturbative solution to the infinite tower of equa-
bative expansion of the fermion propagator contains all theions.
radiative corrections shown in Fig. 4. In termsXfp), the
perturbative expansion of the fermion propagator is shown in

Fig. 6. . . /.\
9 AVA f\v;..-'\ VAVAVEE AV AVAVAVAVAY VI Jk./ v

It corresponds to the expansion

S(p) = So(p) + So(p)2(p)So(p)
FIGURE 9. SDE for the gauge boson propagator.
(

+ So(p)%(p)So(P)E(p)So(p) + - - . = So(p)
+So(p)2(p) [So(p) + So()Z(p)So(p) + .- ] / e N
= So(p) + So(p)Z(p)S(p). (45) *f\\\= + VO @
%, ‘_./ y \
The last line corresponds to the SDE for the fermion propa-
gator depicted in Fig. 7. FIGURE 10. SDE for the fermion-boson vertex.
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Below we shall review a favorite truncation to the SDE NETAT
for the fermion propagator or gap equation, the so-called ol L
. - . - -1 -1 5 Z
rainbow-ladder truncation. We also review how to improve . = 5 - . >

of this truncation by including vacuum polarization effects

and vertex corrections. FIGURE 12. SDE for the fermion propagator in rainbow-ladder

approximation.
3.2. Structure of the gap equation
Let us consider the parity preserving ordinary version of 1 dmia

QED. The SDE for the fermion propagator in an arbitrary F(p?) Cdp?
number space-time dimensiot$s given by

S7Hp) = Sy (p) + 4micx

dek i . M(p2) i dmice
/ (ZW)dF (k,p)S(k)Y' A (p—Ek), (47) F(p?) d

dk

wherea = ¢2/(47) is the (dimensionless) fine-structure con- X / ﬁTrh"S(k)y”]Afﬁ) (p—Fk). (50)

stant anck is the electric charge. The most general form of (2m)

this propagator is commonly expressed as Let us explore the solutions to this coupled set of equations

) in different space-time dimensions.
S(p) = ) (48)
¥— M(p?)’ 3.2.1. Gap equation id = 4

where F(p?) is the wavefunction renormalization function It is interesting to consider the scenario of chiral symmetry
andM (p?) is the mass function. The tree level values of thesebreaking in ordinary QED. After taking the traces and Wick
functions areF(p?) = 1 and M (p®) = mo Wherem, is the  rotate to Euclidean space EGS0), by switching to hyper-
fermion bare mass. Furthermork,,, (p — k) represents the spherical coordinates, angular integrals can be performed an-
full gauge boson propagator adtt (&, p) the full fermion-  alytically. Radial integrations are divergent. However, reg-
boson vertex. By neglecting vacuum polarization efféats,  ulating these integrals with a hard cut-off in the momentum,
working within thequenchedapproximation, we replace the we reach to the following pair equations to be solved self-

full photon propagaton ,, (¢) by its bare counterpart consistently,
1 y A2
A@@ﬁ:2@w+@—w%§)7 (49) L et e FO2)
¢ ¢ F(p?) 47 k2 + M?2(k?)

where¢ is the covariant gauge parameter. In terms of dia- 0

grams, it amounts to consider Fig. 11.

Under this approximation, the gap equation can be solved
with a suitable choice of the fermion-boson vertex. The
rainbow-ladder approximation (see [50]) corresponds to the
perturbation-theory inspired choid®*(k,p) = ~*, which
allows to decouple the SDE for the fermion propagator from F(p?)
the infinite tower, as it corresponds to the diagram in Fig. 12.

Chiral symmetry breaking is usually approached start-
ing with mg = 0. Thus, the natural consequence of this
phenomenon corresponds to the dynamical appearance of
fermion mass where there was none. Upon inserting th&here©(z) is the Heaviside step function. In Landau gauge,
fermion and gauge boson propagators and fermion-photofi= 0, we have tha#'(p*) = 1 and thus we have to solve the
vertex in the gap equa‘“on, after mu|t|p|y|ng it %/and 1, fO"OWIng non-linear |ntegral equation for the mass function,

k4 2 2
ﬁ@(psz ) — Ok —p?) |,

A2
M) o F(R)M(R?)
= 8+ 0 [0

0

2

;ewkw%—mﬁ—ﬁﬂ, (51)

respectively, we obtain the coupled system of equations o
3o k2 M (k?)
M(p? ] —— A
A ") = 47 [ / k2 + M?(k?)
~ Lo 0
= S e
_ _ dkP (52)

FIGURE 11. SDE for the fermion propagator in quenched approx- k2 + M2 k2) |
imation.
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10 J. A. CASIMIRO OLIVARES, A. JULIA MIZHER AND A. RAYA

This equation has no analytical solution. Nevertheless, waeed to regulate the integrals. In the rainbow approxima-
can gain some insight by transforming it into the differentialtion and in Landau gauge the gap equation, reduces to (see
equation Ref. [56])

d (p4dM(p2)): o M) gy ¢? 7 kM (k) 1’k+p‘ (60)

ap? \P " ap? in P+ M2(p%) M) =55, | ® e ame |k
Forp? > M?(p?), the above Eq/53) linearizes to 0
At this point, although the integrals are finite, one can intro-

i( 4dM(P2)> _ —3—QM(p2) (54) duce an ultraviolet regulatok in the integral withA > e2

dp? dp? 4 ' and consider at the end the limit — oo maintaininge?/A
fixed. Proceeding in this way, after expanding the logarithm

for k > p andp > k, the integral reduces to

which is restricted to the boundary conditions

d dM (p?
a2 [P*M(p*)] =0, d]EQ ) =0. (55) Mo — e? pdk‘ M (k)
p2=A2 p2=r2 (p) - 7T2/ k2 +M2(k)
0
The infrared cut-offs? is introduced to preserve the non- N
invariance of the original Eq5@) underM (p?) — cM (p?) €2 k2M (k)
with ¢ constant ag? — 0. Physically, it serves to quantify + T2p2 / k2 + M2(k)’ (61)
the amount of mass that is dynamically generated. We look P
for solutions to Eq.34) of the form ] ] ) ) )
This equation can be transformed into the differential equa-
M@p?) = (*)° (56) tion
which after substituting in Eq54) yields d | 4 dM (p) _ 7% p*M(p) (62)
30 dp dp w2 p? + M2(p)’
s(s+1)=——. (57)
4w subjected to the boundary conditions
Solving for s, we have that
M
e MW o M)~ (63)
1 13 dp dp o A
Sy = —5 + ? (58) p= p=

_ Again, in the regime wherg? > M?(p), the differential
Thus, depending on the value @fcompared to the value of equation/62) linearizes in the following form

a. = m/3, we could observe an oscillatory behavior or a
power-law solution. Consistency with boundary conditions d [ L dM( )] 92¢2

demands: > a.. Moreover, the infrared and ultraviolet cut- . 7 =——5M(p), (64)
offs are constrained as p p
which admits the general solution

A
—=exp | ———=-2. (59)
w a1 4e?

This behavior is called thiliransky scaling lawvhich states
that the chiral symmetry breaking in QED corresponds to a 2¢2

conformal phase transition [55]. Thus, we conclude that in + CrYs (2 2) ] ) (65)
order for chiral symmetry breaking to be broken in ordinary P

QED, the couplingx must exceed a critical value. whereJ, (z) andY, (z) are Bessel functions of the first and

second kind of order, respectively. UV boundary condition
demands thaf’s = 0. The constan€’; cannot be fixed from

A similar reasoning can be followed to explore the scenarighe IR conditions. Nevertheless, noticing again that the non-
of chiral symmetry breaking in QED restricted to a plane,linear Eq.60) is non-invariant unded/ (p) — cM (p) with ¢
namely, QED. The main difference in this case is that the & constant, we require to change that boundary condition by
electric charge® has mass dimension one and hence servedemanding that

as a natural scale for all mass scales in the theory. Further-

more, QEDR is super-renormalizable, and thus there is no M (k) = K, (66)

3.2.2. Gap equation in QED3
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- - — A 4 AV il
L e A

FIGURE 14. Vacuum polarization in the leading/ N approxima-

tion.
o 1S e
— FIGURE 15. SDE for the fermion propagator in the leadibhgV

approximation.

3
o

| .
0.01 0.05 0.10 0.50 i

FIGURE 13. Multiple solutions to the gap equation in QgDThe 1
< o — quy> + é-quy (69)

solid black curve corresponds 1 (z) = x. The red long-dashed Au(q) = m e a
curve corresponds to a positive definite solution with= &/2, q 8
the dashed blue curve to = /20 and the dotted green curve 1o \yhereg — 2N. We observe that the infrared behavior of
K= &/40. this propagator softens d$q wheng — 0 as compared to
9 .

in the IR, wherex is a regulator quantifying the amount of th? usuall/q pole structure in Eq.49). .lt turns out that
mass being generated. Such boundary condition allows tthls softening makes the theory to loose its confining proper-
write the solution to the. ap equation as [57] 8es. It also has consequences regarding the chiral transition,

gap €q as we can see from the gap equation. In the leading order of

R & %% the 1/N approximation,F'(p) = 1 + O(1/N) and the full
M(z) = n—Js <\/ ) , (67)  fermion photon vertek* = v*+ O(1/N). Working in Lan-
r r dau gauge, the mass function obeys
with M) — O 7 kM (k)
Vi) = M@ -y P =50y | N )
A T AwN 0
"SE T m) ©9) ETEE ) )
& ( “) Once more, by expanding the logarithm fbr > p and
. . . L - - p > k, we have
It is interesting that this solution is positive definite for~
&, butwhens ~ &/20, the solution develops a zero. Further- a n kM (k) k
rgigrel,swhem ~ &/40 a new zero develops, as illustrated in (p) 2 Np / K2+ M2() (p T &/8)
. . 0
This pattern continuead infinitumand emerges from the .
analytical properties of the gap equation, which corresponds L@ /dk kM (k) ( p ) (71)
to a Hammerstein equation of the first kind. This structure is 72 Np k2 + M2(k)\k+a/8/°
p

particular of the truncation and is modified when some of the
assumptions are removed from consideration. See Ref. [57his expression is equivalent to the differential equation
fir further discussion.

d|p’(p+a/8)*dM(p)| &  p*M(p) (72)

3.2.3. Gap equation in QED3 including vacuum polariza- dp| 2p+&/8 dp 2N p? + M2?(p)’
tion effects ) -
subjected to the boundary conditions

Including vacuum polarization effects in this model turns out
i ing. L ider th io wh includ dM (p) _
interesting. Let us consider the scenario where we include ag < 1/(0) < o, D + M(p) =0. (73)
large numberV of massless fermion families circulating in dp —a

loops. This amounts to ressuming an infinite number of pla- ) o . .
nar diagrams as shown in Fig. 14 such that one considers tt}8 the large-coupling regime > p, the differential equa-
unquenched approximation depicted in Fig. 15. tion (72) simplifies to

In this case, the non-pertubative gauge boson propagator d dM (p) 8 pM(p)
can be calculated exactly. In an arbitrary covariant gauge, it — l 2 1 = - YR
reads [58-60] dp N P+ M2 (p)

W (74)
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Moreover, in the momentum domaifi > M?(p), the above
equation linearizes and takes the simplified form

d [ ,dM(p) 8
il =— M(p). 75
i [p o M (P) (75)
Equation75) admits a power law solution of the form
M(p) = p°, (76)
which upon substitution into/€) yields
1 1 32
Thus, the solution to the linearized equation is
M(p)=Cp BrhyI-cE + Cop Bhc (78)

symmetry and only refine the value of this critical number
N.. The conclusion up to date is that such number is an inte-
gerN, < 3.

3.2.4. Gap equation in RQED

So far we have reviewed different scenarios for chiral sym-

metry breaking in ordinary QED. The gap equation in this

theory is such that the wavefunction renormalization is trivial

in Landau gauge. The scenario of criticality emergesin4

as the need for the coupling to exceed a critical value for the
theory to be able to break dynamically the chiral symmetry.

In three dimensions, the quenched theory does not exhibit
this feature. Chiral symmetry breaking can be broken for ar-

Again, we notice the existence of a critical number of fermionbitrary values of the coupling. Nevertheless, including vac-
families, N. = 32/72 that distinguishes an oscillatory from uum polarization effects, it is observed that if the number of
a decaying behavior of the mass function. Consistency witliermion families circulating in loops exceeds a critical value,

boundary conditions suggests that > 32/72 and the
amount of dynamically generated mass, quantifietl/gs =
0) also follows a Miransky scaling law of the form

2
M(0) = aexp T 45

N, _
~ 1

(79)

chiral symmetry cannot be broken. This statement is valid
up to1/N? and in arbitrary non-local gauge. An interesting
observation is that when fermions in loops remain massless,
there is a softening of the infrared pole in the propagate?

as the gauge boson momentym- 0 to al/q softer behav-

ior. This behavior is similar to the tree-level gauge boson
propagator in RQED

Thus, this scenario has a similar scaling behavior as ordinary
QED. Furthermore, vacuum polarization effects translate to
the existence of a critical (large) number of fermion families
above which chiral symmetry breaking is no longer possible
and the chiral symmetry restoration corresponds to a confor-

AR(g) = i [gw -(1- o} v @)

mal phase transition [55].

Notice that in this case, the gauge paramétsmot the same

It is interesting that the gauge dependence of the maﬁSf in the Ordinary theory, but here it has to be renormalized
function and wavefunction renormalization have been Conbecause fermions and bosons live in different dimensions. In

sidered in covariant gauges [61] and up to the next-to-leadinéfict, ¢ = £/2, and hencg = 0 corresponds to Landau gauge.

order of the approximation [62—65]. These ressumations car-

Following the reasoning of the previous subsections, we

ried out in an arbitrary non-local gauge do not spoil the existruncate the gap equation in the rainbow approximation as in

tence of the critical valuév, for the restoration of chiral
|

Ref. [31]. In an arbitrary covariant gauge, it is equivalent to
the following coupled system of equations (see [66])

A
1 a dkF(k)k2 [ 0(k —p) ) P o(p— k) ) 1
Flp) ~ p20/k2+M { 2 [_(2+C)p +(1—()]€2} 4—T [_(2+C)k +(1_C)pz} }’
A
M(p 2+C (k) [0(k—p) O(p—k)
F(p) /dkk2+M2 (k) [ K ] (81)

(=)

with the dimensionless coupling = ¢%/4r as usual. It is evident from the above expressions that fer 0, F(p) # 1.

Nevertheless, as a first approximation, let us taKe) =

1 and explore the solution of the gap equation. Then, the gap

equation becomes the non-linear integral equation for the mass function [31, 66]

p
20 k2M
M@p) ==
(p) wp/dk k2+M2
0

2a
/dk 12 +M2 )] (82)
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This expression can be straightforwardly converted inta3.2.5. Effect of the wavefunction renormalization

the following differential equation o .
To explore the sensitivity of the truncation to the effect of the

wavefunction renormalization function in connection with

200 p*M(p) the gauge parameter dependence of the critical coupling and
20 2wwM’ == — gauge p p pling
P (p) +2pM'(p) + m p?+ M?%(p) 0 (83) the dynamical mass, we conduct the following exercise:
restricted to the boundary conditions e First, we impose(p) = 1 in all covariant gauges and
solve the equation
iy (552 M) = .
P Mip) = & K2M (k) 2k[2 + (]
~ 9 2 2
lim p? dM (p) —0 84) 27Tp k2 + M?(k) k
p—0 dp

Upon linearizing the differential equatio®3) whenp >

M (p), we can again write the resulting equation in the Euler- 27Tp /dk k2 + M2 )] [ Pl2+¢), (90)

Cauchy form
for various values of the gauge parameter
4 <p2 dM(p)> + %M(p) =0, (85) e As a second variant, we solve the coupled system of
dp dp 7T equations in@1) for various values of the gauge fixing

which, admits a general solution of the form parameter.

e Next we impose the Ward-Takahashi identity (WTI),

M(p) = Cip™* + Cap™- (86)
where (k= p)ul"(k,p) = S5' (k) = Sp'(p),  (91)
which allow to split the vertex into its longitudinal and
transverse pieces,
SR T
" T*(k,p) = T (k, p) + T (k, p),

As in previous cases, the non-invariance of the gap equation
under scalingsV/(p) — ¢M (p) wherec is a constant de-
mands the introduction of an infrared cut-afind the mod-
ification of the infrared boundary condition to

where (k — p),Th.(k,p) = 0. We exploit this iden-

tity into the gap equation in the following way. As-
suming that all the dependence on the gauge parameter
arises only from the photon propagator, we split this
two-point function into its transverse component and

the gauge parameter dependent longitudinal part,

M(k) = k. (88)

Thus, definingx. = 7/8, boundary conditions demand that

o > a.. Furthermore, the dynamical mass obeys the Miran- A0(q) = AT, () + {q“q” (92)
sky scaling
the gap equation can be written as
— = exp +4d], (89) A3k
o —1 _ g1 - v AT

z E 57 (p) = 55 (p) + diam / wasw)r AL (9)

with A = —27 andd = —4, hence indicating that the chiral Vql,qu
. . " . k)T , (93)

symmetry is broken in a conformal phase transition provided

the coupling exceeds a critical value.

In order to explore the effect of the wavefunction renor-
malization in the resuli@9), particularly in relation with the
gauge dependence, below we explore some variants of the
rainbow-ladder truncation following [66].

with ¢ = k& — p. In the final term we replace the iden-
tity (91) and upon taking traces after multiplying by
1 and g, respectively, we find the gap equation to be
equivalent to the coupled system of equations
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A A
1 a [ dkF(k)k2 [ 00k —p) 1 0 —k) ki ac dkF (k)k?
F@)_1+%w?/k”+M%V{ k iaﬁ_cﬁ}+ P [_%z_ﬁ}}+4w2 F(p)(k? + M?(p)
0 0
. J 0k —p) [2p2k2 _pt M(k)M(p)p® N 2p2M(k)M(p)} L=k 9%k p*k? M (k)M (p)k?
k k2 k? k2 kQ P p2 p2 p2

A
20°M (k)M (p| | M(p) « K*F(k)M (k) [0(k —p) 0(p dkF(k
M }F(p)_w/dkaJrMQ(k) [ P } /F k2+M2()
x {Q(kk_p) [M(p) <1 - ii) - M(k);;] + @ [—M(k) (1 - ﬁj) - M(p):;] } (94)

Then we solve the coupled system of equations for various valugs of

e As a final variant of the gap equation, we use the Ball and Chiu vertex [67], which is explicitly constructed to verify the
Ward identity and is written as follows

A
FBC’ -

A [Fl 1 } %(%+¢)(k+p)" [Fl 1 ] (k + p)* {M(’@ M(p)]. (95)

2 [Fo) " Fp) (k% = p?) (k) Fp] & =p*) [Fk)  F(p)
This is a standard choice for the longitudinal piece of the vertex and it is explicitly constructed to satisfy these relations.
Nevertheless, the additional terms to the central part exhibit spurious kinematic singularifies:gs’. These spurious
singularities do not appear in perturbation theory and are unwanted in a non-perturbative construction of the vertex.
These actually are cancelled by more educateshtzeof the vertex which include the transverse piece unconstrained
by these identities. Thus, for our purposes, by keeping only the central part , which is

[ 1
oc = 705 7| (%6)
we guarantee that the ward identities are satisfied up to spurious singular terms which are not expected to appear in a
complete form of the vertex.

Then, the gap equation corresponds to the following coupled system of equations

A
r ! dkF(k)k? 1 1 0k—p) [ 9 B ﬁ O(p — k)
) ”WO/ ERS VIO {Fw)*F(p)H P erarra-og)+

<[-erorra-0L] }

M(p) _ a2+) /dk ICTOY N LG L)

F(p) 2m K2+ M2(k) |F(k) ' F(p) k » (97)

In Fig. 16 we compare the findings of the critical coupling in different gauges for the variants of the truncation described
above.

At first glance, it might seem surprising that the simplest scenario of neglecting wavefunction renormalization effects
and solving the mass function alone vyields the least gauge parameter dependent results. This is better understood from a
renormalization group analysis, that exploits the similarities of {tié approximation in QER and RQED itself, as discussed
below.

3.3. Renormalization Group Analysis

It is remarkable that RQED becomes an infra-red Lorentz invariant fixed-point for a general theory of mixed dimensions for
fermions and gauge bosons, RQEDR, [17], because it allows to analyze the critical behavior of the general theory, regarding
chiral symmetry breaking, around such point. The important observation is that as we approach this fixed point, the Fermi
velocity of fermion fields tends to the speed of light in vacuum and at the same time, the coupling constant approaches the

Rev. Mex. Fis68040101



NON-PERTURBATIVE FIELD THEORETICAL ASPECTS OF GRAPHENE AND RELATED SYSTEMS 15

a0k .Y vacuum polarization tensor. In the RPA, the gauge boson
3 propagator has the leading behavior
2 ¥ 1
. 20F . ] (RQED) _
=l ; ® BC A=) = 5o N e
t? t;_\ 16[F ) : ‘ ) . . . A M 2q(1+N€ /16)
wofe 3 0 7 1 e W qudv
X y+(C—1 . 103
osf 3 . . i B ! 1 ® MF (g:“' (C ) q ) ( )
00 b — - - - 3 Thus, by redefining the coupling as
& a—ad=— 2 (104)

14 €2N/16’
FIGURE 16. Critical coupling as a function of the covariant gauge . .
parameter for different models. the gauge dependence of the critical coupling is now
s
fine-structure constant of QED. Therefore, one can exploit Qe = 2(5+ &) — N2 /4
these facts to compare the critical structure of RQED and
QED; [32, 62-65, 68]. This is particularly relevant to un- With & = (1 +¢)/2 and N = 2 for graphene. The gauge

derstand the gauge dependence of the critical numbers assPendence af. is milder in this case.

(105)

ciated to the chiral transition. At next-to-leading order, one observes that the gauge de-
In order to make explicit the mapping between QEdd ~ Pendence of the critical coupling has the form
RQED, we start by expressing the gauge boson propagator in A (106)
Qe = )
RQED as [32] 8(2+ &) + \/@

1 v
AL%QED) (q) = 27q (g;w (C —1) qu > 7 (98) where

112
d&)=8(S(&) —8|4— —=¢+9¢%| —4N7? 107
where we recall that the gauge fixing paramé&tef RQED © ( © [ 3 §+9 } i ) - (107
is half of the corresponding parameter of QED. On the Othe%nd
hand, the leading behavior of the gauge boson propaga-

tor (69) of QED;s in the largeN approximation has the form SE)=(1- &R — (1 52)&
8
8 q
(QEDs) 5 N P
A ) = g <9w HE-D 0 ) - (99 — (7+16¢ - 3¢%)5 228 (108)
Thus, identifying with the coefficients
1 R; =163.7428, Ry = 209.175, P, =1260.720. (109
S aoo) " : : (109
m2N 4 2

This is a rather intricate form of the coupling which never-
we can simply map the solutions of the gap equation intheless improves upon the leading order gauge parameter de-
RQED to those of QERin thel/N approximation. pendence. The RPA still helps to reduce the resudial gauge

For instance, the gauge parameter dependence of the cridependence of the critical coupling by redefining
ical number of fermion families for chiral symmetry restora-

tion in QED; was explored in Refs. [32,68]. The authors find a—a = . 7aﬂ~ (110)
that the critical condition can be written as dn?
16(2 + ¢) Thus, we (_)bserve that in _this fram_ework, the appropriate re-
1= —7 (101) interpretation of the coupling permits a less severe gauge de-

pendence of the critical value of the coupling to trigger chiral

Then, from [L00) we can straightforwardly find that for Symmetry breaking.

RQED, this result is translated to the critical coupling

a 4. Chiral symmetry breaking in a medium
1=16(2+ 5)4—07 (102)

d Mixed-dimensional theories allow natural extensions of the
which shows a strong gauge dependence of the critical co@FT formalism to incorporate the effects of (classical and
pling, although it does not depend on the flavor numbeiquantum) external agents like a heat bath and/or external
N. This result comes up as a consequence of a partial reelectromagnetic, strain or gravitational fields, among others.
summation of diagrams in the approximation. It can be im-Generally speaking, these effects have the potential to en-
proved, for instance, by considering a RPA calculation of thehance or inhibit phase transitions. In the case of the chiral
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16 J. A. CASIMIRO OLIVARES, A. JULIA MIZHER AND A. RAYA

transition, a heat bath is known to have the effect of restorform such sums are hard to implement. First of all, the con-
ing chiral symmetry. The imaginary-time formalism of ther- vergence of the sum

mal field theory (TFT) is a natural extension to consider in

this case. On the contrary, electromagnetic fields promote U— f: u

the breaking this symmetry. In particular, in 3D materials, "

the configuration of parallel electric and magnetic fields gives S

rise to a special configuration that can be understood as the _ Z 1

presence of a Chern-Simons (CS) term in the electromagnetic - /7712 + A2 (2n+1)2 + B2
n=—oo

Lagrangian, with the added possibility of parity and time re-
versal symmetry breaking. In 2D systems, the presence of B > )
such a term for fermion fields is realized as the possibility of 2 Z Up ~ T Uo
mass terms different from the ordinary Dirac mass.

A Haldane term of this type has interesting effects on thds ensured (see Ref. [33]) provided the sum in the last row of
chiral phase transition in ordinary QgD Curvature effects the above expression converges. In Ed.J, it is assumed
are also important in modifying the electric and optic prop-that 42, B2 > 0 anduﬁﬁ = (un + u_y)/2. The proof of
erties of the materials and are generally expected to occur isonvergence is established via the auxiliary sum
materials with defects. In this section, we review the effect
of a thermal bath, the role of a Chern-Simons term, the influ- v i o

(113)

ence of strain and the formulation of RQED on curved space. (114)

We specialize the discussion in how these effects impact the
scenario for chiral symmetry breaking.

z:: n+ A) n+B)’

which is convergent and satisfies that> ulH >0and

i)

’I’L

4.1. Finite temperature effects

nlimoo = 0. (115)

The scenario of chiral symmetry breaking in RQED has been

considered at finite temperature. Let us revisit the calcuThen, becaus¥ is convergent, so iti3_ ul™) and thus/
lations in Refs. [26, 31, 33, 34]. We start our discussionis also convergent.

from the imaginary time formalism of TFT. We introduce the ~ Alternatively, one can perform the momentum integrals
fermionic Matsubara frequencies, = (2n + 1)7T and re-  first and then the sum over Matsubara frequencies. In this
place of any integral over the temporal component of an arcase, one can assume that the mass function is the same for
bitrary three-vectop = (po, p) by the summation over fre- all the frequencies such that the gap equation can be written

guencies, as [33]

> 4aT
/dpof(po,p) —T Z f(—iwn, p). (111) M(p) = - dk kM (k)I(k), (116)
n=-—oo 0
Under this prescription, working in the Landau-like gaugewhere
¢ = 0 and neglecting wavefunction renormalization effects, -
the gap equation takes the form [33] (k) = Z 5 5 2T21 IO
n+ 1)2mel< + k= +

£ (2n +1)27272 + k2 + M, (k)2 X z , (117)
n=-—00 \/(p _ k.)Q + 4n27272
1
112 i ipti i
X A0 —n)2?T 1 (p ~ W2 (112) K (z) denoting an elliptic function and
. . ) 4kp
whereM,, (p) = M (w,,p) is the mass function associated Tp = — (k —p)? + 4n2n2T2 (118)

to every Matsubara frequency and the notatjgnindicates

that divergent integrals are to be regularized with an ultravi-Considering only the zeroth Matsubara frequency= 0,

olet cut-offA. an approximation that is commonly used in high-temperature
Several considerations are at hand. First of all, as cusregime studies, the gap equation reduces to [33]

tomary in TFT, one would be tempted to perform the sum

over Matsubara frequencies and introduce the cut-off in mo- 4aT k K (z0)M (k)

mentum integrals. Nevertheless, because these frequencies" () / [k —p| 7272 + k2 + M2(k)

appear inside the square-root, the standard techniques to per-

(119)
T
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Expandingk K (z¢)/|k — p| for k > p andk < p, the gap  where we have introduced the shorthand notatigfl’) =
equation becomes M(0,T). RetainingA as the largest scale of the problem,
» two solutions are found for the above expression, namely
2aT kM (k)
M(p) = /dk 70

p + k% + M2 (k) o?T?A?
T)=4r/T2 -T2 T.= ———. (127
0 m( ) ™ C ? (QOéT + A)Q ( )
' M(k
+ 2aT/dk: T k2( ) TR (120) Keeping the positive solution alone, one can derive the criti-
5 w21 + k2 + M?(k) cal coupling for chiral symmetry breaking of the form
Upon linearization, the resulting integral equation can be cast A
in the form of the differential equation ac(T) = 7+ (128)
d dM (p) 2aT
o <P2dp> + TM(I?) =0, (121)  Nevertheless, this expression is oblivious to the critical value
. . ofavatT = 0.
subject to the boundary conditions A different view of the gap equation can be achieved as
dM follows [34]. Let us introduce dimensionless quantities,
lim pQ% =0, lim M(p) =0, (122) [34] q
p—7ile p p—

where T, would correspond to the critical temperature for p=Ac, k=Ap, T=AT,
chiral symmetry restoration, which will be defined from the M (k) = AM,,(p), (129)
analytical behavior of the mass function. The general solu-

tion to Eq. (L2]) is expressed as such that the gap E¢l12) can be written as

M(p)ZCu/%(h (“T) ) ) Ny 1dp
M'm(g) =aT Z /?de P
laT [8aT n=-N¢=1p
+ Cs 7Y1 ( p) , (123) Mn(p)

(2n 4 1)272T2 + p2 4 M2(p)

where J; (z) andY;(z) are Bessel functions of the first and

second kind. UV boundary condition impy, = 0. At the y 1 (130)
same time, the IR boundary condition imposes the following o oo o|1/2
relation 4(m —n)*m*T? + (o — p) ‘

211() +&Jo(€) — £2(8) =0, (124)  \where is the angle betweear and p.” Notice that in this

with ¢ = /8aT/=T.. The above relation has nontrivial Casé the cut-off is not introduced in momentum integrals,
solutions for a givem such that{,} = {&, &1, ...} with but in the number of frequencie§; that are summed up.

the hierarchyg, < &,.1 for any givenn. The lowest so- Whithin the so-called constant mass approximation [69], all
lution &, =~ 2.4 fixes the value of the critical temperature Mass functions involved in the gap equation can be replaced

T. = 0.44aT. This result establishes that even at low tem-With their values at zero momentum. Denotifg, (o) —
peratures, the value Sm, the gap equation under this approximation simplifies to

T~ a8, (125) 1

(e

Ny
. S,
exceeds the critical value of the coupling in vacuum [33]. It Sm = 20T 72 /dpp(Qn +1)2m2T2 + p? + 52
has it s origin in the fact that there is no evidence that the mass n=-Ns=1
function M (p) vanishes at the critical temperature. There- o 1

fore, a more refined treatment is called for. - 1/2° (131)
One can improve on the above result recalling that the ‘4(7” —n)?mAT? '02‘

phenomenon of dynamical chiral symmetry breaking is in-
frared. Therefore, one can simply neglect the external moFixing the the cut-offV, such that
mentum in the gap equatiof1S), which then becomes [33]

A 2N+ 1)7To = A= 2Ny + )Ty =1

dk
1=2aT / , (126) . 1
/ w272 + k2 + m2(T) =T, = BN, T (132)
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we are allowed to write all temperature scalesTas=
KTy, k € N. Thus, performing momentum integration ana-
lytically and assuming a linear scaling 8f, ~ ~,,(T — 1)
near criticality,

Ny

Sn
n=—N;—1 \/7T2T2 |[—4m? + 8mn + 4n + 1|

o 4m2T2(m —n)2 + 1
7212 |—4m? + 8mn + 4n + 1]
2|m —n|
V]=4m? + 8mn + 4n + 1]

S, ~ 2aT

1

. (133)

— tan™

Specializing on the zeroth Matsubara frequency= 0, ob-
serving thatS,, /Sy < 1, and recalling our assumption that
near the critical point the temperature-depen&r(tf) — 0
we have that [34]

N =
1 Zf: 2 R
= —F——— | tan _
Y L IN T [4n + 1] 72T2 |4n + 1|

2]n|
V4n + 1|

The sum oven is finite for every value of temperature. This
allows to obtain the behavior of the critical coupling,, as
shown in Fig. 17.

The behavior of the critical coupling as a function of tem-
perature is consistent with

1

— tan™ . (134)

ac(T) (135)

with a, b real numbers. This behavior exhibits the correct be
havior of a.(T' = 0) = w/8 [34].

:g—l—af—i—bTQ,

It is remarkable that within the finite temperature frame-
work, the gauge dependence of the critical temperature andﬁggED = -

coupling is a pending matter up to date.

0.4 0.8

Te
FIGURE 17. Critical coupling as a function of the critical tempera-
ture.

0.0 0.2 0.6
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4.2. Chiral symmetry breaking with a Chern-Simons
term

Physics on two spatial dimensions is very interesting in its
own right. For electromagnetic interactions, there exists the
possibility to include a Chern-Simons (CS) term in the gauge
sector through the Lagrangian
RV

L= —zzd‘ PALO,A, — A JH, (136)
whered is the CS coefficient (see, for instance, Ref. [70]).
Such a term induces a topological mass to the gauge bosons.
It also induces fractional (anyon) statistics for matter parti-
cles as well as parity and time-reversal symmetry breaking of
the theory, among other interesting effects. It is through this
term that, for instance, the fractional quantum Hall effect can
be explained and the emergence of the transverse conductiv-
ity without Landau levels can be explained.

The scenario of chiral symmetry breaking in QEDIth
a CS has been explored by solving the gap equation in differ-
ent truncation schemes [71-74]. The CS coefficient acts as an
effective vacuum polarization such that when a large number
of fermion families are considered, besides the existence of a
critical number of familiegV,. that restores chiral symmetry,
there exists a critical value for the CS coefficigntthat also
induces chiral symmetry restoration. The order of the phase
transition in this case changes to order one.

In RQED, the impact of the dimensionless parameter
has been explored by our group (for a study exploring the ef-
fects of a modified Chern-Simons term containing a dimen-
sionful parameter see [75] and for other approaches involv-
ing time reversal symmetry breaking see [76]). The starting
point is the addition of the CS terrd3€) in the RQED La-

grangian. The effective theory under consideration has the

structure [36]

L

1 Fu JF?/;(i’VHau +€7"Au)¢

1 .
v L @aany2 4 ZWomng 4, (137)

20 4
where all the quantities carry their usual meaning. The tree-
level gauge boson propagator derived from the above La-
grangian is

A 1 1 v
A= ——" (6, — 2~
v (0) 2Q(1+192)(“ q2>
CQ#QV 1 J p
> B od’ 138
T o)t (139)

From here it is immediate to notice the effect of the CS
coefficient as an effective dielectric constant [37] that has the
potential to modify the conditions for chiral symmetry break-
ing. Moreover, for fermions, it is convenient to introduce
their right- andleft-handed projections). = y+v, defined
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from the chiral matrix- = [v3, v5]/2. In this form, the chiral In order to address the issue of chiral symmetry and par-
projectors are defined such that ity breaking, in Ref. [35] a robust truncation of the SDE
was incorporated. To this end, the possibility of Fermi ve-
X. = 1 (1+7), (139) locity renormalization by splitting the fermion momentum
2 P = (po, p) into its temporalpy and spatiap components
which fulfill the following properties such that the propagator reads

F2(p)7°po + F(p)y - P + M4 (p)

X
2

(FO)*(p)pg + F2(p)orp®v} + M2(p)
The advantage of working with these projectors is the follow- 0 0

. . . F F_ . M_
ing: In order to explore the general scenario of chiral sym- — 7(()1927 p02+ 2(p)UF72p+ 5 (p)
metry breaking and its consequence, the dynamical genera- (F2)"(p)pg+F2 (p)p*vs + M2 (p)
tion of fermion masses, we consider the possibility of emer—rp, gap equation is truncated including a gauge-boson—
gence of an ordinary Dirac mass term.), which breaks o mion vertex dressing model and vacuum polarization ef-

explicitly chiral symmetry, butis even under partity and ime- focts - The former is based in the central Ball-Chiu vertex,
reversal transformations. On top of that, there is another masghich in this formalism takes the explicit form

term that potentially can be generated, the Haldane mass term
mey71p. Although this term does not break chiral symme- (P,K) = 1 [H+ (P)+ H}, (K)] Yo (1 +75)

Xi=X. Xox. =0, x,+x_ =1 (140)  S(po,p) = —

x_. (143)

try, it violates parity (and time-reversal) and because the CS 4
is parity violating we expect a relation between them. With 1. _
these considerations, the most general Lagrangian we con- T [Hyo(P) + Hyp(K)] 70 (1 = 75),  (144)
sider for our analysis is [36, 46]
where
1 2 1
Lhdep = " (-0O)1/2 Fo Q@“AQ)Q 7O P) 0 0
_ H*P)=| 0 oFmm 0 |, (149)
+ ("0, + ey" Ay + me + M) 0 0 My (P)
Fy(P)
+ %ma“”pAl,,auAp, (141)  whereas the latter are included modelling a Coulomb-like

approximation. Noticing that the most general form of the
These masses however do not correspond to poles in tf@auge boson propagator can be written as
fermion propagator. The operatogs. project the upper

_ 3 1 3
and lower two-component spinors, making explicit that the Auw(Q) = GL(Q)F,, + G (P — Pu)
would-be poles of each fermion species correspond to com- +GpPy, +Gu(P,y) — P, (146)

bination of Dirac and Haldane mass terms. Explicitly, upon
acting with the chiral projectors, the matter Lagrangian carwhere the involved tensors are

be written as P  QuQu P _ Tt
_ ) _ ) 712 g/“/ Q2 ) 722 n2 )
Lr =i+ M)y +9-_(id+ M)y,  (142) )
6 _ a 10 _ _ a,f Qf
whereM | = m, +m, andM_ = m, — m,. Py = €ura Q7 Py = ~€uapQ n"my q’
As mentioned earlier, the presence of a CS term gener- 02
ates a mass for the photon in QEDwhere has mass di- P = —euagQ“nﬂnu¥, (147)

mension one. Such a mass is known as topological mass (in
this case no real topology is involved and the terminologywith

comes from historical reasons). In QEDadiative correc- Q
tions may give a contribution to this mass. For the case of Ny = Guo — 0 2“ (148)
QED; incremented with a CS term, the Coleman-Hill the- Q

orem states that only one-loop radiative corrections may bé turns out that these vacuum polarization effects enter into
non-vanishing, with the other corrections being identicallythe fermion gap equation only through the combinatiGizs
zero to all orders. We note that the argument to demonstratend Gpr = Gp + Gg. Then, the gap equation becomes
this theorem is valid for a theory with massive fermions. Re-a system of equation for the six unknown functidi$(P),
markably, it was shown that the Coleman and Hill theorem isF'y (P) and M (P), which depend on the value of the cou-
also valid for RQED [77] in spite of the fact that the CS co- pling constanta and the CS coefficient. Different mod-
efficient is dimensionless. Therefore, the only possible corels of G, and Gpg are proposed that are consistent with
rection to the photon propagator comes from the one-loog Coulomb-like interaction. The main conclusions that are
diagram Fig. 3a). drawn from this work are
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e The gap equation supports solutions which break parand
ity, associated to the generation of a Haldane mass.

e The Dirac dynamical mass reducedascreases. This
confirms that the CS coefficient behaves as an effective
dielectric constant, as was proposed in Ref. [39].

200
9,p) = |7 (¥?+1 — 3m (92 +1
e Non-trivial parity-preserving solutions are found that, 100.p) 77( + ) <]F192 + 1) (K (a+ W( * ))
nevertheless break chiral symmetry.
x (A® + 14p*) — 54p* (a+ 7 (0° + 1)) ﬂ

1

" T8rp? (@t m (2 + 1) (at 3 (@2 +1)

A point-wise evolution of the dynamical mass in terms (154)
of the coupling and the CS term was considered by some of ]
us in Ref. [36]. Assuming that Fermi velocity renormaliza- We notice that when) = 0, f(J,p) = 0 and we ob-
tion has already been carried out and thus no need to spii@in Precisely the solution discussed 88f which demands
the spatial and temporal components of the momentum, & > @ = 7/8. Ford # 0, we observe the role of the CS
rainbow-ladder truncation of the gap equation was adopteaoefﬁmentz? as an eﬁectlye _dlelectrlc constr_:mt. The func-
with the additional simplification of neglecting the wavefunc- tion f (¥, p) describes deviations from the Miransky scaling
tion renormalization effects settingy (p) = 1 in Landau DY virtue of the CS coefficient. .
gauge. The gap equation is found equivalent to the following "€ numerical solution to the non-linear EC£49) are

uncoupled system of non-linear integral equations for the lefsNown in Figs. 18 and 19 fat = nd. with varying0 <7 <
and right handed mass functions 1 but keepingy = 1.07¢ fixed. These numbers are consis-

tent with a critical value of), = 6.6 x 10~!*. For small

Bk [ 2My (k) 1
Mi(p)_%a/(zww k2 + M2 (k) q(1+ 92) . . .
1 9 k-q
- . 14 10 1
]Fq21+ﬁ2k2+Mi(k)] (149) 2x10

Inspired by the reasoning of the previous section, the gap§|
equation can be linearized and reduced to the following dif- =
ferential equation

1x107°

2c0
pQMl(p) + QpMi(p) + mMi(p)
90y 5 62 A3 01%‘12 I . 10-° 1076 I 1073 I 1
(0%
=F | e T o] 159 g
m(1+92)| 3 K 9p 9 FIGURE 18. Mass functionM _ (p) plotted as a function of mo-

] » mentum. The different curves correspond to different values of the
with the boundary conditions CS parametet) = nv. with 0 < n < 1 and fixed value of the
couplinga = 1.07a.

2 /
M
p i(p) 2x10-°

P—K

=0, (151)
p=A 2 0.0

(pM'+(p) + M+ (p))

wherek is the IR regulator introduced as a scale that quan-
tifies the amount of mass being dynamically generated. The
general solution to Eq160) is

-2x107°F -
1l N a1 . . 1 . . 1 L
My(p)=p 2V "2 10772 107 10° 1
@, /1= (1)) P
X (c ac + ¢ + f(¥ 152
( e + 1(.p), (152) FIGURE 19. Mass functionM (p) plotted as a function of mo-

mentum. The different curves correspond to different values of the
T ) CS parametet) = nd. with 0 < n < 1 and fixed value of the
Qe = g(l +9%) (153)  couplinga = 1.07ax.

where
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T p : T r T T T u T P TTTT T TTTTTTTT T—T=TTTTTT
~_ 2k =
=" e
-5 z -
10k éé E e PR
z o 1 - -
— +
S -5 S
§+ =7 /’/// 3 0
=10 — 7 - <
e <
+
L _ 57 . | s -1F M. (8)/M.(5) -
_ - \ | — = = M_(6)/M,(5) ]
10~°F -2}
L L 1 L L 1 1 L I 1
—15 12 -9 -6 e S S——
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o 0lS;

FIGURE 20. The absolute value of the height of the right-handed Figure 22. M. (0) re-scaled by their value & = 0. The solid
fermion mass functio/;. (0) plotted as a function of the CS pa- line corresponds td/, (0) and dashed linéZ_(0). The red dots
rametery. Aboved. the massV/, (0) becomes negative and here gre the absolute valyd/ (0)| above the criticall.

we flipped its sign for a better visualization. The different curves

correspond to different values of the coupling= za..

L] T L] T T
107 .
1 1 ] 1
-af
i 107k
=
E 9
> 107°F
27 107
10—11 =
_8 1 1 L 1 1 L 1 1 1 1 1 L 1 L 1
107k 10718 10-12 107 107 1073 1
(<]
L L 1 L n L L L n L
107° 1072 107 107 FIGURE 23. Dynamical mass term, even under parity transforma-
6 tion, as a function of the CS parameter

FIGURE 21. Height of the left-handed fermion mass function
M_(0) plotted as a function of the CS parameter The differ- 11—
ent curves correspond to different values of the coupling za.. I

1072

values ofp, we observe that both masses are finite and ap-_ ,of
proximately flat ag — 0. For larger momentum, the height <
of the mass functions decreases. This happens for differen=
values of provideda > «.. Furthermore, Figs. 20 and 21
show that the dynamical masses depend on the magnituds
of the CS coefficient in opposite forms for right- and left-
handed fermions. Whil@/_(0) increases\/ (0) decreases L
asy grows bhigger. At the critical valué.., M (0) flips sign 107 4072 10° 10-° 102 1
abruptly, signaling a first order phase transition. o

Notice that the heights\/.(0) of the mass functions Figure 24. Dynamical mass term, odd under parity transforma-
parametrize how much mass has been generated. Thegén, as a function of the CS parameter
hights are depicted in Figs. 20 and 21 for a constant value
of « = za.. Aboved., M, (0) undergoes a discontinuity The Dirac and Haldane masses that appear in the La-
and jumps assuming negative values, as shown in Fig. 22rangian [141) can be obtained summing up or subtracting
where we have flipped the sign after the discontinuity to lead\/ (0), respectively. From Figs. 23 and 24, we notice that
the eye. The blue dots stand for the absolute valug/aof  both these masses are non-vanishing for a large range of val-
aboved., where we observe that the two masses become thaes of ¢, clearly showing that CSB can occur within this
mirror image of one another. We notice that since the curvesodel. For smally, the Dirac massn., associated to chiral
are re-scaled, they coincide for any valuerof 1. symmetry breaking, presents a plateau, leaping at a critical

10~

10712 I
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9 to a value several orders of magnitude smaller. After thataction

m. increases again and finally drops to zero. We interpret the 1 1

discontinuity as an attempt to restore chiral symmetry, associ- S = /ddvx vV—q [—4F,WFW ~ % (VMA“)2

ated to the first piece in Ec14S). That would be the critical 3

point if f(1J,0) was absent. However, as one moves towards de . T T .

the right of the discontinuity, the CS contributigit, 0) be- + [ A%V —Hyin"(@) (0, + Qu +iedy) ¥, (157)

comes dominant anth, starts to be significant again. For

even larger) the Dirac mass drops and the real critigafor i ; ; » U

which chiral symmetry is restored, is aroutid= 1. In turn the cancellation of connection terms in the derivatiVgs
i e ; ’ o V() = ey, (2,8 = 1/20w%(J.)%, where(J,,)S rep-

parity breaking is encoded im,. As the CS parameter be- v I\ uo\Jab)gs ab)3

comes dominant, the Haldane mass increases, never restorifﬁe”tthe Lotjentaz generators in spinor spacead, =
the symmetry. ey (—0x0, + I'§ %) stands for the spin connection, related

As in the finite temperature case, the gauge dependenég the Christoffel connection through the metricity condition

a __ a_ TXA La a n _
of these findings represent an open avenue to explore [73’7ﬁgomv(2y¥1§ ilélge?ﬁeg vefiﬁgg A +a(°‘2”)_ bCv 'Ipr;elr;natlj”ut:ee d
Furthermore, feedback effects of the dynamical mass and the ' X Nab€,Cy = Guv-

CS coefficient) need to be incorporated by solving the SDE metric on the brane (boundary space) is denotedby and

for the fermion and photon propagators simultaneously. igs“;;i;?dee?;ljkt;gﬁce metric. For applications in graphene, it

where F,,, = V,A, -V, A, = 0,A, — 0,A,, due to

J70 e 2 2 gt gaed
4.3. Anisotropy effects on chiral symmetry breaking Gy dede” = di” = dz" = hyjdv*dx?, (158)

. . . . . with 4, j = 1,2 and thus
Straintronics has emerged as the field in which the electri-

cal properties of graphene and other materials are manip- /ddm\/_—g _ /dt dz det de® Vi (159)
ulated through mechanical deformations (see, for instance, ’
Ref. [78]). Effects of anisotropy (strain) in the gap equation

have been recently considered in Ref. [38]. By writing theConSIderIng the representation

fermion propagator of RQED with strain as a dy—d. =
p p g Q 'é(l (x): eu(x)a(x )7 a?/’l’ ‘LLe , (160)
) © 0 a,pp =de,...dy—1
S(p) = - [VuMuupu]i ) (155) . .
where in the case of graphen® —% corresponds to the third
with spatial dimension. In fact, assuming that all extra dimensions
are flat, the action of this theory is very similar to the corre-
1 0 0 sponding action of QED is curved space [39], hamely,
Muy,=10 v 0 ], (156) )
0 0 v S = /dd“’l‘\/jg - ZFHVFILV
the gap equation is considered as a function of the anisotropy
parametem = wv;/ve. Including one-loop vacuum polar- 1 V. AR GAE () (9, + Q. 4 deA 161
ization effects and a suitable generalization of the Ball-Chiu 26( w AT 97 () (B + W (16D

vertex, the authors of Ref. [38] solved the gap equation and

searched for the effect of on the critical coupling. They Wwherey*(z) = ef;(z)y®. In the local momentum represen-
observe that the net effect is to increase the value.dor  tation, the propagators of the theory have the form

chiral symmetry breaking. ¥

So(p) = oy

4.4. Chiral symmetry breaking in curved space 1 »
g g ’ P AR (q) = 22 <9/w + (€ - 1)ngﬁq]\/lg) , (162)
It is well known that for 2D materials, electric and optical 7 K
properties are modified by impurities and deformation. Thewhere

latter can be introduced in a framework in which these me- R(z')
chanical deformations can be incorporated in terms of curved M? =
geometry of the underlying space-time in the equations of

motion. In this regard, the dynamics of gauge bosons an@thereR(z') is the Ricci scalar. For graphenM,f =0and
electrons in mixed space-time dimensions has been consid4, is a constant.

ered in a curved-space background for the latter (and flat ex- The one-loop renormalization of the fermion propagator

tra dimensions for the former) [39]. The starting point is thehas been discused in Ref. [39]. All divergent terms are the

R(z')
2—7
5 Mi=-— (163)
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same as in curved-space ordinary QED. Curvature effects akeith (92))

only seen in the finite parts of the self-energies. As for the Algol,)(q) = Al (q) + g(q“;])’; , (165)
polarization tensor, such a term is found finite, hence making o ) q )

the beta function null at the one-loop level. Furthermore, theéuch that the longitudinal portion of the propagator, inversely
curvature effects in the case of graphene show up as an effeBroportional tay*, describes how this Green function changes

tive chemical potential of the form = \/M2v%, wherevy in different gauges, being proportional to the gauge fixing pa-
is the effective Fermi velocity. rameter. The LKFT emerges precisely from this part of the

propagator [40, 41, 83-87]. These transformations are more
clearly written in coordinate space. For the fermion propaga-
5. Landau-Khalatnokov-Fradkin transforma- tor, the LKFT states that the fermion propagator in an arbi-
tions trary covariant gaug#(z; &) is related to its form in Landau
gaugeS(z;0) through the transformation
Gauge symmetry lays at the very foundation of the descrip- S(a;€) = S(x;0)eAa(0)~Au()] (166)
tion of fundamental interactions. It can manifest in different ' ’ ’
ways at many levels. For the Green functions of QED, dif-where
ferent sets of relations among them can be derived from the ddq eiew
fundamental symmetry of the theory, as for example Ward- Ag(r) = *i§€2u4*d/ 5y o
[51], Ward-Green-Takahashi- [51-53] and Transverse Ward- (2m)* q
identities [54, 79-82] which relates + 1)-point ton-point € denoting the electric charge, apds an energy scale that
functions in constructions resembling divergence and curfenderse dimensionless il = 4, but yields a dimensionful
of currents. In a different setting, the so-called Landau-couplinge® in QED;. Performing the momentum integration,
Khalatnikov-Fradkin transformations (LKFT) [40,41] which Aa(z) is explicitly given by [43]
have been analyzed in different versions of QED and ex- ita d—4
tended to non-Abelian gauge theories like QCD, have been Ag(z) = ——=T <2) (pa)*~4,
derived from different arguments in the past decades [83-87]. dm
These transformations are non-perturbative in nature an@herea = e?/(4r) is the coupling constant, aid(z) is the
hence have the nature to address the issue of gauge invariarfegler Gamma function.
in perturbative and non-perturbative studies of field theories. ~ To taste a feeling of the structure of LKFT, let us take
A widely used example of LKFT has been in the casef (p;0) = 1 andM (p; 0) = 0, namely, the massless fermion
of the fermion propagator. It has been used to establish theropagator in Landau gauge as a seed of LKFT.
multiplicative renormalizability of spinor and scalar QED in ~ Ford = 3, the transformation reveals that the wavefunc-
different space-time dimensions [88-91]. The main lesson i§on renormalization in an arbitrary covariant gauge is (see,
that this transformation fixes some of the coefficients of thefor instance, Ref. [42,43])
perturbative expansion of the _fermion propagator a_lt gll or- 73 2p
ders. In the case of RQED, given that WTI are satisfied, it F(p;§) =1- » arctan (d§>7
turns interesting that the LKFT serves as a tool to establish
general features of multi-loop calculations as well as nonWith @ = ¢?/(47) which has mass dimension one. We see
perturbative calculations in connection with chiral symme-directly that a weak coupling expansion fixes all terms of the

try breaking. In what follows of this section, we review the form (a€)? at any given order in perturbation theory. This
LKFT in RQED. is a major asset of the LKFT. Below we discuss in detail the

progress achieved so far regarding the LKFT in RQED.

5.1. LKFT for the fermion propagator in equal dimen- 5.2. The LKF transformation for RQED
sional QED o

(167)

(168)

(169)

] ~ Let us consider the free gauge boson propagator over
We start from the most general form of the Dirac fermionp ik dimensions in RQED. It is of the same form as

propagator in arbitrary space-time dimensions and in moj, Eq. egn:photond, but when considered reduced talthe
mentum space and relate it to its coordinate space represegimensional brane, it becomes [27, 29]
tation

QLEQDQ
S(i€) = £X(@:6) + Y (@), (164) B @) = D) (g — 2
through a Fourier transformation. We have additionally (2 die e 170
added the gauge parameter lapak we are interested in the +&D(q7) 2 (170)

form of these propagators for different gauges. Wi
For theories of fermions and bosons in the same space-

i i i ; i D(1-e)

time dimensions, the momentum space free gauge bo D(¢?) = ’ (171)

son propagato\() (¢) has the general form (in analogy (dm)ee (—g?)tee
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wheree, = (d, — d.)/2 and€ = (1 — £.)¢. From here we  this two-point function is consistent with the multiplicative-
see that the longitudinal part of the propagator changes theenormalizable character of the theory. We notice that a sim-
form of the LKFT for the fermion propagator from the equal ilar behavior is found for the propagator in ordinary QED.
dimensional theory. Considering that the propagator changes Next, expanding this result in powers @f we get

from gauge to gauge according to

2
S (2;€) = Sy, (2;0)e Bac (O =Rac (wee)]  (172) F(p,§) =1+ %Fl + <io:) F+0(?), (181)
we define with
- dde —iq-x
Ade (x§5e) = *if(5e)fe2,u4idw / (271.)36 ;4—25€ (173) Fi=In (;é) —vE — Y (2)
r de.—a 2
= —if (ee)éeQM(uw)“‘d% (174) =1In <22) + 2vg +1n(4) — 2, (182)
Wi o [(1 (p2 ) ¢(3/2))2 20(2) +4
2=73 n\ | 77— -
fleg=tdzedlzc) 0y o (a7s) 2 A

(4m)=e ’ 2
1 P>

This is the general form of LKFT for the fermion propagator =3 [(hl <A2> +2vE+ln(4)—2> —2¢(2)+4

in RQED,, 4, first presented in Ref. [45]. Note that when

d, = d. = d, EQq.[L73 matches the usual form of the \yhere y(2) is the digamma function((s) is the Rie-
LKFT Eqg. (16€) in any dimensioni. For graphene and other mann zeta function, and we have made use of the identity

,» (183)

2D materials, ¥(3/2) = —yg — In(4) + 2.
_ g2 _ We make a comparison against the exact one-loop calcu-
1 ife 1—2e 2e—1 . . o
Bs |25 | =163 5 ) (ux)™", (176)  Jation of the wavefunction renormalization [28, 29)],
where the limite — 1/2 is understood. Expanding EQ4€) F(p;&) =1+ @ [4 1= SEL}
arounde = 1/2, definingd = € — 1/2, we get 4m |9 3
. 1 ice? 1 a2 (1=38)° ~2
A, (x 2) _ e [5 e+ 2In(u) + 0(5)] @7 + (&) [18 (T - 2((2) +4)
Since the transformation function, Eql77), diverges at (3¢ + 7)L + 48¢(2)
z = 0, we introduce a cutoft,,,;,, and consider +4 27
—2v
. - — 280
—1 | Az | Zmin, 1 A3 |z, 1 —In (-2 , —8C(2)(L+2—-1n(4)) — —|, (184)
2 2 Tmin 27
(178)

] . ] where
where we have defined = £a/(47), and the dimensionless ,

coupling constanty = €2 /(4x). T—In(-2 In(4) — 2 185
With Eq. (178), we can obtain the non-perturbative struc- " u? () =2 (185)

ture of the fermion propagator in RQED starting with the . o ) .
tree-level massless case in Landau gauge. In coordinafdx is the renormalization mass scale. This correction has

space, we have a contribution that is proportional to the gauge parameter and
' i i one that remains finite in Landau gauge. Thus, we can only

X(z;€) = X (z;0)e " [Ba(min.3) - Ba(.3)] compare against the former from the LKFT resulf; de-

) fined in EqQ.082) is equivalent td. in Eq. (185) provided we

- _ xmuin l’_QV_S. (179) |dent|fy
47
- P P
whereas in momentum space, In (A?> +2vg — In (/ﬂ> . (186)
VL1 —v) (p*\"
F(p,§) = T TCTo\A7) (180) At O(a?), the propagator has terms independent, linear
2

and quadrati€. From Egs./181) and (183), we observe the
This is the non-perturbative form of the fermion propagator inLKFT only gives terms proportionad? at ordera?. This
RQED in any covariant gauge The power-law behavior of means that we can only compare e result, F,, defined
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by Eqg. (183 with the coefficient of & /(4))? in the pertur-  where3(«) is the beta function and(a) the gauge boson

bative result, Eq.X84). We observe that anomalous dimension, given explicitly as
o (ﬁ —20(2) + 4) (187) > >
2718 ’ Bla) = =2ea+ Y Ba™, y(@) == B!, (194)
1=0 1=0

with the identification Eq.18€), as expected. Thus, we have

shown that there is full consistency between our LKFT resultyhere; = 0 for graphene. From here its is evident that the

Eq. (181), and the perturbative result, EQ.84), up to order  fermion anomalous dimension in two gauges, namely,
a?. We hence predict the form of all the coefficients of the
form (a€)? in the all order perturbative expansion from our (0, &) = vy (a,n) — 2a(€ — 1), (195)
LKFT result Eq. 180).

i.e., the gauge dependence is encoded in the one-loop correc-
5.3. Extensions of the LKF transformation tion alone, whereas higher loops are gauge invariant.

The two-loop correction to the mass anomalous dimen-

It is interesting to notice that the LKF transformation can besionym has been explored very recently in [68]. In this work,
represented directly in momentum space. In Refs. [92-95}ne authors consider a theory in which the gauge boson lives
it is discussed the form in which the wavefunction renormal'in 4 dimensionS, but the fermion fields are allowed to live in
ization is related in two gauges labeled by the paraméters 5 general dimensiod,. From the multiplicative renormaliz-
andn, respectively. Assuming that in gaugehe multiloop  apjlity of the fermion mass,
expansion of the wavefunction renormalization is

%) ~2 m = mera (196)
=3 el a (5 ) . ase) - -
0 p? where the renormalization constafi, is obtained from the
relation
with e = 2 — d/2 andj: is a renormalization scale, the LKFT
implies that 1+%s5 , _ const (197)
o0 ~9 me 1 B ZV "
= Z am(§)a™ ('ZQ) ) (189)  whereXs and Xy are the scalar and vector projections of
= the fermion self-energy. Furthermore, the mass anomalous
where the new coefficients dimension runs with the energy SC@‘@.S
['(2— (m—+1)e) dlog Z,
A =0m\N)—F— 77—~ mzfm. 198
(&) (n) (T + me) ot log 1 (198)
" i (14 (m + l) TH(1 —¢) Using theMS-regularization scheme, it is observed that in
P (2 —(m—141)e) the particular case of RQED,
le 32 ;.\ 2
n—¢§ ™ 4 ;)
(( Jo ) < 2) (190) 7 3 (47r> 6 (47T
e »
a3
With the appropriate choice of the renormalization sgale (NCQ - 27) +0 ((M) ) ’ (199)
the multiloop expansion of the fermion propagator can be ob-
tained in an easier form. whereN is the number of fermion families ard is the Euler
Moreover, taking advantage of the above mentioned mulfunction. This mass anomalous function is completely gauge
tiplicative renormalizability of the theory, by factorizing invariant, and thus the critical coupling and/or critical number
of fermion flavor derived fromy,,, are also gauge invariant.
F(p;§) = Zy(a, §) Fr(p; §), (191)
one can see from LKFT that 6. Outlook
(€ —n)e

(192) In this review article we have revisited several aspects of a
mixed-dimensional theory of electron and gauge boson inter-

log Zy (v, &) = log Zy (v, ) — ;

Thus, for the fermion anomalous dimension actions aiming to describe the new family of 2D Dirac mate-
dlog Zy(a, €) rial like graphene and its cousins. Quantum field theories in
Yo (e, §) = —B(a) e mixed dimensions have been discussed theoretically for over
4 decades in literature, but the isolation of graphene has in-
_ gaalog Zw(af)’ (193)  deed boosted the interest of these highly non-local yet well
23 behaved theories. The fact that RQED, the theory we have
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specialized in, is a fixed point in the renormalization groupperature and chemical potential of RQED, similar to that of
allows to extend general conclusions from the behavior ofQCD, is a pending assignment for the interested community.
the Green’s functions in RQED. From the historical point of  The possibility of parity and time reversal symmetry
view, we have revisited the formulation of the theory and thebreaking has been addressed by different groups by including
most fundamental aspects that render the theory suitable fdne CS term in the fundamental Lagrangian. The existence of
phenomenological description of the properties of a varietyparity and time reversal breaking solution is remarkable in
of Dirac materials. The fact that the theory allows a standardhis theory. The effect of the CS coefficient theta as an effec-
1/r fall-off for static Coulomb interactions to the observation tive dielectric constant is seen to impact the chiral symmetry
of the scale invariance of the theory makes it already interesbreaking pattern inasmuch as the effective screening might
ing to explore. Fundamental aspects of causality and unitarityestore chiral symmetry but still break the discrete symme-
have been revisited along with perturbation theory studies offies in the theory.
the propagators and vertices. An interesting feature is the modeling of elastic deforma-
An interesting aspect of this formulation is the possi-tion and anisotropy in relation to the dynamics of fermions
bility to carry out non-perturbative calculations in particu- in curved space. The effects of curvature are seen as density
lar those connected with the chiral symmetry of the theoryeffects through a definition of a position dependent chemical
which might be broken when the coupling is strong enoughpotential.
Schwinger-Dyson equations and renormaization group anal- LKF tranformations are a key ingredient from gauge in-
ysis exploit the structure of the gap equation as compared téariance that have a fundamental role in perturbative and non-
other formulations of QERincluding vacuum polarization perturbative studies in RQED. In the former case, the closed
effects allow to extract critical properties of the chiral transi- connection between RQED and QEIh the largeN limit
tion in RQED. Still a number of improvements and refining serves as a benchmark for perturbative calculations in im-
of the truncations to the infinite tower of SDE in particular in proving the calculation of vacuum polarization effects.
connection with the gauge invariance of the predictions still Many features are still pending to address in this theory.
awaits for a formal answer. Some of which include the influence of magnetic and elec-
The influence of external agents has also been considerdc field in different configurations and potential connections
in this theory. Finite temperature effects indicate a relationVith other phenomenology are important features that per-
of the transition temperature competing against the stronf§aPs the community will address in the future.
coupling which by virtue of the heat bath diminishes, hence
restoring chiral symmetry. Findings of different groups arepcknowledgements
still controversial, hence pointing toward the need of a care-
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