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Non-perturbative field theoretical aspects of graphene and related systems
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In this article, we review the dynamics of charge carriers in graphene and related 2D systems from a quantum field theoretical point of view.
By allowing the electromagnetic fields to propagate throughout space and constraining fermions to move on a 2D manifold, the effective
theory of such systems becomes a non-local version of quantum electrodynamics (QED) dubbed in literature pseudo or reduced QED. We
review some aspects of the theory assuming the coupling arbitrary in strength. In particular, we focus on the chiral symmetry breaking
scenarios and the analytical structure of the fermion propagator in vacuum and under the influence of external agents like a heat bath, in the
presence of a Chern-Simons term, anisotropy and in curved space. We briefly discuss the major advances and some new results on this field.
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1. Introduction

Two dimensional relativistic Dirac fermions have been the
subject of active research for many decades. These are by
no means merely flat cousins of quarks and leptons on the
high energy physics realm, but rather these particles offer
an opportunity to explore vast and intriguing phenomenol-
ogy in other branches of physics as well (see, for instance,
Ref. [1]). The pioneer work of Wallace [2] on the band struc-
ture of graphene paved the way to consider relativistic Dirac
fermions in solid state physics realms. The realization of
the quantum anomaly emerging from the electromagnetic dy-
namics of Dirac fermions andphotonsin two spatial dimen-
sions was first simulated in the seminal work of Semenoff [3]
under condensed-matter considerations, whereas one the first
glimpses into topological matter was achieved from the dy-
namics of relativistic Dirac excitations in a Quantum Hall set
up without Landau levels, where the role of parity anomaly
is seen in the quantization of the conductivity as discussed by
Haldane [4]. High temperature superconductivity in layered
cuprates [5–9] has also been naturally explained in therms of
the dynamics of planar Dirac fermions in these systems. All
of these ideas have highlighted the intricacies and interesting
features of the interactions among Dirac particles constrained
to move on a plane. But the first isolation of graphene mem-
branes by the Cambridge group [10] and others [11] with the

overwhelming evidence of therelativistic nature of charge
carriers in this material [12] have indeed boosted the interest
toward these systems.

The relativistic behavior of this material is rooted in the
organization of the carbon atoms in honeycomb lattices (see,
for instance, [13]). This structure is conveniently represented
by two overlapped triangular sublattices (with a bipartite unit
cell), as represented in Fig. 1.

FIGURE 1. Crystallographic structure of the honeycomb array.
In the left panel, the two overlapping triangular lattices are rep-
resented by the red and green points. The primitive vectors~a1 and
~a2 connecting all points in the crystal structure are shown, and the
unit cell of the honeycomb array highlighted in blue. In the right
panel, the first Brillouin zone is shown. The reciprocal lattice also
shows a hexagonal structure.K andK′ represent the inequivalent
Dirac points.
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The index labelling these sublattices constitute a degree
of freedom for the charge carriers. In the tight-binding ap-
proach, electrons are firmly bounded to the atom except for
one electron per atom belonging to thep orbital. Considering
that the charge carrier can only hop to the nearest neighbor
(which means that only inter-lattice hopping is allowed) one
gets an expression for the energy that vanishes in six points,
two of them non-equivalent. Those are called the Dirac points
K andK′, located precisely where the valence band touches
the conduction band and where the Fermi level is found. One
can easily verify that in the vicinity of each of the Dirac
points, the dispersion relation becomes linear, a feature typ-
ically associated to relativistic fermions. Besides that, the
operators associated to the sublattice degree of freedom ac-
quire a Pauli matrices structure in such a way that the system
can be represented by a Dirac equation, where the speed of
the light is replaced by the Fermi velocityvF , which turns
out to bevF ' 1 × 106 m/s [13]. For this reason, an ex-
tensive work to characterize and explore graphene has been
developed in the framework of quantum field theory (QFT).
Moreover, the analytic structure of the Dirac equation unveils
the fact that electrons in graphene have a chirality degree of
freedom, which is another feature associated to relativistic
particles and which has important implications for the elec-
tronic transport phenomena in this material.

Although in graphene the charge carriers are constrained
to the plane, the external electromagnetic fields fermions
may interact with are not. Because of that, usual Quantum
Electrodynamics fully defined in (2+1)D (QED3), does not
provide a suitable description. Among other inaccuracies,
QED3 yields to a logarithmic static interaction (see, for in-
stance, Ref. [14]) rather than the expected Coulomb inter-
action [15–17] between electrons in graphene. Instead of
that, in a QFT approach, electromagnetic fields must be rep-
resented by Abelian gauge boson fields in (3+1)D and the in-
teracting theory therefore must deal with the subtlety of com-
bining particles moving in different dimensionality.

Mixed dimensional gauge theories have been proposed
in the nineties aiming to explain the then recent discovery
of the Quantum Hall effect [18]. After that, several as-
pects of these theories were developed, in both formal and
applied contexts. The first appearance of theories that pro-
vide a suitable background to explore fermions in two-space
dimension interacting with gauge fields in three-space di-
mension occurred almost simultaneously in Refs. [16, 17].
The procedure adopted in both approaches was to perform
a dimensional reduction of the gauge field, integrating out
its third spatial component, obtaining an effective interac-
tion in (2 + 1)D. Among other features, this dimensional
reduction softens the infrared behavior of the gauge boson
propagator, which behaves as∼ 1/q rather than the usual
pole-dependence1/q2. In Ref. [16] the authors obtain an
effective Lagrangian in(2 + 1)D which for all intents and
purposes corresponds to the mixed dimensional theory de-
scribed above, naming the theory pseudo-quantum Electro-
dynamics (PQED). In particular, the authors focus on trac-

ing a correspondence between PQED and the Chern-Simons
theory. Further formal aspects of PQED were developed in
Refs. [19, 20]. On the other side, in Ref. [17], the discussion
is focused on the renormalization group aspects of graphene,
and it is shown that the mixed dimensional theory possess a
fixed point when the Fermi velocity evolves to the speed of
light. The renormalization group analysis of this theory ap-
plied to graphene was posteriorly extended in Refs. [21–24].
Recently, renormalization group techniques applied to PQED
could successfully describe experimental data on the renor-
malization of the band gap in other two-dimensional ma-
terials like diselenide (WSe2) and molybdenumm disulfide
(MoS2) [25].

A more general procedure that could also be applied to
systems where the charged particles are constrained to a
lower dimensional string was proposed a few years later in
Ref. [26]. The theory resulting from this method was named
reduced-quantum electrodynamics (RQED). Although the
framework developed in Ref. [26] could be used to con-
struct theories in arbitrary dimensions for the fermionsde

and gauge bosonsdγ (which then allow to label the ex-
tended theory as RQEDdγ ,de

), the major goal in Ref. [26]
was to analyse the dynamical chiral symmetry breaking in
systems where two-spatially dimensional fermions interact
with three-spatially dimensional gauge fields, focusing on
condensed matter systemsi. For this purpose, the authors
solve the Schwinger-Dyson equations within an improved
rainbow-ladder approximation and found that the dynamics
of chiral symmetry breaking is rich and nontrivial. Posteri-
orly, the renormalization of RQED to one- and two-loops was
deeply investigated [27–30]. The scale invariance obtained in
previous approaches was confirmed in the context of RQED.

Following [26], some activity involving the chiral sym-
metry breaking of dimensionally reduced theories took place.
In Ref. [31] the Schwinger-Dyson formalism within the rain-
bow approximation was applied to conclude that there is a
critical couplingα = π/8 (in the conventions adopted in this
work) above which there is room for dynamical mass gener-
ation in the theory. The existence of a critical coupling was
confirmed in Ref. [32]. Additionally, a critical number of
fermion families was determined from the similar structure
of the gap equation in QED3 and RQED.

Chiral symmetry breaking was also explored in differ-
ent external conditions: in Refs. [33, 34] the dynamical
symmetry breaking was studied at finite temperature. In
Refs. [35–37] the dynamical mass generation was studied
in RQED and PQED coupled to a Chern-Simons term. In
Ref. [38], anisotropy associated to strained graphene was
shown to slightly affect the critical coupling. Moreover, in
Ref. [39] perturbative aspects of RQED in curved space was
analysed.

Additionally, analysis of the Landau-Khalatnikov-
Fradkin transformations (LKFT) [40, 41] was performed in
RQED. These are non-perturbative transformations that con-
nect the Green’s functions in different gauges and give valu-
able information about the renormalization coefficients in
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multi-loop calculations. Using the knowledge previously ob-
tained in QED4 and QED3 [42–44] the LKFT for the fermion
propagator in RQED were derived in Ref. [45].

In this manuscript we review the foundations of Pseudo-
and Reduced-QED and focus on several aspects of dynami-
cal chiral symmetry breaking explored via Schwinger-Dyson
equations. In Sec. 2 we deduce the Lagrangian of the theory
reviewing formal development as locality, unitarity and scale
invariance. In Sec. 3 we review the formalism of Schwinger-
Dyson equations, analyse general aspects of the gap equa-
tions, deduce the gap equations for RQED in the vacuum,
analysing the wave function renormalization and renormal-
ization group results. Section 4 is dedicated to study chiral
symmetry breaking in a medium, including finite temperature
effects, interaction with a Chern-Simons term and possible
effects of curved space. In Sec. 5 we discuss how LKF trans-
formations can provide information about renormalizability
of the theory. Finally in Sec. 6 we present an outlook of the
subjects discussed in this work.

2. Reduced or Pseudo QED: A historical re-
count

2.1. The Pseudo- or Reduced-QED Lagrangian

The derivation of PQED in Ref. [16] and RQED in Ref. [26]
follow a similar procedure, consisting of performing a dimen-
sional reduction of standard QED, imposing the matter fields
to be constrained to a lower dimensional space. Although
the general case, where an Abelian gauge field in arbitrary
dimension interacts with fermions constrained to a generic
manifold, has been explored in Refs. [26, 27], here we focus
on the particular situation where four-dimensional QED is re-
duced to a three-dimensional theory that represents fermions
in a plane.

The starting point is the usual QED4 Lagrangian,

L = −1
4
FµνFµν − ejµAµ + LM + LGF , (1)

where the first term is the Maxwell term,jµ is a matter cur-
rent that couples to the gauge fieldA, e is the electric charge,
LM is a generic matter kinetic lagrangian andLGF is a gauge
fixing term.

In order to describe matter confined to a plane, the cur-
rent must be defined in such a way that there is no dynamics
in the third spatial coordinate,

jµ(x) =
{

jµ(x0, x1, x2)δ(x3) µ = 0, 1, 2
0 µ = 3 . (2)

An effective interaction can be obtained integrating Eq. (1)
over the gauge fieldAµ. This results in the generating func-

tional (in Euclidean space)

Zeff=exp
[
e2

2

∫
d4xd4x′jµ

3+1(x)Gµν(x−x′)jν
3+1(x

′)
]

= exp
[
e2

2

∫
d4x d4x′jµ

3+1(x)
1
−¤jν

3+1(x
′)

]

≡ exp
[−Seff (jµ

3+1)
]
, (3)

where¤ denotes the d’Alambertian operator.
Considering the definition in Eq. (2) and the usual photon

propagator,

Gµν =
[
−¤δµν +

(
1− 1

ξ

)
∂µ∂ν

] [
1

(−¤)2

]
, (4)

the effective action can be written as

Seff = −e2

2

∫
d3xd3x′jµ(x)KE(x− x′)jµ(x′), (5)

where the (Euclidean) kernel is given by

KE(x− x′) =
∫

d4k

(2π)4
eik·(x−x′)

k2

∣∣∣∣∣
x3=x′3=0

=
1

8π2|x− x′|2 , (6)

and nowx andx′ are defined in three dimensions.
It is possible to construct a theory fully defined in(2+1)D

that mimics this effective action. This can be done noticing
that the kernel in Eq. (6) can be written as a three-dimensional
integral,

1
8π2|x− x′|2 =

1
4

∫
d3k

(2π)2
ei(k·(x−x′))
√

k2
≡ 1

4
1√−¤E

, (7)

where here the d’Alambertian operator is defined in (2+1)D
and the labelE denotes Euclidean space. This yields the fol-
lowing effective action,

Seff = −e2

8

∫
d3xd3x′jµ(x)

1√−¤E

jµ(x′). (8)

It is straightforward to verify that the action in Eq. (8) can be
obtained from the Lagrangian

LRQED=− 1
4
Fµν

[
2√
¤

]
Fµν−ejµAµ+LM+LGF . (9)

This is the Pseudo or Reduced-QED Lagrangian.
A remarkable consequence of the dimensional reduction,

is that the photon propagator of RQED becomes proportional
to 1/q rather than the usual1/q2 found in QED4. This can
be obtained writing the pure gauge sector of the Lagrangian
Eq. (9), including a proper gauge fixing term

LG = −1
2
Fµν 1√

¤
Fµν +

1
2ξ

(∂aAa)2 . (10)

Defining the most general form for the propagator,

∆µν = a(k2)gµν + b(k2)kµkν (11)
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FIGURE 2. Feynman rules for RQED or PQED.

it is possible to find the coefficientsa(k2) and b(k2) (see
e.g.[26]),

∆µν(q2) =
−i√
q2

[
gµν − (1− ξ)

qµqν

q2

]
. (12)

Note that this propagator has a softer infrared behavior than
the photon propagator in QED4 and QED3. We notice that
several groups differ in conventions by a global factor of 1/2
in this propagator.

The Feynman rules for RQED are represented in Fig. 2.

2.2. Coulomb interaction

A crucial feature of this theory is that it correctly reproduces
the Coulomb interaction expected for charged fermions, no
matter if they are constrained to the plane. Naively consid-
ering full QED3, where the gauge fields are also in lower
dimension, yields to a logarithmic interaction that does not
correspond to what is observed in graphene [15–17].

This can be seen considering a pair of static point charges
with associated current

jµ(r, t) =
{

δ(r− x) + δ(r− y), µ = 0
0, µ = 1, 2 . (13)

The interaction energy associated to the current defined above
interacting with a gauge field is given by

E =
e

2

∫
d2rjµ(r)Aµ(r). (14)

Rewriting it in terms of the gauge field propagator,

E =
e2

2

∫
d2rd2r′dt′jµ(r)

[ ∫
d2k

(2π)2

×
∫

dω

2π
eik·(r−r′)−ω(t−t′)Gµν(ω,k)

]
jν(r′). (15)

Integrating overt′ andω and takingµ = ν = 0 to obtain the
potential between static points,

E =
e2

2

∫
d2rd2r′ρ(r)

×
[∫

d2k

(2π)2
eik·(r−r′)G00(ω = 0,k)

]
ρ(r′). (16)

Considering the current (13) and inserting the propagator in
Eq. (12), one obtains, apart from unphysical self-interaction
terms, that

E =
e2

4π|x− y| , (17)

namely, the expected Coulomb interaction.

2.3. Scale invariance

In opposition to QED3, in RQED the electromagnetic cou-
pling e2 is dimensionless, since it originates from the four-
dimensional theory. This can also be seen doing a classical
power counting of dimensions in Eq. (9). The theory is there-
fore classically scale invariant.

In Ref. [17], a 1-loop calculation in a graphene motivated
model, similar to RQED, showed that the system flows to-
wards a Lorentz covariant point in the infrared. Perturbative
calculations performed in theMS scheme at 1 and 2-loops
have shown that at this order the beta function vanishes and
consequently the coupling in RQED does not run [27, 30],
suggesting the absence of charge renormalization. A general-
ization of these previous results demonstrated that the RQED
beta function vanishes at all orders [46].

The renormalized fields and parameters can be defined in
terms of dimensionless renormalization constants,

ψ = Z
1/2
ψ ψr, Ã = Z

1/2
A Ãr,

ã = ZAãr, e = Z1/2
α er, Γµ = ZΓΓµ

r , (18)

whereψ is the fermion field,Ã is the reduced gauge field,a
is a gauge fix parameter,Γµ is the fermion-photon vertex and
the indexr refers to renormalized. Because of finiteness of
the vertex and electron charge, there is a relation between the
renormalization constants,

Zα = (ZΓZψ)−2Z−1
A . (19)

In what follows we briefly review the 1-loop calculation
of the β-function performed in Ref. [27]. The 1-loop cor-
rections to RQED propagators and vertex is represented in
Fig. 3. For fermion fields constrained to a space inde di-
mensions and gauge fields indγ dimensions, the diagrams in
Fig. 3 are defined as,

Rev. Mex. Fis.68040101
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FIGURE 3. RQED 1-loop corrections for a) the photon propagator, b) the fermion propagator and c) the vertex.

iΠµν
1 (q) = −

∫
ddek

(2π)de
Tr

[
(−ieγµ)

i(/k + /q)
(k + q)2

(−ieγν)
i/k

k2

]
,

Σ1(p) =
∫

ddek

(2π)de
(−ieγµ)

i(/p + /k)
(p + k)2

(−ieγν)
i

(4π)εe

Γ(1− εe)
(−k2)1−εe

(
gµν − ξ̃

kµkν

k2

)
,

−ieΛµ
1 =

∫
ddek

(2π)de

i

(4π)εe

Γ(1− εe)
(−k2)1−εe

(
gνρ − ξ̃

kνkρ

k2

)
(−ieγν)

i/k

k2
(−ieγµ)

i/k

k2
(−ieγρ), (20)

whereεγ = (4− dγ)/2, εe = (dγ − de)/2, ξ̃ = ξ(1 − εe), ε = 1 − a anda is a gauge fixing parameter. Integrating out the
expressions (20), after some algebra one obtains [27],

Π1(q2) = −de2(−q2)−εγ−εe

(4π)de/2

1− εγ − εe

3− 2εγ − 2εe
G(1, 1),

ΣV 1(p2) =
−e2Γ(1− εe)(−p2)−εγ

(4π)dγ/2

[
2(1− εγ − εe)2

2− 2εγ − εe
,−ξ(1− εγ − εe)

]
G(1, 1− εe)

Λµ
1 =

e2Γ(1− εe)m−2εγ

(4π)dγ/2
γµ

[
2(1− εγ − εe)2

2− εγ − εe
− ξ̄

]
Γ(εγ)
Γ(2εe)

, (21)

whereG(ν1, ν2) is the massless one-loop propagator defined by

G(ν1, ν2) =
Γ(−de/2 + ν1 + ν2)Γ(de/2− ν1)Γ(de/2− ν2)

Γ(ν1)Γ(ν2)Γ(de − ν1 − ν2)
. (22)

For the configuration relevant to graphene and further two-
dimensional Dirac/Weyl materials,dγ = 4, de = 3, εe = 1/2
andε → 0. Theβ-function is defined as

β(α(µ)) =
d log α(µ)

d log µ
, (23)

and the renormalized coupling constantα is defined as

α(µ)
4π

= µ−2εγ
e2

(4π)dγ/2
Z−1

α (α(µ))e−γεγ , (24)

whereµ−2εγ is a factor to compensate the dimension of the
coupling.

At this order, it can be obtained from Eqs. (21) that
ZΓZψ = 1, which indicates that the Ward identity is satis-
fied. Therefore, according to (19), the charge renormaliza-
tion constantZα depends exclusively onZA. The particu-
lar MS scheme chosen by the author is such that the finite
terms are absorbed in the coupling and the renormalization
constants reduces to unity for finite theories. Conversely, di-
vergent theories are written as a Laurent series inεγ . Within

this framework, it can be extracted from Eqs. (21) that for
dγ = 4 andde = 3, Π1 is independent ofεγ , which implies
that

ZA = 1 + O(α2). (25)

Together with Eqs. (23) and (24), it yields to

β(α(µ)) = −2εγ + γA(α(µ)). (26)

Since this theory has no anomalous dimension associated to
the gauge field, andεγ → 0, the beta function vanishes.

A similar but more troublesome calculation can be per-
formed at 2-loops [27, 30], showing that at this order theβ-
function remains vanishing.

In order to generalize this result to all orders, it is argued
in Ref. [30] that there is no renormalization of the gauge field
since it would come from a non-local term in the free part of
the action while counterterms must be local polynomials in
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the fields and their derivatives. Reminding that the charge
renormalization depends only onZA, this would imply in
scale invariance at all-order. It is pointed out in Ref. [46]
however that this argument does not hold for the present the-
ory, since it is valid only for renormalizable theories, which
does not happen to be the case. For a discussion on this topic
we refer to [46].

An alternative procedure was proposed in order to gen-
eralize the result at 1-loop and show that it is valid at all or-
ders [46]. First of all an effective theory for the gauge fields
is obtained integrating out the fermions in the action, namely,

Γ̃[A] =
∫

d3−εx

[
1
2
Z2

AFµν
1√−∂2

Fµν

]

+ lnDet(i /D) + Sgf . (27)

Invoking gauge symmetry, it is possible to show thatΓ̃(A)
depends solely on the transverse projection of the gauge field,

AT
µ =

(
δµν − ∂µ∂ν

∂2

)
Aν . (28)

ExpressingAT
µ in terms of strength tensor,

AT
ν =

∂µ

∂2
Fµν =

∫
d3r

4π

(x− r)µ

|x− r|3 F r
µν . (29)

it is possible to define the all-order expansion of the effective
action as,

Γ̃=
∑

n≥1

∫
d3x1 . . . d3xnAT

1 . . . AT
n 〈jx1

µ1
. . . jxn

µn
〉

=
∑

n≥1

∫
d3r1. . .d3rnF r1

µ1ν1
. . .F rn

µnνn
γr1,...,rn

µ1ν1,...,µnνn
, (30)

with

γr1,...,rn
µ1ν1,...,µnνn

=
∫

d3x1

4π
. . .

d3xn

4π

(x1 − r1)µ1

|x1 − r1|3 . . .

× (xn − rn)µn

|xn − rn|3 〈jx1
ν1

. . . jxn
νn
〉 . (31)

By power counting and taking into account that the Furry
theorem holds for RQED, the only contribution where diver-
gences may arise is forn = 2. This contribution corresponds
to the usual transverse photon self-energy that leads to the
following finite correction [26],

Πµν(q) =
e2

8q

(
δµν − qµqν

q2

)
. (32)

The effective action for the gauge field then reads

Γ̃[A] =
∫

d3−εx

[
1
2
Z2

AFµν
1√−¤

Fµν

+
e2

8
Fµν

1√−¤
Fµν +O

(
e4F 4

√−¤5

)]
+ Sgf , (33)

which shows that the contributions from higher orders in the
field strength are sufficiently ultraviolet-suppressed and give
only finite corrections. Given that, it is safe to say that the
renormalization constantZA = 1 in RQED to all orders.

2.4. Renormalization group - RQED as a fixed point of
a nonrelativistic model

Although one of the main achievements of RQED is to cor-
rectly describe several aspects of graphene, one point that
deserves special attention is that usually the calculations are
performed in a relativistic framework, where the Fermi veloc-
ity is taken to be the speed of light, or in natural unitsvF → 1.
Since the actual value of the Fermi velocityvF /c ≈ 1/300,
the standard procedure of recoveringvF in the end of the cal-
culation must be done with extreme caution.

Previous to [27,30], a renormalization group analysis was
performed considering a mixed dimensional non-relativistic
model [17], where the Fermi velocity is taken into account.
This breaking of Lorentz invariance can be explicitly appre-
ciated in the action,

S =
∫

d3rψ̄(−γ0∂0 + vγ · ∇)ψ

− ie

∫
d3r(−γ0A0 + vγ ·A)ψ. (34)

Here, a procedure similar to the one adopted in RQED was
performed, where the gauge field was previously integrated
out in the third space coordinate. As expected, this yields to
the same dependence of the photon propagator on1/q found
before.

In order to fully renormalize this model, the Fermi veloc-
ity must be also renormalized, and one more renormalization
constant must be introduced,v0 = ZvvR. This explicitly
modifies the fermion self-energy as:

Σ(ω,k) = Zψ(ω,k)
[
ωγ0 − Zv(ω,k)vγ · k]

. (35)

The one-loop calculation within this model was the first
to predict the absence of charge renormalization for this type
of mixed dimensional theory. Besides that, the renormaliza-
tion constant for the Fermi velocity was obtained [17,24],

Zv = 1− 1
16π

e2

v
ln Λ. (36)

Defining an effective coupling

g =
e2

4πvF
, (37)

whereg plays the role of a fine structure constant withv re-
placing the speed of light. The Fermi velocities at different
energies are related by

v(E) = v(E0)
[
1− g

4
ln

(
E

E0

)]
. (38)
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It is possible to determine the existence of fixed points, im-
posing

βv(v, e2) = 0. (39)

The Callan-Symanzik equation allows for obtaining an ex-
plicit form for the β-function [17], and (39) is satisfied for
vF = 1.

From this, one can conclude that the Fermi velocity grows
as the energy decreases. Furthermore, theβ-function has a
non-trivial zero when the Fermi velocity reaches the speed
of light. This limit corresponds to a Lorentz invariant weak
coupling model whose coupling corresponds to the fine struc-
ture constant of QED. RQED therefore can be seen as a fixed
point of the renormalization group to which the system rep-
resented by (34) flows. A detailed extension of renormal-
ization group aspects of this mixed dimensional theory was
performed in Refs. [21–24].

2.5. Causality and unitarity

As it usually happens to theories where some degrees of free-
dom are integrated out and the resulting theory is represented
by an effective Lagrangian, RQED is nonlocal. Because of
this, it becomes important to check if the theory respects
causality and unitarity.

In fact, it has been shown that this mixed dimension the-
ory respects both conditions. In Ref. [19], the behavior of
the classical Green’s function, advanced and retarded, is in-
vestigated inside and outside the light-cone. Generalizing the
theory, considering a generic powerα for the d’Alambertian
operator in the denominator of the pure gauge term in the
Lagrangian (9), it is shown that the Green’s function van-
ishes outside the light-cone. This implies that this family
of theories respects causality for any value of the parame-
ter α, including RQED, for whichα = 1/2. Furthermore,
for this theory the Green’s function vanishes inside the light-
cone as well, being finite only on its surface. This means that
RQED is constrained by a more strict condition than causal-
ity, it obeys Huygens principle [19, 47]. While causality is
found for anyα, the Huygens principle applies exclusively to
RQED, not holding for its cousin QED3.

Working with a more restrict generalization, where the
power of the d’Alambertian operator in the RQED La-
grangianα = [0, 1), the validity of unitarity was explored
in Ref. [20]. To this end, the authors invoke the optical theo-
rem as follows. TheS-matrix, that relates the initial and the
final state in a scattering process, must be unitary so that the
theory is unitary. Representing theS-matrix asS = 1 + iT ,
this implies that

i
(
T † − T

)
= T †T, (40)

which is the optical theorem. Evaluating the operator in the
above equation between initial and final states, it can be rep-
resented in terms of the propagator,

〈i|T |f〉 = (2π)3δ3(ki − kf )Dif , (41)

where a phase space factor was introduced to ensure a cor-
rect dimensionality. Fori → f the propagator in Eq. (41)
becomes the Feynman propagator and performing a Fourier
transform, Eq. (40) yields to

D∗
F (ω,k)−DF (ω,k) = −iT γD∗

F (ω,k)DF (ω,k). (42)

HereT comes from integrating the phase space factor and is
the characteristic time of the system, andγ = −2(1 − α).
The generalized Feynman propagator can be easily obtained
from the generalized Lagrangian,

DF (t, r) =
∫

dω

2π

∫
d2k

(2π)2
e−iωteik·r

(ω2 − k2 + iε)1−α
. (43)

A straightforward algebra shows that the optical theorem (40)
is obeyed exclusively forα = 0, which corresponds to QED3,
and for RQED, whereα = 1/2, as long as a particular rela-
tion betweenT andε is respected. Therefore, unitarity holds
for these two theories, while for other values of the parameter
α it does not.

All this reasoning was obtained for the free theory. In
the case of interacting theory a similar procedure can be per-
formed considering a dressed propagator in the random phase
approximation (RPA),

Gµν=G(0)
µα

[
δα,ν+ΠαβG

(0)
βν +ΠαβG

(0)
βσΠσγG(0)

γν +...

]
. (44)

Inserting in the above equation the 1-loop expression forΠµν

calculated in Ref. [48], yields to a result similar to the one for
the free theory. Results beyond RPA were also obtained us-
ing the 2-loop expression calculated in Ref. [27]. In this case,
the functional form for the propagator remains the same, the
only modification being the coefficients. Therefore, up to 2-
loops the optical theorem still holds, fulfilling the unitarity
condition.

3. Chiral symmetry breaking

3.1. Schwinger-Dyson equations

Schwinger-Dyson equations (SDEs) are the field equations of
a given quantum field theory (see, for instance [49]). These
conform an infinite tower of relations among the Green func-
tions involved:n-point functions are related to othern-point
and higher-point functions, each verifying its own SDE. In
their formal derivation, no assumption is made regarding the
strength of the coupling constant(s) of the theory. Therefore,
these equations are non-perturbative in nature and provide a
useful tool to understand phenomena like bound-states, chi-
ral symmetry breaking and confinement. The only systematic
scheme to truncate the infinite tower of SDEs is perturbation
theory, but in this scheme none of the above mentioned phe-
nomena can be addressed reliably. In gauge theories such as
QCD and QED, symmetry-preserving truncations of SDEs
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FIGURE 4. Radiative corrections to the fermion propagator in
QED. These include corrections to the fermion propagator itself,
to the gauge boson propagator and vertex corrections.

FIGURE 5. Fermion self-energy. Blobs over the different parts of
the diagram indicate that all perturbative corrections to these pares
are already taken into account.

have made a tremendous development in addressing several
non-perturbative aspects of these theories, which would oth-
erwise require other frameworks to be addressed, including
lattice field theory and effective model considerations.

SDEs are formally derived from the observation of the
vanishing of the functional derivatives of the connected
Green functions generating functional with respect to the
fields. An alternative diagrammatic derivation of these equa-
tions can be derived directly from the Feynman rules of the
theory under study. In QED, for instance (see Ref. [50]), the
perturbative expansion of the fermion propagator, depicted in
Fig. 4 shows three types of corrections, those to the fermion
propagator itself (first row of corrections), those to the gauge
boson propagator (second row of corrections) and the third
kind corresponds to vertex corrections (third row of correc-
tions).

The infinite resummation of diagrams is better carried out
by defining the fermion self-energyΣ(p), which is repre-
sented in the diagram in Fig. 5 and upon which the pertur-
bative expansion of the fermion propagator contains all the
radiative corrections shown in Fig. 4. In terms ofΣ(p), the
perturbative expansion of the fermion propagator is shown in
Fig. 6.

It corresponds to the expansion

S(p) = S0(p) + S0(p)Σ(p)S0(p)

+ S0(p)Σ(p)S0(p)Σ(p)S0(p) + . . . = S0(p)

+ S0(p)Σ(p) [S0(p) + S0(p)Σ(p)S0(p) + . . .]

= S0(p) + S0(p)Σ(p)S(p). (45)

The last line corresponds to the SDE for the fermion propa-
gator depicted in Fig. 7.

FIGURE 6. Perturbative expansion of the fermion propagator in
terms of the fermion self-energy.

FIGURE 7. SDE for the fermion propagator.

FIGURE 8. SDE for the inverse fermion propagator.

It is convenient to re-write the above equation in terms of
the inverse fermion propagator, which then becomes

S−1(p) = (S0(p))−1 − Σ(p), (46)

and diagrammatically can be depicted as in Fig. 8.
This equation involves the full photon propagator and

fermion-photon vertex. The former, by a similar reasoning,
can be seen to obey its own SDE depicted in the diagram in
Fig. 9.

This two-point function is coupled to the fermion propa-
gator and the fermion-photon vertex which verifies the SDE
shown in Fig. 10.

This diagram shows that the three-point function is cou-
pled to two-point and four-point functions, hence illustrating
the structure of the infinite tower of SDE.

At first glance, it seems impossible to envisage a non-
perturbative truncation of the tower of SDEs without compro-
mising the reliability of the predictions hence derived. Never-
theless, because of the gauge symmetry, a number of relations
exist in which a(n + 1)-point Green function can be written
on terms ofn-point function. That is the case of Ward iden-
tities in QED [51–54]. Thus, one can attempt to propose a
symmetry-preserving truncation and explore general features
of the non-perturbative solution to the infinite tower of equa-
tions.

FIGURE 9. SDE for the gauge boson propagator.

FIGURE 10. SDE for the fermion-boson vertex.
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Below we shall review a favorite truncation to the SDE
for the fermion propagator or gap equation, the so-called
rainbow-ladder truncation. We also review how to improve
of this truncation by including vacuum polarization effects
and vertex corrections.

3.2. Structure of the gap equation

Let us consider the parity preserving ordinary version of
QED. The SDE for the fermion propagator in an arbitrary
number space-time dimensionsd is given by

S−1(p) = S−1
0 (p) + 4πiα

×
∫

ddk

(2π)d
Γµ(k, p)S(k)γν∆µν(p− k), (47)

whereα = e2/(4π) is the (dimensionless) fine-structure con-
stant ande is the electric charge. The most general form of
this propagator is commonly expressed as

S(p) =
F (p2)

6p−M(p2)
, (48)

whereF (p2) is the wavefunction renormalization function
andM(p2) is the mass function. The tree level values of these
functions areF (p2) = 1 andM(p2) = m0 wherem0 is the
fermion bare mass. Furthermore,∆µν(p − k) represents the
full gauge boson propagator andΓµ(k, p) the full fermion-
boson vertex. By neglecting vacuum polarization effects,i.e.,
working within thequenchedapproximation, we replace the
full photon propagator∆µν(q) by its bare counterpart

∆(0)
µν (q) =

1
q2

(
gµν + (ξ − 1)

qµqν

q2

)
, (49)

whereξ is the covariant gauge parameter. In terms of dia-
grams, it amounts to consider Fig. 11.

Under this approximation, the gap equation can be solved
with a suitable choice of the fermion-boson vertex. The
rainbow-ladder approximation (see [50]) corresponds to the
perturbation-theory inspired choiceΓµ(k, p) = γµ, which
allows to decouple the SDE for the fermion propagator from
the infinite tower, as it corresponds to the diagram in Fig. 12.

Chiral symmetry breaking is usually approached start-
ing with m0 = 0. Thus, the natural consequence of this
phenomenon corresponds to the dynamical appearance of
fermion mass where there was none. Upon inserting the
fermion and gauge boson propagators and fermion-photon
vertex in the gap equation, after multiplying it by6p and 1,
respectively, we obtain the coupled system of equations

FIGURE 11. SDE for the fermion propagator in quenched approx-
imation.

FIGURE 12. SDE for the fermion propagator in rainbow-ladder
approximation.

1
F (p2)

= 1−4πiα

d p2

×
∫

ddk

(2π)d
Tr[6pγµS(k)γν ]∆(0)

µν (p− k),

M(p2)
F (p2)

=
4πiα

d

×
∫

ddk

(2π)d
Tr[γµS(k)γν ]∆(0)

µν (p− k) . (50)

Let us explore the solutions to this coupled set of equations
in different space-time dimensions.

3.2.1. Gap equation ind = 4

It is interesting to consider the scenario of chiral symmetry
breaking in ordinary QED. After taking the traces and Wick
rotate to Euclidean space Eqs. (50), by switching to hyper-
spherical coordinates, angular integrals can be performed an-
alytically. Radial integrations are divergent. However, reg-
ulating these integrals with a hard cut-off in the momentum,
we reach to the following pair equations to be solved self-
consistently,

1
F (p2)

= 1 +
αξ

4π

Λ2∫

0

dk2 F (k2)
k2 + M2(k2)

×
[

k4

p2
Θ(p2 − k2)−Θ(k2 − p2)

]
,

M(p2)
F (p2)

=
α

4π
(3 + ξ)

Λ2∫

0

dk2 F (k2)M(k2)
k2 + M2(k2)

×
[

k2

p2
Θ(p2 − k2)−Θ(k2 − p2)

]
, (51)

whereΘ(x) is the Heaviside step function. In Landau gauge,
ξ = 0, we have thatF (p2) = 1 and thus we have to solve the
following non-linear integral equation for the mass function,

M(p2) =
3α

4π

[
1
p2

p2∫

0

dk2 k2M(k2)
k2 + M2(k2)

+

Λ2∫

p2

dk2 M(k2)
k2 + M2(k2)

]
. (52)
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This equation has no analytical solution. Nevertheless, we
can gain some insight by transforming it into the differential
equation

d

dp2

(
p4 dM(p2)

dp2

)
= −3α

4π

p2M(p2)
p2 + M2(p2)

. (53)

Forp2 À M2(p2), the above Eq. (53) linearizes to

d

dp2

(
p4 dM(p2)

dp2

)
= −3α

4π
M(p2). (54)

which is restricted to the boundary conditions

d

dp2

[
p2M(p2)

]
∣∣∣∣∣
p2=Λ2

= 0,
dM(p2)

dp2

∣∣∣∣∣
p2=κ2

= 0. (55)

The infrared cut-offκ2 is introduced to preserve the non-
invariance of the original Eq. (52) underM(p2) → cM(p2)
with c constant asp2 → 0. Physically, it serves to quantify
the amount of mass that is dynamically generated. We look
for solutions to Eq. (54) of the form

M(p2) = (p2)s (56)

which after substituting in Eq. (54) yields

s(s + 1) = −3α

4π
. (57)

Solving fors, we have that

s± = −1
2
±

√
1− 3α

π

2
. (58)

Thus, depending on the value ofα compared to the value of
αc = π/3, we could observe an oscillatory behavior or a
power-law solution. Consistency with boundary conditions
demandsα > αc. Moreover, the infrared and ultraviolet cut-
offs are constrained as

Λ
κ

= exp


 π√

α
αc
− 1

− 2


. (59)

This behavior is called theMiransky scaling lawwhich states
that the chiral symmetry breaking in QED corresponds to a
conformal phase transition [55]. Thus, we conclude that in
order for chiral symmetry breaking to be broken in ordinary
QED, the couplingα must exceed a critical value.

3.2.2. Gap equation in QED3

A similar reasoning can be followed to explore the scenario
of chiral symmetry breaking in QED restricted to a plane,
namely, QED3. The main difference in this case is that the
electric chargee2 has mass dimension one and hence serves
as a natural scale for all mass scales in the theory. Further-
more, QED3 is super-renormalizable, and thus there is no

need to regulate the integrals. In the rainbow approxima-
tion and in Landau gauge the gap equation, reduces to (see
Ref. [56])

M(p) =
e2

2π2p

∞∫

0

dk
kM(k)

k2 + M(k)2
ln

∣∣∣∣
k + p

k − p

∣∣∣∣ . (60)

At this point, although the integrals are finite, one can intro-
duce an ultraviolet regulatorΛ in the integral withΛ À e2

and consider at the end the limitΛ → ∞ maintaininge2/Λ
fixed. Proceeding in this way, after expanding the logarithm
for k À p andp À k, the integral reduces to

M(p) =
e2

π2

p∫

0

dk
M(k)

k2 + M2(k)

+
e2

π2p2

Λ∫

p

dk
k2M(k)

k2 + M2(k)
. (61)

This equation can be transformed into the differential equa-
tion

d

dp

[
p3 dM(p)

dp

]
= −2e2

π2

p2M(p)
p2 + M2(p)

, (62)

subjected to the boundary conditions

d

dp

[
p3 dM(p)

dp

]∣∣∣∣∣
p=0

→ 0, M(p)

∣∣∣∣∣
p=Λ

→ 0. (63)

Again, in the regime wherep2 À M2(p), the differential
equation (62) linearizes in the following form

d

dp

[
p3 dM(p)

dp

]
= −2e2

π2
M(p), (64)

which admits the general solution

M(p) =
4e2

π2p

[
C1J2

(
2

√
2e2

π2p

)

+ C2Y2

(
2

√
2e2

π2p

)]
, (65)

whereJν(x) andYν(x) are Bessel functions of the first and
second kind of orderν, respectively. UV boundary condition
demands thatC2 = 0. The constantC1 cannot be fixed from
the IR conditions. Nevertheless, noticing again that the non-
linear Eq. (60) is non-invariant underM(p) → cM(p) with c
a constant, we require to change that boundary condition by
demanding that

M(κ) = κ, (66)
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FIGURE 13. Multiple solutions to the gap equation in QED3. The
solid black curve corresponds tõM(x) = x. The red long-dashed
curve corresponds to a positive definite solution withκ = α̂/2,
the dashed blue curve toκ = α̂/20 and the dotted green curve to
κ = α̂/40.

in the IR, whereκ is a regulator quantifying the amount of
mass being generated. Such boundary condition allows to
write the solution to the gap equation as [57]

M̃(x) = n
α̂

x
J2

(√
2α̂

x

)
, (67)

with

M̃(x) =
M(p/Λ)

Λ
, α̂ =

e2

4πΛ
,

n =
κ2

α̂

1

J2

(√
2α̂
κ

) . (68)

It is interesting that this solution is positive definite forκ ∼
α̂, but whenκ ' α̂/20, the solution develops a zero. Further-
more, whenκ ' α̂/40 a new zero develops, as illustrated in
Fig. 13.

This pattern continuesad infinitumand emerges from the
analytical properties of the gap equation, which corresponds
to a Hammerstein equation of the first kind. This structure is
particular of the truncation and is modified when some of the
assumptions are removed from consideration. See Ref. [57]
fir further discussion.

3.2.3. Gap equation in QED3 including vacuum polariza-
tion effects

Including vacuum polarization effects in this model turns out
interesting. Let us consider the scenario where we include a
large numberN of massless fermion families circulating in
loops. This amounts to ressuming an infinite number of pla-
nar diagrams as shown in Fig. 14 such that one considers the
unquenched approximation depicted in Fig. 15.

In this case, the non-pertubative gauge boson propagator
can be calculated exactly. In an arbitrary covariant gauge, it
reads [58–60]

FIGURE 14. Vacuum polarization in the leading1/N approxima-
tion.

FIGURE 15. SDE for the fermion propagator in the leading1/N

approximation.

∆µν(q) =
1

q2 + α̃q
8

(
gµν − qµqν

q2

)
+ ξ

qµqν

q4
, (69)

whereα̃ = e2N . We observe that the infrared behavior of
this propagator softens as1/q whenq → 0 as compared to
the usual1/q2 pole structure in Eq. (49). It turns out that
this softening makes the theory to loose its confining proper-
ties. It also has consequences regarding the chiral transition,
as we can see from the gap equation. In the leading order of
the 1/N approximation,F (p) = 1 + O(1/N) and the full
fermion photon vertexΓµ = γµ +O(1/N). Working in Lan-
dau gauge, the mass function obeys

M(p) =
α̃

2π2Np

∞∫

0

dk
kM(k)

k2 + M2(k)

× ln
∣∣∣ α̃/8 + 8|k + p|
α̃/8 + 8|k − p|

∣∣∣. (70)

Once more, by expanding the logarithm fork À p and
p À k, we have

M(p) =
α̃

π2Np

p∫

0

dk
kM(k)

k2 + M2(k)

( k

p + α̃/8

)

+
α̃

π2Np

∞∫

p

dk
kM(k)

k2 + M2(k)

( p

k + α̃/8

)
. (71)

This expression is equivalent to the differential equation

d

dp

[
p2(p + α̃/8)2

2p + α̃/8
dM(p)

dp

]
= − α̃

π2N

p2M(p)
p2 + M2(p)

, (72)

subjected to the boundary conditions

0 ≤ M(0) < ∞,

[
p
dM(p)

dp
+ M(p)

]

p=α̃

= 0. (73)

In the large-coupling regimẽα À p, the differential equa-
tion (72) simplifies to

d

dp

[
p2 dM(p)

dp

]
= − 8

π2N

p2M(p)
p2 + M2(p)

. (74)
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Moreover, in the momentum domainp2 À M2(p), the above
equation linearizes and takes the simplified form

d

dp

[
p2 dM(p)

dp

]
= − 8

π2N
M(p). (75)

Equation (75) admits a power law solution of the form

M(p) = ps, (76)

which upon substitution into (75) yields

s± = −1
2
± 1

2

√
1− 32

π2N
. (77)

Thus, the solution to the linearized equation is

M(p) = C1p
− 1

2+ 1
2

√
1− 32

π2N + C2p
− 1

2− 1
2

√
1− 32

π2N . (78)

Again, we notice the existence of a critical number of fermion
families,Nc = 32/π2 that distinguishes an oscillatory from
a decaying behavior of the mass function. Consistency with
boundary conditions suggests thatN > 32/π2 and the
amount of dynamically generated mass, quantified asM(p =
0) also follows a Miransky scaling law of the form

M(0) = α̃ exp


 −2π√

Nc

N − 1
+ δ


 . (79)

Thus, this scenario has a similar scaling behavior as ordinary
QED. Furthermore, vacuum polarization effects translate to
the existence of a critical (large) number of fermion families
above which chiral symmetry breaking is no longer possible
and the chiral symmetry restoration corresponds to a confor-
mal phase transition [55].

It is interesting that the gauge dependence of the mass
function and wavefunction renormalization have been con-
sidered in covariant gauges [61] and up to the next-to-leading
order of the approximation [62–65]. These ressumations car-
ried out in an arbitrary non-local gauge do not spoil the exis-
tence of the critical valueNc for the restoration of chiral

symmetry and only refine the value of this critical number
Nc. The conclusion up to date is that such number is an inte-
gerNc ≤ 3.

3.2.4. Gap equation in RQED

So far we have reviewed different scenarios for chiral sym-
metry breaking in ordinary QED. The gap equation in this
theory is such that the wavefunction renormalization is trivial
in Landau gauge. The scenario of criticality emerges ind = 4
as the need for the coupling to exceed a critical value for the
theory to be able to break dynamically the chiral symmetry.
In three dimensions, the quenched theory does not exhibit
this feature. Chiral symmetry breaking can be broken for ar-
bitrary values of the coupling. Nevertheless, including vac-
uum polarization effects, it is observed that if the number of
fermion families circulating in loops exceeds a critical value,
chiral symmetry cannot be broken. This statement is valid
up to1/N2 and in arbitrary non-local gauge. An interesting
observation is that when fermions in loops remain massless,
there is a softening of the infrared pole in the propagator1/q2

as the gauge boson momentumq → 0 to a1/q softer behav-
ior. This behavior is similar to the tree-level gauge boson
propagator in RQED

∆(0)
µν (q) =

1
2q

[
gµν − (1− ζ)

]
qµqν

q2
. (80)

Notice that in this case, the gauge parameterζ is not the same
asξ in the ordinary theory, but here it has to be renormalized
because fermions and bosons live in different dimensions. In
fact,ζ = ξ/2, and henceζ = 0 corresponds to Landau gauge.

Following the reasoning of the previous subsections, we
truncate the gap equation in the rainbow approximation as in
Ref. [31]. In an arbitrary covariant gauge, it is equivalent to
the following coupled system of equations (see [66])

1
F (p)

= 1 +
α

2πp2

Λ∫

0

dkF (k)k2

k2 + M(k)2

{
θ(k − p)

k

[
−(2 + ζ)p2 + (1− ζ)

p4

k2

]
+

θ(p− k)
p

[
−(2 + ζ)k2 + (1− ζ)

k4

p2

]}
,

M(p)
F (p)

=
α(2 + ζ)

2π

Λ∫

0

dk
k2F (k)M(k)
k2 + M2(k)

[
θ(k − p)

k
+

θ(p− k)
p

]
, (81)

with the dimensionless couplingα = e2/4π as usual. It is evident from the above expressions that forζ = 0, F (p) 6= 1.
Nevertheless, as a first approximation, let us takeF (p) = 1 and explore the solution of the gap equation. Then, the gap
equation becomes the non-linear integral equation for the mass function [31,66]

M(p) =
2α

πp

p∫

0

dk
k2M(k)

k2 + M2(k)
+

2α

π

Λ∫

p

dk
k2M(k)

[k2 + M2(k)]k
. (82)
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This expression can be straightforwardly converted into
the following differential equation

p2M ′′(p) + 2pM ′(p) +
2α

π

p2M(p)
p2 + M2(p)

= 0, (83)

restricted to the boundary conditions

lim
p→Λ

(
p
dM(p)

dp
+ M(p)

)
= 0,

lim
p→0

p2 dM(p)
dp

= 0. (84)

Upon linearizing the differential equation (83) when p À
M(p), we can again write the resulting equation in the Euler-
Cauchy form

d

dp

(
p2 dM(p)

dp

)
+

α

π
M(p) = 0, (85)

which, admits a general solution of the form

M(p) = C1p
n+ + C2p

n− , (86)

where

n± = −1
2
± 1

2

√
1− 8α

π
. (87)

As in previous cases, the non-invariance of the gap equation
under scalingsM(p) → cM(p) wherec is a constant de-
mands the introduction of an infrared cut-offκ and the mod-
ification of the infrared boundary condition to

M(κ) = κ. (88)

Thus, definingαc = π/8, boundary conditions demand that
α > αc. Furthermore, the dynamical mass obeys the Miran-
sky scaling

Λ
κ

= exp


 A√

α
αc
− 1

+ δ


 , (89)

with A = −2π andδ = −4, hence indicating that the chiral
symmetry is broken in a conformal phase transition provided
the coupling exceeds a critical value.

In order to explore the effect of the wavefunction renor-
malization in the result (89), particularly in relation with the
gauge dependence, below we explore some variants of the
rainbow-ladder truncation following [66].

3.2.5. Effect of the wavefunction renormalization

To explore the sensitivity of the truncation to the effect of the
wavefunction renormalization function in connection with
the gauge parameter dependence of the critical coupling and
the dynamical mass, we conduct the following exercise:

• First, we imposeF (p) = 1 in all covariant gauges and
solve the equation

M(p) =
α

2πp

p∫

0

dk
k2M(k)

k2 + M2(k)
2k[2 + ζ]

k

+
α

2πp

Λ∫

p

dk
k2M(k)

[k2 + M2(k)]k
[2p](2 + ζ), (90)

for various values of the gauge parameterζ.

• As a second variant, we solve the coupled system of
equations in (81) for various values of the gauge fixing
parameter.

• Next we impose the Ward-Takahashi identity (WTI),

(k − p)µΓµ(k, p) = S−1
F (k)− S−1

F (p), (91)

which allow to split the vertex into its longitudinal and
transverse pieces,

Γµ(k, p) = Γµ
L(k, p) + Γµ

T (k, p),

where(k − p)µΓµ
T (k, p) = 0. We exploit this iden-

tity into the gap equation in the following way. As-
suming that all the dependence on the gauge parameter
arises only from the photon propagator, we split this
two-point function into its transverse component and
the gauge parameter dependent longitudinal part,

∆(0)
µν (q) = ∆T

µν(q) + ζ
qµqν

q3
, (92)

the gap equation can be written as

S−1(p) = S−1
0 (p) + 4iαπ

∫
d3k

(2π)3
γµS(k)Γν∆T

µν(q)

+ 4iαπζ

∫
d3k

(2π)3
γµS(k)Γν qνqµ

q3
, (93)

with q = k − p. In the final term we replace the iden-
tity (91) and upon taking traces after multiplying by
1 and 6p, respectively, we find the gap equation to be
equivalent to the coupled system of equations
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1
F (p)

= 1 +
α

2πp2

Λ∫

0

dkF (k)k2

k2 + M(k)2

{
θ(k − p)

k

[
−2p2 − ζ

p4

k2

]
+

θ(p− k)
p

[
−2k2 − k4

p2

] }
+

αζ

4πp2

λ∫

0

dkF (k)k2

F (p)(k2 + M2(p)

×
{

θ(k − p)
k

[
2p2k2

k2
− p4

k2
− M(k)M(p)p2

k2
+

2p2M(k)M(p)
k2

]
+

θ(p− k)
p

[
2p2k2

p2
− p2k2

p2
− M(k)M(p)k2

p2

+
2p2M(k)M(p

p2

]}
M(p)
F (p)

=
α

π

Λ∫

0

dk
k2F (k)M(k)
k2 + M2(k)

[
θ(k − p)

k
+

θ(p− k)
p

]
+

αζ

2π

λ∫

0

dkF (k)k2

F (p)(k2 + M2(p)

×
{

θ(k − p)
k

[
M(p)

(
1− p2

k2

)
−M(k)

p2

2k2

]
+

θ(p− k)
p

[
−M(k)

(
1− k2

p2

)
−M(p)

k2

2p2

]}
. (94)

Then we solve the coupled system of equations for various values ofζ.

• As a final variant of the gap equation, we use the Ball and Chiu vertex [67], which is explicitly constructed to verify the
Ward identity and is written as follows

Γµ
BC =

γµ

2

[
1

F (k)
+

1
F (p)

]
+

1
2

( 6k + 6p)(k + p)µ

(k2 − p2)

[
1

F (k)
− 1

F (p)

]
+

(k + p)µ

(k2 − p2)

[M(k)
F (k)

− M(p)
F (p)

]
. (95)

This is a standard choice for the longitudinal piece of the vertex and it is explicitly constructed to satisfy these relations.
Nevertheless, the additional terms to the central part exhibit spurious kinematic singularities ask2 → p2. These spurious
singularities do not appear in perturbation theory and are unwanted in a non-perturbative construction of the vertex.
These actually are cancelled by more educatedansatzeof the vertex which include the transverse piece unconstrained
by these identities. Thus, for our purposes, by keeping only the central part , which is

Γµ
CBC =

γµ

2

[
1

F (k)
+

1
F (p)

]
, (96)

we guarantee that the ward identities are satisfied up to spurious singular terms which are not expected to appear in a
complete form of the vertex.

Then, the gap equation corresponds to the following coupled system of equations

1
F (p)

= 1 +
α

2πp2

Λ∫

0

dkF (k)k2

k2 + M(k)2

[
1

F (k)
+

1
F (p)

] {
θ(k − p)

k

[
−(2 + ζ)p2 + (1− ζ)

p4

k2

]
+

θ(p− k)
p

×
[
−(2 + ζ)k2 + (1− ζ)

k4

p2

] }
,

M(p)
F (p)

=
α(2 + ζ)

2π

Λ∫

0

dk
k2F (k)M(k)
k2 + M2(k)

[
1

F (k)
+

1
F (p)

] [
θ(k − p)

k
+

θ(p− k)
p

]
, (97)

In Fig. 16 we compare the findings of the critical coupling in different gauges for the variants of the truncation described
above.

At first glance, it might seem surprising that the simplest scenario of neglecting wavefunction renormalization effects
and solving the mass function alone yields the least gauge parameter dependent results. This is better understood from a
renormalization group analysis, that exploits the similarities of the1/N approximation in QED3 and RQED itself, as discussed
below.

3.3. Renormalization Group Analysis

It is remarkable that RQED becomes an infra-red Lorentz invariant fixed-point for a general theory of mixed dimensions for
fermions and gauge bosons, RQEDdγ ,de [17], because it allows to analyze the critical behavior of the general theory, regarding
chiral symmetry breaking, around such point. The important observation is that as we approach this fixed point, the Fermi
velocity of fermion fields tends to the speed of light in vacuum and at the same time, the coupling constant approaches the
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FIGURE 16. Critical coupling as a function of the covariant gauge
parameter for different models.

fine-structure constant of QED. Therefore, one can exploit
these facts to compare the critical structure of RQED and
QED3 [32, 62–65, 68]. This is particularly relevant to un-
derstand the gauge dependence of the critical numbers asso-
ciated to the chiral transition.

In order to make explicit the mapping between QED3 and
RQED, we start by expressing the gauge boson propagator in
RQED as [32]

∆(RQED)
µν (q) =

1
2q

(
gµν + (ζ − 1)

qµqν

q2

)
, (98)

where we recall that the gauge fixing parameterζ of RQED
is half of the corresponding parameter of QED. On the other
hand, the leading behavior of the gauge boson propaga-
tor (69) of QED3 in the largeN approximation has the form

∆(QED3)
µν (q) =

8
Ne2q

(
gµν + (ξ − 1)

qµqν

q2

)
. (99)

Thus, identifying

1
π2N

→ α

4π
, ζ → ξ

2
, (100)

we can simply map the solutions of the gap equation in
RQED to those of QED3 in the1/N approximation.

For instance, the gauge parameter dependence of the crit-
ical number of fermion families for chiral symmetry restora-
tion in QED3 was explored in Refs. [32,68]. The authors find
that the critical condition can be written as

1 =
16(2 + ξ)

Lc
. (101)

Then, from (100) we can straightforwardly find that for
RQED, this result is translated to the critical coupling

1 = 16(2 + ξ)
αc

4π
, (102)

which shows a strong gauge dependence of the critical cou-
pling, although it does not depend on the flavor number
N . This result comes up as a consequence of a partial re-
summation of diagrams in the approximation. It can be im-
proved, for instance, by considering a RPA calculation of the

vacuum polarization tensor. In the RPA, the gauge boson
propagator has the leading behavior

∆(RQED)
µν (q) =

1
2q(1 + Ne2/16)

×
(

gµν + (ζ − 1)
qµqν

q2

)
. (103)

Thus, by redefining the coupling as

α → α′ =
α

1 + e2N/16
, (104)

the gauge dependence of the critical coupling is now

αc =
π

2(5 + ξ̄)−N2π/4
, (105)

with ξ = (1 + ξ̄)/2 andN = 2 for graphene. The gauge
dependence ofαc is milder in this case.

At next-to-leading order, one observes that the gauge de-
pendence of the critical coupling has the form

αc =
4π

8(2 + ξ) +
√

d(x)
, (106)

where

d(ξ) = 8
(

S(ξ)− 8
[
4− 112

3
ξ + 9ξ2

]
− 4Nπ2

)
, (107)

and

S(ξ) = (1− ξ)R1 − (1− ξ2)
R2

8

− (7 + 16ξ − 3ξ2)
P2

128
, (108)

with the coefficients

R1 = 163.7428, R2 = 209.175, P2 = 1260.720. (109)

This is a rather intricate form of the coupling which never-
theless improves upon the leading order gauge parameter de-
pendence. The RPA still helps to reduce the resudial gauge
dependence of the critical coupling by redefining

α → α′ =
α

1− αN
4π2

. (110)

Thus, we observe that in this framework, the appropriate re-
interpretation of the coupling permits a less severe gauge de-
pendence of the critical value of the coupling to trigger chiral
symmetry breaking.

4. Chiral symmetry breaking in a medium

Mixed-dimensional theories allow natural extensions of the
QFT formalism to incorporate the effects of (classical and
quantum) external agents like a heat bath and/or external
electromagnetic, strain or gravitational fields, among others.
Generally speaking, these effects have the potential to en-
hance or inhibit phase transitions. In the case of the chiral
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transition, a heat bath is known to have the effect of restor-
ing chiral symmetry. The imaginary-time formalism of ther-
mal field theory (TFT) is a natural extension to consider in
this case. On the contrary, electromagnetic fields promote
the breaking this symmetry. In particular, in 3D materials,
the configuration of parallel electric and magnetic fields gives
rise to a special configuration that can be understood as the
presence of a Chern-Simons (CS) term in the electromagnetic
Lagrangian, with the added possibility of parity and time re-
versal symmetry breaking. In 2D systems, the presence of
such a term for fermion fields is realized as the possibility of
mass terms different from the ordinary Dirac mass.

A Haldane term of this type has interesting effects on the
chiral phase transition in ordinary QED3. Curvature effects
are also important in modifying the electric and optic prop-
erties of the materials and are generally expected to occur in
materials with defects. In this section, we review the effect
of a thermal bath, the role of a Chern-Simons term, the influ-
ence of strain and the formulation of RQED on curved space.
We specialize the discussion in how these effects impact the
scenario for chiral symmetry breaking.

4.1. Finite temperature effects

The scenario of chiral symmetry breaking in RQED has been
considered at finite temperature. Let us revisit the calcu-
lations in Refs. [26, 31, 33, 34]. We start our discussion
from the imaginary time formalism of TFT. We introduce the
fermionic Matsubara frequenciesωn = (2n + 1)πT and re-
place of any integral over the temporal component of an ar-
bitrary three-vectorp = (p0,p) by the summation over fre-
quencies,

∫
dp0f(p0,p) → T

∞∑
n=−∞

f(−iωn,p). (111)

Under this prescription, working in the Landau-like gauge
ζ = 0 and neglecting wavefunction renormalization effects,
the gap equation takes the form [33]

Mm(p) =
∞∑

n=−∞

∫

Λ

d2k

(2π)2
(4παT )Mn(k)

(2n + 1)2π2T 2 + k2 + Mn(k)2

× 1
[4(m− n)2π2T 2 + (p− k)2]1/2

, (112)

whereMn(p) = M(ωn,p) is the mass function associated
to every Matsubara frequency and the notation

∫
Λ

indicates
that divergent integrals are to be regularized with an ultravi-
olet cut-offΛ.

Several considerations are at hand. First of all, as cus-
tomary in TFT, one would be tempted to perform the sum
over Matsubara frequencies and introduce the cut-off in mo-
mentum integrals. Nevertheless, because these frequencies
appear inside the square-root, the standard techniques to per-

form such sums are hard to implement. First of all, the con-
vergence of the sum

U =
∞∑

n=−∞
un

=
∞∑

n=−∞

1√
n2 + A2

1
(2n + 1)2 + B2

= 2
∞∑

n=1

u(+)
n + u0 (113)

is ensured (see Ref. [33]) provided the sum in the last row of
the above expression converges. In Eq. (113), it is assumed
that A2, B2 > 0 andu

(+)
n = (un + u−n)/2. The proof of

convergence is established via the auxiliary sum

V =
∞∑

n=1

vn =
∞∑

n=1

1
(n + A)(n + B)

, (114)

which is convergent and satisfies thatvn ≥ u
(+)
n ≥ 0 and

lim
n=→∞

u
(+)
n

vn
= 0. (115)

Then, becauseV is convergent, so it is
∑

n u
(+)
n and thus,U

is also convergent.
Alternatively, one can perform the momentum integrals

first and then the sum over Matsubara frequencies. In this
case, one can assume that the mass function is the same for
all the frequencies such that the gap equation can be written
as [33]

M(p) =
4αT

π

∞∫

0

dk kM(k)I(k), (116)

where

I(k) =
∞∑

n=−∞

1
(2n + 1)2π2T 2 + k2 + M(k)2

× K(xn)√
(p− k)2 + 4n2π2T 2

, (117)

K(x) denoting an elliptic function and

xn = − 4kp

(k − p)2 + 4n2π2T 2
. (118)

Considering only the zeroth Matsubara frequencyn = 0,
an approximation that is commonly used in high-temperature
regime studies, the gap equation reduces to [33]

M(p) =
4αT

π

∞∫

0

dk
k

|k − p|
K(x0)M(k)

π2T 2 + k2 + M2(k)
. (119)
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ExpandingkK(x0)/|k − p| for k À p andk ¿ p, the gap
equation becomes

M(p) =
2αT

p

p∫

0

dk
kM(k)

π2T 2 + k2 + M2(k)

+ 2αT

Λ∫

p

dk
M(k)

π2T 2 + k2 + M2(k)
. (120)

Upon linearization, the resulting integral equation can be cast
in the form of the differential equation

d

dp

(
p2 dM(p)

dp

)
+

2αT

p
M(p) = 0, (121)

subject to the boundary conditions

lim
p→πTc

p2 dM(p)
dp

= 0, lim
p→Λ

M(p) = 0, (122)

whereTc would correspond to the critical temperature for
chiral symmetry restoration, which will be defined from the
analytical behavior of the mass function. The general solu-
tion to Eq. (121) is expressed as

M(p) = C1

√
αT

p
J1

(√
8αT

p

)

+ C2

√
αT

p
Y1

(√
8αT

p

)
, (123)

whereJ1(x) andY1(x) are Bessel functions of the first and
second kind. UV boundary condition implyC2 = 0. At the
same time, the IR boundary condition imposes the following
relation

2J1(ξ) + ξJ0(ξ)− ξJ2(ξ) = 0, (124)

with ξ =
√

8αT/πTc. The above relation has nontrivial
solutions for a givenn such that{ξn} = {ξ0, ξ1, . . .} with
the hierarchyξn < ξn+1 for any givenn. The lowest so-
lution ξ0 ' 2.4 fixes the value of the critical temperature
Tc = 0.44αT . This result establishes that even at low tem-
peratures, the value

αT
c ' αcξ

2
0 , (125)

exceeds the critical value of the coupling in vacuum [33]. It
has it s origin in the fact that there is no evidence that the mass
function M(p) vanishes at the critical temperature. There-
fore, a more refined treatment is called for.

One can improve on the above result recalling that the
phenomenon of dynamical chiral symmetry breaking is in-
frared. Therefore, one can simply neglect the external mo-
mentum in the gap equation (119), which then becomes [33]

1 = 2αT

Λ∫

0

dk

π2T 2 + k2 + m2(T )
, (126)

where we have introduced the shorthand notationm(T ) =
M(0, T ). RetainingΛ as the largest scale of the problem,
two solutions are found for the above expression, namely

m(T ) = ±π
√

T 2
c − T 2, Tc =

α2T 2Λ2

(2αT + Λ)2
. (127)

Keeping the positive solution alone, one can derive the criti-
cal coupling for chiral symmetry breaking of the form

αc(T ) =
Λ

Λ− 2T
. (128)

Nevertheless, this expression is oblivious to the critical value
of α atT = 0.

A different view of the gap equation can be achieved as
follows [34]. Let us introduce dimensionless quantities,

p = Λσ, k = Λρ, T = ΛT̃ ,

Mm(k) = ΛM̃m(ρ), (129)

such that the gap Eq. (112) can be written as

M̃m(σ) = αT̃

Nf∑

n=−Nf−1

1∫

0

dρ

π
dθ ρ

× M̃n(ρ)
(2n + 1)2π2T̃ 2 + ρ2 + M̃2

n(ρ)

× 1∣∣∣4(m− n)2π2T̃ 2 + (σ − ρ)2
∣∣∣
1/2

, (130)

whereθ is the angle betweenσ andρ.ii Notice that in this
case, the cut-off is not introduced in momentum integrals,
but in the number of frequenciesNf that are summed up.
Whithin the so-called constant mass approximation [69], all
mass functions involved in the gap equation can be replaced
with their values at zero momentum. Denoting̃Mm(σ) →
Sm, the gap equation under this approximation simplifies to

Sm = 2αT̃

Nf∑

n=−Nf−1

1∫

0

dρρ
Sn

(2n + 1)2π2T̃ 2 + ρ2 + S2
n

× 1∣∣∣4(m− n)2π2T̃ 2 + ρ2
∣∣∣
1/2

. (131)

Fixing the the cut-offNf such that

(2Nf + 1)πT0 = Λ ⇒ (2Nf + 1)πT̃0 = 1

⇒ T̃0 =
1

(2Nf + 1)π
, (132)
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we are allowed to write all temperature scales asT =
kT̃0, k ∈ N. Thus, performing momentum integration ana-
lytically and assuming a linear scaling ofSm ≈ γm(T − Tc)
near criticality,

Sm ≈ 2αT̃

Nf∑

n=−Nf−1

Sn√
π2T̃ 2 |−4m2 + 8mn + 4n + 1|

×
[

tan−1

√
4π2T̃ 2(m− n)2 + 1

π2T̃ 2 |−4m2 + 8mn + 4n + 1|

− tan−1 2 |m− n|√
|−4m2 + 8mn + 4n + 1|

]
. (133)

Specializing on the zeroth Matsubara frequencym = 0, ob-
serving thatSn/S0 ≤ 1, and recalling our assumption that
near the critical point the temperature-dependentSm(T̃ ) → 0
we have that [34]

1
αc

=
Nf∑

n=−Nf−1

2
π
√
|4n + 1|

[
tan−1

√
4π2T̃ 2

c n2 + 1
π2T̃ 2

c |4n + 1|

− tan−1 2 |n|√
|4n + 1|

]
. (134)

The sum overn is finite for every value of temperature. This
allows to obtain the behavior of the critical coupling,αc, as
shown in Fig. 17.

The behavior of the critical coupling as a function of tem-
perature is consistent with

αc(T̃ ) =
π

8
+ aT̃ + bT̃ 2, (135)

with a, b real numbers. This behavior exhibits the correct be-
havior ofαc(T̃ = 0) = π/8 [34].

It is remarkable that within the finite temperature frame-
work, the gauge dependence of the critical temperature and
coupling is a pending matter up to date.

FIGURE 17. Critical coupling as a function of the critical tempera-
ture.

4.2. Chiral symmetry breaking with a Chern-Simons
term

Physics on two spatial dimensions is very interesting in its
own right. For electromagnetic interactions, there exists the
possibility to include a Chern-Simons (CS) term in the gauge
sector through the Lagrangian

L = −i
ϑ

4
εµνρAµ∂νAρ −AµJµ, (136)

whereϑ is the CS coefficient (see, for instance, Ref. [70]).
Such a term induces a topological mass to the gauge bosons.
It also induces fractional (anyon) statistics for matter parti-
cles as well as parity and time-reversal symmetry breaking of
the theory, among other interesting effects. It is through this
term that, for instance, the fractional quantum Hall effect can
be explained and the emergence of the transverse conductiv-
ity without Landau levels can be explained.

The scenario of chiral symmetry breaking in QED3 with
a CS has been explored by solving the gap equation in differ-
ent truncation schemes [71–74]. The CS coefficient acts as an
effective vacuum polarization such that when a large number
of fermion families are considered, besides the existence of a
critical number of familiesNc that restores chiral symmetry,
there exists a critical value for the CS coefficientϑc that also
induces chiral symmetry restoration. The order of the phase
transition in this case changes to order one.

In RQED, the impact of the dimensionless parameterϑ
has been explored by our group (for a study exploring the ef-
fects of a modified Chern-Simons term containing a dimen-
sionful parameter see [75] and for other approaches involv-
ing time reversal symmetry breaking see [76]). The starting
point is the addition of the CS term (136) in the RQED La-
grangian. The effective theory under consideration has the
structure [36]

LCS
RQED = −1

4
Fµν 2

(−¤)1/2
Fµν + ψ̄(iγµ∂µ + eγµAµ)ψ

+
1
2ζ

(∂αAα)2 +
−iϑ

4
εµνρAµ∂νAρ, (137)

where all the quantities carry their usual meaning. The tree-
level gauge boson propagator derived from the above La-
grangian is

∆̂µν(q) =
1
2q

1
(1 + ϑ2)

(
δµν − qµqν

q2

)

+
ζ

q2

qµqν

q2
− 1

2q2

ϑ

(1 + ϑ2)
εµνρq

ρ . (138)

From here it is immediate to notice the effect of the CS
coefficient as an effective dielectric constant [37] that has the
potential to modify the conditions for chiral symmetry break-
ing. Moreover, for fermions, it is convenient to introduce
their right- andleft-handed projections,ψ± = χ±ψ, defined
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from the chiral matrixτ = [γ3, γ5]/2. In this form, the chiral
projectors are defined such that

χ± =
1
2

(1± τ) , (139)

which fulfill the following properties

χ2
± = χ± , χ+χ− = 0, χ+ + χ− = 1. (140)

The advantage of working with these projectors is the follow-
ing: In order to explore the general scenario of chiral sym-
metry breaking and its consequence, the dynamical genera-
tion of fermion masses, we consider the possibility of emer-
gence of an ordinary Dirac mass termmeψ̄ψ, which breaks
explicitly chiral symmetry, but is even under partity and time-
reversal transformations. On top of that, there is another mass
term that potentially can be generated, the Haldane mass term
moψ̄τψ. Although this term does not break chiral symme-
try, it violates parity (and time-reversal) and because the CS
is parity violating we expect a relation between them. With
these considerations, the most general Lagrangian we con-
sider for our analysis is [36,46]

LCS
RQED = −1

4
Fµν 2

(−¤)1/2
Fµν +

1
2ζ

(∂αAα)2

+ ψ̄(iγµ∂µ + eγµAµ + me + τmo)ψ

+
−iϑ

4
εµνρAµ∂νAρ, (141)

These masses however do not correspond to poles in the
fermion propagator. The operatorsχ± project the upper
and lower two-component spinors, making explicit that the
would-be poles of each fermion species correspond to com-
bination of Dirac and Haldane mass terms. Explicitly, upon
acting with the chiral projectors, the matter Lagrangian can
be written as

LF = ψ̄+(i/∂ + M+)ψ+ + ψ̄−(i/∂ + M−)ψ−, (142)

whereM+ = me + mo andM− = me −mo.
As mentioned earlier, the presence of a CS term gener-

ates a mass for the photon in QED3, whereϑ has mass di-
mension one. Such a mass is known as topological mass (in
this case no real topology is involved and the terminology
comes from historical reasons). In QED3, radiative correc-
tions may give a contribution to this mass. For the case of
QED3 incremented with a CS term, the Coleman-Hill the-
orem states that only one-loop radiative corrections may be
non-vanishing, with the other corrections being identically
zero to all orders. We note that the argument to demonstrate
this theorem is valid for a theory with massive fermions. Re-
markably, it was shown that the Coleman and Hill theorem is
also valid for RQED [77] in spite of the fact that the CS co-
efficient is dimensionless. Therefore, the only possible cor-
rection to the photon propagator comes from the one-loop
diagram Fig. 3a).

In order to address the issue of chiral symmetry and par-
ity breaking, in Ref. [35] a robust truncation of the SDE
was incorporated. To this end, the possibility of Fermi ve-
locity renormalization by splitting the fermion momentum
P = (p0,p) into its temporalp0 and spatialp components
such that the propagator reads

S(p0,p) = − F 0
+(p)γ0p0 + F+(p)γ · p + M+(p)

(F 0
+)2(p)p2

0 + F 2
+(p)vF p2v2

F + M2
+(p)

χ+

−F 0
−(p)γ0p0+F−(p)vF γ · p+M−(p)

(F 0−)2(p)p2
0+F 2−(p)p2v2

F + M2−(p)
χ− . (143)

Tha gap equation is truncated including a gauge-boson–
fermion vertex dressing model and vacuum polarization ef-
fects. The former is based in the central Ball-Chiu vertex,
which in this formalism takes the explicit form

Γν(P, K) =
1
4

[
H+

νσ(P ) + H+
νσ(K)

]
γσ(1 + γ5)

+
1
4

[
H−

νσ(P ) + H−
νσ(K)

]
γσ(1− γ5), (144)

where

H±(P ) =




1
F 0
±(P )

0 0

0 1
vF F±(P ) 0

0 0 M±(P )
F±(P )


 , (145)

whereas the latter are included modelling a Coulomb-like
approximation. Noticing that the most general form of the
gauge boson propagator can be written as

∆µν(Q) = GL(Q)P 3
µν + GT (P 1

µν − P 3
µν)

+ GDP 6
µν + GE(P 10

µν − P 11
µν), (146)

where the involved tensors are

P 1
µν = gµν − QµQν

Q2
, P 3

µν =
nµnν

n2
,

P 6
µν = εµναQα , P 10

µν = −εµαβQαnβnν
Q2

q2
,

P 11
µν = −εναβQαnβnµ

Q2

q2
, (147)

with

nµ = gµ0 − q0Qµ

Q2
. (148)

It turns out that these vacuum polarization effects enter into
the fermion gap equation only through the combinationsGL

andGDE = GD + GE . Then, the gap equation becomes
a system of equation for the six unknown functionsF 0

±(P ),
F±(P ) andM±(P ), which depend on the value of the cou-
pling constantα and the CS coefficientϑ. Different mod-
els of GL and GDE are proposed that are consistent with
a Coulomb-like interaction. The main conclusions that are
drawn from this work are
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• The gap equation supports solutions which break par-
ity, associated to the generation of a Haldane mass.

• Non-trivial parity-preserving solutions are found that,
nevertheless break chiral symmetry.

• The Dirac dynamical mass reduces asθ increases. This
confirms that the CS coefficient behaves as an effective
dielectric constant, as was proposed in Ref. [39].

A point-wise evolution of the dynamical mass in terms
of the coupling and the CS term was considered by some of
us in Ref. [36]. Assuming that Fermi velocity renormaliza-
tion has already been carried out and thus no need to split
the spatial and temporal components of the momentum, a
rainbow-ladder truncation of the gap equation was adopted
with the additional simplification of neglecting the wavefunc-
tion renormalization effects settingF±(p) = 1 in Landau
gauge. The gap equation is found equivalent to the following
uncoupled system of non-linear integral equations for the left
and right handed mass functions

M±(p) = 2πα

∫
d3k

(2π)3

[
2M±(k)

k2 + M2±(k)
1

q(1 + ϑ2)

∓ 1
q2

ϑ

1 + ϑ2

k · q
k2 + M2±(k)

]
. (149)

Inspired by the reasoning of the previous section, the gap
equation can be linearized and reduced to the following dif-
ferential equation

p2M ′′
±(p) + 2pM ′

±(p) +
2α

π(1 + ϑ2)
M±(p)

= ∓ 2αϑ

π(1 + ϑ2)

[
5p

3
− 6p2

κ
+

Λ3

9p2
− p

9

]
, (150)

with the boundary conditions

p2M ′±(p)

∣∣∣∣∣
p→κ

= 0,

(pM ′±(p) + M±(p))

∣∣∣∣∣
p=Λ

= 0, (151)

whereκ is the IR regulator introduced as a scale that quan-
tifies the amount of mass being dynamically generated. The
general solution to Eq. (150) is

M±(p) = p−
1
2

√
1− α

αc
− 1

2

×
(
c
(2)
± p

√
1− α

αc + c
(1)
±

)
+ f(ϑ, p), (152)

where
αc =

π

8
(1 + ϑ2) (153)

and

f(ϑ, p) =

[
π

(
ϑ2 + 1

)(
∓ 2αϑ

ϑ2 + 1

) (
κ

(
α + 3π

(
ϑ2 + 1

))

× (
Λ3 + 14p3

)− 54p4
(
α + π

(
ϑ2 + 1

)) )]

× 1
18κp2 (α + π (ϑ2 + 1)) (α + 3π (ϑ2 + 1))

.

(154)

We notice that whenϑ = 0, f(ϑ, p) = 0 and we ob-
tain precisely the solution discussed in (89) which demands
α > αc = π/8. For ϑ 6= 0, we observe the role of the CS
coefficientϑ as an effective dielectric constant. The func-
tion f(ϑ, p) describes deviations from the Miransky scaling
by virtue of the CS coefficient.

The numerical solution to the non-linear Eqs. (149) are
shown in Figs. 18 and 19 forϑ = ηϑc with varying0 ≤ η ≤
1 but keepingα = 1.07αc fixed. These numbers are consis-
tent with a critical value ofϑc = 6.6 × 10−14. For small

FIGURE 18. Mass functionM−(p) plotted as a function of mo-
mentum. The different curves correspond to different values of the
CS parameterϑ = ηϑc with 0 ≤ η ≤ 1 and fixed value of the
couplingα = 1.07αc.

FIGURE 19. Mass functionM+(p) plotted as a function of mo-
mentum. The different curves correspond to different values of the
CS parameterϑ = ηϑc with 0 ≤ η ≤ 1 and fixed value of the
couplingα = 1.07αc.
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FIGURE 20. The absolute value of the height of the right-handed
fermion mass functionM+(0) plotted as a function of the CS pa-
rameterϑ. Aboveϑc the massM+(0) becomes negative and here
we flipped its sign for a better visualization. The different curves
correspond to different values of the couplingα = xαc.

FIGURE 21. Height of the left-handed fermion mass function
M−(0) plotted as a function of the CS parameterϑ. The differ-
ent curves correspond to different values of the couplingα = xαc.

values ofp, we observe that both masses are finite and ap-
proximately flat asp → 0. For larger momentum, the height
of the mass functions decreases. This happens for different
values ofϑ providedα > αc. Furthermore, Figs. 20 and 21
show that the dynamical masses depend on the magnitude
of the CS coefficient in opposite forms for right- and left-
handed fermions. WhileM−(0) increasesM+(0) decreases
asϑ grows bigger. At the critical valueϑc, M+(0) flips sign
abruptly, signaling a first order phase transition.

Notice that the heightsM±(0) of the mass functions
parametrize how much mass has been generated. These
hights are depicted in Figs. 20 and 21 for a constant value
of α = xαc. Aboveϑc, M+(0) undergoes a discontinuity
and jumps assuming negative values, as shown in Fig. 22,
where we have flipped the sign after the discontinuity to lead
the eye. The blue dots stand for the absolute value ofM+

aboveϑc, where we observe that the two masses become the
mirror image of one another. We notice that since the curves
are re-scaled, they coincide for any value ofx > 1.

FIGURE 22. M±(0) re-scaled by their value atϑ = 0. The solid
line corresponds toM+(0) and dashed lineM−(0). The red dots
are the absolute value|M+(0)| above the criticalϑ.

FIGURE 23. Dynamical mass term, even under parity transforma-
tion, as a function of the CS parameterϑ.

FIGURE 24. Dynamical mass term, odd under parity transforma-
tion, as a function of the CS parameterϑ.

The Dirac and Haldane masses that appear in the La-
grangian (141) can be obtained summing up or subtracting
M±(0), respectively. From Figs. 23 and 24, we notice that
both these masses are non-vanishing for a large range of val-
ues ofϑ, clearly showing that CSB can occur within this
model. For smallϑ, the Dirac massme, associated to chiral
symmetry breaking, presents a plateau, leaping at a critical
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ϑ to a value several orders of magnitude smaller. After that,
me increases again and finally drops to zero. We interpret the
discontinuity as an attempt to restore chiral symmetry, associ-
ated to the first piece in Eq. (149). That would be the critical
point if f(ϑ, 0) was absent. However, as one moves towards
the right of the discontinuity, the CS contributionf(ϑ, 0) be-
comes dominant andme starts to be significant again. For
even largerϑ the Dirac mass drops and the real criticalϑ, for
which chiral symmetry is restored, is aroundϑ = 1. In turn,
parity breaking is encoded inmo. As the CS parameter be-
comes dominant, the Haldane mass increases, never restoring
the symmetry.

As in the finite temperature case, the gauge dependence
of these findings represent an open avenue to explore [73,74].
Furthermore, feedback effects of the dynamical mass and the
CS coefficientϑ need to be incorporated by solving the SDE
for the fermion and photon propagators simultaneously.

4.3. Anisotropy effects on chiral symmetry breaking

Straintronics has emerged as the field in which the electri-
cal properties of graphene and other materials are manip-
ulated through mechanical deformations (see, for instance,
Ref. [78]). Effects of anisotropy (strain) in the gap equation
have been recently considered in Ref. [38]. By writing the
fermion propagator of RQED with strain as

S(p) = − [γµMµνpν ]−1
, (155)

with

Mµν =




1 0 0
0 v1 0
0 0 v2


 , (156)

the gap equation is considered as a function of the anisotropy
parameterη = v1/v2. Including one-loop vacuum polar-
ization effects and a suitable generalization of the Ball-Chiu
vertex, the authors of Ref. [38] solved the gap equation and
searched for the effect ofη on the critical coupling. They
observe that the net effect is to increase the value ofαc for
chiral symmetry breaking.

4.4. Chiral symmetry breaking in curved space

It is well known that for 2D materials, electric and optical
properties are modified by impurities and deformation. The
latter can be introduced in a framework in which these me-
chanical deformations can be incorporated in terms of curved
geometry of the underlying space-time in the equations of
motion. In this regard, the dynamics of gauge bosons and
electrons in mixed space-time dimensions has been consid-
ered in a curved-space background for the latter (and flat ex-
tra dimensions for the former) [39]. The starting point is the

action

S =
∫

ddγ x
√−q

[
−1

4
FµνFµν − 1

2ξ
(∇µAµ)2

]

+
∫

ddex
√
−Hψ̄iγµ(x) (∂µ + Ωµ + ieAµ)ψ, (157)

whereFµν = ∇µAν − ∇νAµ = ∂µAν − ∂νAµ, due to
the cancellation of connection terms in the derivatives∇µ,
γµ(x) = eµ

νγν , (Ωµ)α
β = 1/2ωab

µ (Jab)α
β , where(Jab)α

β rep-
resent the Lorentz generators in spinor space andωa

µ b =
eν
b (−δν

λ∂µ + Γν
λµea

λ) stands for the spin connection, related
to the Christoffel connection through the metricity condition
namely∇µea

ν = ∂µea
ν − Γλ

µνeaλ + (ωµ)a
be

n
ν = 0. In all the

above, thevielbeinea
λ verifiesηabe

a
µeb

ν = gµν . The induced
metric on the brane (boundary space) is denoted byHαβ and
gµν is the bulk space metric. For applications in graphene, it
is considered that

gµνdxµdxν = dt2 − dz2 − hijdxidxj , (158)

with i, j = 1, 2 and thus
∫

ddγ x
√−g =

∫
dt dz dx1 dx2

√
h. (159)

Considering the representation

ẽa
µ(x)=

{
ea
µ(x)δ(xdγ−de), a, µ = µe

0 a, µ = de, . . . dγ − 1 , (160)

where in the case of graphenexdγ−de corresponds to the third
spatial dimension. In fact, assuming that all extra dimensions
are flat, the action of this theory is very similar to the corre-
sponding action of QED is curved space [39], namely,

S =
∫

ddγ x
√−g

[
− 1

4
FµνFµν

− 1
2ξ

(∇µAµ)2 ψ̄γ̄µ(x) (∂µ + Ωµ + ieAµ)ψ

]
, (161)

whereγ̄µ(x) = ea
µ(x)γa. In the local momentum represen-

tation, the propagators of the theory have the form

S0(p) =
6p

p2 −M2
e

,

∆(0)
µν (q) =

1
q2 −M2

γ

(
gµν + (ξ − 1)

qµqν

q2 −M2
γ

)
, (162)

where

M2
e =

R(x′)
12

, M2
γ = −R(x′)

6
, (163)

whereR(x′) is the Ricci scalar. For graphene,M2
γ = 0 and

Me is a constant.
The one-loop renormalization of the fermion propagator

has been discused in Ref. [39]. All divergent terms are the
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same as in curved-space ordinary QED. Curvature effects are
only seen in the finite parts of the self-energies. As for the
polarization tensor, such a term is found finite, hence making
the beta function null at the one-loop level. Furthermore, the
curvature effects in the case of graphene show up as an effec-
tive chemical potential of the formµ =

√
M2

e v4
F , wherevF

is the effective Fermi velocity.

5. Landau-Khalatnokov-Fradkin transforma-
tions

Gauge symmetry lays at the very foundation of the descrip-
tion of fundamental interactions. It can manifest in different
ways at many levels. For the Green functions of QED, dif-
ferent sets of relations among them can be derived from the
fundamental symmetry of the theory, as for example Ward-
[51], Ward-Green-Takahashi- [51–53] and Transverse Ward-
identities [54, 79–82] which relate(n + 1)-point to n-point
functions in constructions resembling divergence and curl
of currents. In a different setting, the so-called Landau-
Khalatnikov-Fradkin transformations (LKFT) [40,41] which
have been analyzed in different versions of QED and ex-
tended to non-Abelian gauge theories like QCD, have been
derived from different arguments in the past decades [83–87].
These transformations are non-perturbative in nature and
hence have the nature to address the issue of gauge invariance
in perturbative and non-perturbative studies of field theories.

A widely used example of LKFT has been in the case
of the fermion propagator. It has been used to establish the
multiplicative renormalizability of spinor and scalar QED in
different space-time dimensions [88–91]. The main lesson is
that this transformation fixes some of the coefficients of the
perturbative expansion of the fermion propagator at all or-
ders. In the case of RQED, given that WTI are satisfied, it
turns interesting that the LKFT serves as a tool to establish
general features of multi-loop calculations as well as non-
perturbative calculations in connection with chiral symme-
try breaking. In what follows of this section, we review the
LKFT in RQED.

5.1. LKFT for the fermion propagator in equal dimen-
sional QED

We start from the most general form of the Dirac fermion
propagator in arbitrary space-time dimensions and in mo-
mentum space and relate it to its coordinate space represen-
tation

S(x; ξ) = 6xX(x; ξ) + Y (x; ξ), (164)

through a Fourier transformation. We have additionally
added the gauge parameter labelξ as we are interested in the
form of these propagators for different gauges.

For theories of fermions and bosons in the same space-
time dimensions, the momentum space free gauge bo-
son propagator∆(0)

µν (q) has the general form (in analogy

with (92))
∆(0)

µν (q) = ∆T
µν(q) + ξ

qµqν

(q2)2
, (165)

such that the longitudinal portion of the propagator, inversely
proportional toq4, describes how this Green function changes
in different gauges, being proportional to the gauge fixing pa-
rameter. The LKFT emerges precisely from this part of the
propagator [40, 41, 83–87]. These transformations are more
clearly written in coordinate space. For the fermion propaga-
tor, the LKFT states that the fermion propagator in an arbi-
trary covariant gaugeS(x; ξ) is related to its form in Landau
gaugeS(x; 0) through the transformation

S(x; ξ) = S(x; 0)e−i[∆d(0)−∆d(x)] , (166)

where

∆d(x) = −iξe2µ4−d

∫
ddq

(2π)d

e−iq·x

q4
, (167)

e denoting the electric charge, andµ is an energy scale that
renderse dimensionless ind = 4, but yields a dimensionful
couplinge2 in QED3. Performing the momentum integration,
∆d(x) is explicitly given by [43]

∆d(x) = − iξα

4π
d−2
2

Γ
(

d− 4
2

)
(µx)4−d, (168)

whereα = e2/(4π) is the coupling constant, andΓ(z) is the
Euler Gamma function.

To taste a feeling of the structure of LKFT, let us take
F (p; 0) = 1 andM(p; 0) = 0, namely, the massless fermion
propagator in Landau gauge as a seed of LKFT.

For d = 3, the transformation reveals that the wavefunc-
tion renormalization in an arbitrary covariant gauge is (see,
for instance, Ref. [42,43])

F (p; ξ) = 1− ᾱξ

2p
arctan

(
2p

ᾱξ

)
, (169)

with ᾱ = e2/(4π) which has mass dimension one. We see
directly that a weak coupling expansion fixes all terms of the
form (ᾱξ)j at any given order in perturbation theory. This
is a major asset of the LKFT. Below we discuss in detail the
progress achieved so far regarding the LKFT in RQED.

5.2. The LKF transformation for RQED

Let us consider the free gauge boson propagator over
bulk dimensions in RQED. It is of the same form as
in Eq. eqn:photond, but when considered reduced to thede-
dimensional brane, it becomes [27,29]

∆µeνe(q) = D(q2)
(

gµeνe −
qµeqνe

q2

)

+ ξ̃D(q2)
qµeqνe

q2
, (170)

with,

D(q2) =
i

(4π)εe

Γ(1− εe)
(−q2)1−εe

, (171)
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whereεe = (dγ − de)/2 andξ̃ = (1 − εe)ξ. From here we
see that the longitudinal part of the propagator changes the
form of the LKFT for the fermion propagator from the equal
dimensional theory. Considering that the propagator changes
from gauge to gauge according to

Sde(x; ξ) = Sde(x; 0)e−i[∆̃de (0;εe)−∆̃de (x;εe)], (172)

we define

∆̃de(x; εe) = −if(εe)ξe2µ4−dγ

∫
ddeq

(2π)de

e−iq·x

q4−2εe
(173)

= −if(εe)ξe2 Γ(de−a
2 )

2aπde/2Γ(a
2 )

(µx)a−de , (174)

with

f(εe) =
Γ(1− εe)(1− εe)

(4π)εe
, a = 4− 2εe. (175)

This is the general form of LKFT for the fermion propagator
in RQEDdγ ,de

first presented in Ref. [45]. Note that when
dγ = de = d, Eq. (173) matches the usual form of the
LKFT Eq. (166) in any dimensiond. For graphene and other
2D materials,

∆̃3

(
x,

1
2

)
=
−iξe2

16π2
Γ

(
1− 2ε

2

)
(µx)2ε−1, (176)

where the limitε → 1/2 is understood. Expanding Eq. (176)
aroundε = 1/2, definingδ = ε− 1/2, we get

∆̃3

(
x,

1
2

)
=

iξe2

16π2

[
1
δ

+ γE + 2 ln(µx) +O(δ)
]

. (177)

Since the transformation function, Eq. (177), diverges at
x = 0, we introduce a cutoffxmin and consider

−i
[
∆̃3

(
xmin,

1
2

)
−∆̃3

(
x,

1
2

)]
= ln

(
x

xmin

)−2ν

,

(178)

where we have definedν = ξα/(4π), and the dimensionless
coupling constantα = e2/(4π).

With Eq. (178), we can obtain the non-perturbative struc-
ture of the fermion propagator in RQED starting with the
tree-level massless case in Landau gauge. In coordinate
space, we have

X(x; ξ) = X(x; 0)e−i[∆̃3(xmin, 1
2 )−∆̃3(x, 1

2 )]

= −x2ν
min

4π
x−2ν−3. (179)

whereas in momentum space,

F (p, ξ) =
√

π

2
Γ(1− ν)
Γ( 3

2 + ν)

(
p2

Λ2

)ν

. (180)

This is the non-perturbative form of the fermion propagator in
RQED in any covariant gaugeξ. The power-law behavior of

this two-point function is consistent with the multiplicative-
renormalizable character of the theory. We notice that a sim-
ilar behavior is found for the propagator in ordinary QED.

Next, expanding this result in powers ofα, we get

F (p, ξ) = 1 +
ξα

4π
F1 +

(
ξα

4π

)2

F2 +O(α3), (181)

with

F1 = ln
(

p2

Λ2

)
− γE − ψ

(
3
2

)

= ln
(

p2

Λ2

)
+ 2γE + ln(4)− 2, (182)

F2 =
1
2

[(
ln

(
p2

Λ2

)
− γE − ψ(3/2)

)2

− 2ζ(2) + 4

]

=
1
2

[(
ln

(
p2

Λ2

)
+2γE+ ln(4)−2

)2

−2ζ(2)+4

]
, (183)

where ψ(z) is the digamma function,ζ(s) is the Rie-
mann Zeta function, and we have made use of the identity
ψ(3/2) = −γE − ln(4) + 2.

We make a comparison against the exact one-loop calcu-
lation of the wavefunction renormalization [28,29],

F (p; ξ) = 1 +
α

4π

[
4
9
− 1− 3ξ

3
L

]

+
( α

4π

)2
[

(1− 3ξ)2

18
(L

2 − 2ζ(2) + 4)

+ 4
(3ξ + 7)L + 48ζ(2)

27

− 8ζ(2)(L + 2− ln(4))− 280
27

]
, (184)

where

L = ln
(
− p2

µ2

)
+ ln(4)− 2, (185)

andµ is the renormalization mass scale. This correction has
a contribution that is proportional to the gauge parameter and
one that remains finite in Landau gauge. Thus, we can only
compare against the former from the LKFT result.F1 de-
fined in Eq. (182) is equivalent toL in Eq. (185) provided we
identify

ln
(

p2

Λ2

)
+ 2γE → ln

(
− p2

µ2

)
. (186)

At O(α2), the propagator has terms independent, linear
and quadraticξ. From Eqs. (181) and (183), we observe the
LKFT only gives terms proportionalξ2 at orderα2. This
means that we can only compare ourα2 result,F2, defined
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by Eq. (183) with the coefficient of(αξ/(4π))2 in the pertur-
bative result, Eq. (184). We observe that

F2 → 9
18

(
L

2 − 2ζ(2) + 4
)

, (187)

with the identification Eq. (186), as expected. Thus, we have
shown that there is full consistency between our LKFT result,
Eq. (181), and the perturbative result, Eq. (184), up to order
α2. We hence predict the form of all the coefficients of the
form (αξ)j in the all order perturbative expansion from our
LKFT result Eq. (180).

5.3. Extensions of the LKF transformation

It is interesting to notice that the LKF transformation can be
represented directly in momentum space. In Refs. [92–95]
it is discussed the form in which the wavefunction renormal-
ization is related in two gauges labeled by the parametersξ
andη, respectively. Assuming that in gaugeη the multiloop
expansion of the wavefunction renormalization is

F (p, η) =
∞∑

m=0

am(η)αm

(
µ̃2

p2

)mε

, (188)

with ε = 2− d/2 andµ̃ is a renormalization scale, the LKFT
implies that

F (p, ξ) =
∞∑

m=0

am(ξ)αm

(
µ̃2

p2

)mε

, (189)

where the new coefficients

am(ξ) = am(η)
Γ(2− (m + 1)ε)

Γ(1 + mε)

×
∞∑

l=0

[
Γ(1 + (m + l)ε)Γl(1− ε)

l!Γ(2− (m− l + 1)ε)

×
(

(η − ξ)α
−ε

)l (
µ̃2

p2

)lε
]
. (190)

With the appropriate choice of the renormalization scaleµ̃,
the multiloop expansion of the fermion propagator can be ob-
tained in an easier form.

Moreover, taking advantage of the above mentioned mul-
tiplicative renormalizability of the theory, by factorizing

F (p; ξ) = Zψ(α, ξ)Fr(p; ξ), (191)

one can see from LKFT that

log Zψ(α, ξ) = log Zψ(α, η)− (ξ − η)α
ε

. (192)

Thus, for the fermion anomalous dimension

γψ(α, ξ) = −β(α)
∂ log Zψ(α, ξ)

∂α

− ξα
∂ log Zψ(α, ξ)

∂ξ
, (193)

whereβ(α) is the beta function andγ(α) the gauge boson
anomalous dimension, given explicitly as

β(α) = −2εα +
∞∑

l=0

βlα
l+1, γ(α) = −

∞∑

l=0

βlα
l, (194)

whereβl = 0 for graphene. From here its is evident that the
fermion anomalous dimension in two gauges, namely,

γψ(α, ξ) = γψ(α, η)− 2α(ξ − η), (195)

i.e., the gauge dependence is encoded in the one-loop correc-
tion alone, whereas higher loops are gauge invariant.

The two-loop correction to the mass anomalous dimen-
sionγm has been explored very recently in [68]. In this work,
the authors consider a theory in which the gauge boson lives
in 4 dimensions, but the fermion fields are allowed to live in
a general dimensionde. From the multiplicative renormaliz-
ability of the fermion mass,

m = Zmmr, (196)

where the renormalization constantZm is obtained from the
relation

1 + ΣS

1− ΣV
Zm = const. (197)

whereΣS andΣV are the scalar and vector projections of
the fermion self-energy. Furthermore, the mass anomalous
dimension runs with the energy scaleµ as

γm =
d log Zm

d log µ
. (198)

Using theM̄S-regularization scheme, it is observed that in
the particular case of RQED,

γm =
32
3

(αr

4π

)
− 64

(αr

4π

)2

×
(

Nζ2 − 8
27

)
+O

((αr

4π

)3
)

, (199)

whereN is the number of fermion families andζ2 is the Euler
function. This mass anomalous function is completely gauge
invariant, and thus the critical coupling and/or critical number
of fermion flavor derived fromγm are also gauge invariant.

6. Outlook

In this review article we have revisited several aspects of a
mixed-dimensional theory of electron and gauge boson inter-
actions aiming to describe the new family of 2D Dirac mate-
rial like graphene and its cousins. Quantum field theories in
mixed dimensions have been discussed theoretically for over
4 decades in literature, but the isolation of graphene has in-
deed boosted the interest of these highly non-local yet well
behaved theories. The fact that RQED, the theory we have
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specialized in, is a fixed point in the renormalization group
allows to extend general conclusions from the behavior of
the Green’s functions in RQED. From the historical point of
view, we have revisited the formulation of the theory and the
most fundamental aspects that render the theory suitable for
phenomenological description of the properties of a variety
of Dirac materials. The fact that the theory allows a standard
1/r fall-off for static Coulomb interactions to the observation
of the scale invariance of the theory makes it already interest-
ing to explore. Fundamental aspects of causality and unitarity
have been revisited along with perturbation theory studies of
the propagators and vertices.

An interesting aspect of this formulation is the possi-
bility to carry out non-perturbative calculations in particu-
lar those connected with the chiral symmetry of the theory
which might be broken when the coupling is strong enough.
Schwinger-Dyson equations and renormaization group anal-
ysis exploit the structure of the gap equation as compared to
other formulations of QED3 including vacuum polarization
effects allow to extract critical properties of the chiral transi-
tion in RQED. Still a number of improvements and refining
of the truncations to the infinite tower of SDE in particular in
connection with the gauge invariance of the predictions still
awaits for a formal answer.

The influence of external agents has also been considered
in this theory. Finite temperature effects indicate a relation
of the transition temperature competing against the strong
coupling which by virtue of the heat bath diminishes, hence
restoring chiral symmetry. Findings of different groups are
still controversial, hence pointing toward the need of a care-
ful revision of the working hypothesis. Moreover, the influ-
ence of a chemical potential is still required to have a more
realistic description of the physical system and eventual test
in the laboratory. In this sense, an effort was made in [96] to
address the role of chemical potential in a configuration with
spin-orbit coupling. The phase diagram in the plane of tem-

perature and chemical potential of RQED, similar to that of
QCD, is a pending assignment for the interested community.

The possibility of parity and time reversal symmetry
breaking has been addressed by different groups by including
the CS term in the fundamental Lagrangian. The existence of
parity and time reversal breaking solution is remarkable in
this theory. The effect of the CS coefficient theta as an effec-
tive dielectric constant is seen to impact the chiral symmetry
breaking pattern inasmuch as the effective screening might
restore chiral symmetry but still break the discrete symme-
tries in the theory.

An interesting feature is the modeling of elastic deforma-
tion and anisotropy in relation to the dynamics of fermions
in curved space. The effects of curvature are seen as density
effects through a definition of a position dependent chemical
potential.

LKF tranformations are a key ingredient from gauge in-
variance that have a fundamental role in perturbative and non-
perturbative studies in RQED. In the former case, the closed
connection between RQED and QED3 in the largeN limit
serves as a benchmark for perturbative calculations in im-
proving the calculation of vacuum polarization effects.

Many features are still pending to address in this theory.
Some of which include the influence of magnetic and elec-
tric field in different configurations and potential connections
with other phenomenology are important features that per-
haps the community will address in the future.
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