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Prediction of equations of state of molecular
liquids by an artificial neural network
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Álvaro Obreǵon 64, 78000, San Luis Potosı́, México.
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In this work an artificial neural network (ANN) was used to determine the pressure and internal energy equations of state of noble gases and
some molecular liquids by predicting thermodynamic state variables like density and temperature encoded in the radial distribution function.
The ANN is trained to predict the thermodynamic state variables using only the structural data. Then, predicted values are used to compute
equations of state of real liquids such as argon, neon, krypton and xenon as well as some molecular liquids like nitrogen, carbon dioxide,
methane and ethylene in the supercritical regime of each fluid. In order to assess the ANN predictions the relative percentage error with
the exact values were determined, showing that its magnitude is less than1%. Thus, the comparison between equations of state computed
with the predicted variables and experimental results exhibits a very good agreement for most of the liquids studied here. Since our ANN
implementation only requires the microscopic structure as an input, data incoming from experiments, theoretical frameworks or simulations
are suitable to perform predictions of state variables and with that complement the thermodynamic characterisation of liquids through the
determination of equations of state. Moreover, further improvements or extensions related with the microscopic structure database can be
safely addressed without changing the neural network architecture presented here.
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1. Introduction
Nowadays machine learning (ML) methods are mainly used
to enhance solutions of specific problems in industry [1] and
science [2]. In the last case, applications go from molecular
design [3,4] to cosmology [5,6]. Particularly in condensed
matter physics examples of ML developments are vast [7].
However, implementations of such methods to describe the
liquid state are in the earliest stage, where problems like the
determination of the molecular interaction potential from the
microscopic structure [8] or the pattern identification in fluids
[9] as well as the determination of transport properties [10]
has been addressed.

On the other hand and in general terms, thermodynamic
description of liquids can be done through experimental mea-
surements of thermophysical properties like pressure, den-
sity, internal energy among other thermodynamic properties.
However, since the time and cost needed to perform such ex-
periments are high, just a subset of thermodynamic properties
are able for measurement. Actually, results from such ex-
periments can be consulted in different data banks for some
specific molecular fluids [11,12]. Additionally, theoretical
and computational approaches are commonly used to com-
plement and in some cases predict the thermodynamic be-
haviour of liquids. In this regard, a correlation between the
microscopic properties of the liquids and its macroscopical
thermodynamic behaviour is always desirable.

The bridge between microscopic and macroscopic ther-
mal properties is given by the equilibrium statistical mechan-
ics, which provides a quite robust thermodynamic description
of the liquid state [13]. This theoretical framework allows
us to determine, for example, the fluid pressure,P , in terms
of the microscopic structure,g(r), the interaction between
molecules,u(r), density,ρ, and temperature,T , of the liquid
as [13]

P = ρkT − 2
3
πρ2

∞∫

0

r3 du(r)
dr

g(r) dr, (1)

wherek is the Boltzmann constant. From Eq. (1) it is clear
that if any of the macroscopic parameters, density or temper-
ature, are unknown the pressure can not be determined.

Although from a theoretical or computational point of
view a situation where density and temperature are both un-
known is specially odd, there are some experimental systems
of interest where the structure is easily determined but one
or both thermodynamic variables are missing, for instance,
in order to theoretically describe some non-vibrated granular
systems it is fundamental to establish an effective tempera-
ture [14,15]. On the other hand, in temperature-dependent
colloidal systems, like PNIPAM colloids [16], the thermal
behaviour is known but the density must be inferred.

It is well know that a microscopic level, for a givenu(r),
the microscopic structureg(r), usually called radial distribu-
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tion function (rdf), can be determined by experimental means
and for some liquids even with theoretical [17] or compu-
tational [18] schemes. In any case, it is well documented
thatg(r) has a subtle relation with the density and tempera-
ture of the liquid. Indeed, although the explicit dependence
of such parameters is unknown, it is widely observed that
if density, temperature or both parameters are modified, the
rdf will have changes in consequence,i.e., exist an implicit
dependenceg(r; ρ, T ) [19], in fact, it is possible to observe
the start of the fluid-solid transition observing the rdf second
maximum behaviour [20].

Considering that different thermophysical properties have
been already investigated using ML methods, for instance, in-
terfacial [21] and critical properties [22] as well as the liquid-
vapour phase diagrams of refrigerants [23] and even proper-
ties like dynamic viscosity in ionic liquids [24], the use of
such methods has been proven to have a great potential to
complement and find solutions in a wide spectrum of differ-
ent kind of problems. This versatility is often related to one
of the major advantages provided by ML methods, that is the
establishment of non apparent correlations among data in a
large set, that ultimately allows to describe or predict param-
eters of interest within the data-set [25]. Among the most
famous and used of such methods one found the so-called
artificial neural network (ANN) algorithms that allows us to
model non linear statistical data or deal with incomplete or
noise datasets [26,27].

The main goal of this contribution is the determination
of the internal energy and pressure equations of state of no-
ble gases like Argon (Ar), Neon (Ne), Krypton (Kr), Xenon
(Xe) and some molecular liquids such as Nitrogen (N2), Car-
bon Dioxide (CO2), Methane (CH4) and Ethylene (C2H4) us-
ing only the microscopic structure provided by theg(r) of
a model fluid. To this end, we implement an ANN that si-

multaneously predicts the density and temperature at which a
giveng(r) belongs, then, the respective equations of state are
computed and compared against experimental results. Thus,
this work is organised as follows: In Sec. 2 details about the
model fluid and the ANN implementation are discussed. In
Sec. 3 we show and discuss the results regarding to the pre-
diction of thermodynamic state variables, determination of
equations of state and their comparison with experimental re-
sults. Finally, in Sec. 4 we give the conclusions of this work.

2. Artificial neural networks to predict ther-
modynamic state variables

2.1. Artificial neural network architecture and imple-
mentation

Depending on the particular problem that one wants to solve
with an ANN, its architecture must be chosen carefully, since
the data processing and final predictions strongly depend on
it [28]. Once the ANN architecture is selected, the training
procedure starts feeding the ANN with a set of data where
the values and functions of interest are well known. Using
these data, hidden layers determines compute the weights of
a non-linear function [29]. Using this function variables of
interest are predicted, then, a comparison with the real val-
ues is performed in order to computed an error. If error is
greater than a previously established tolerance value, the ac-
tivation function is computed again using new weights, else,
predictions are updated and the ANN training finishes. Ad-
ditionally, using an independent data set of well known vari-
ables, the ANN is used to predict them in order to validate
its training. A general flowchart of this algorithm is shown in
Fig. 1a).

FIGURE 1. a) Flowchart of the ANN training. Pictorial representations of the b) training and c) prediction stages of the ANN.
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In this context, the feed-forward ANN is the most com-
monly architecture employed and this consists of a number of
neurons within interconnecting layers which are distributed
as [30]: one input layer, hidden layer(s) and one output layer.
In practice, the implementation of an ANN consist of two
main stages, namely, i) training (Fig. 1b) and ii) predictions
(Fig. 1c), where in each one an independent data-set must be
used. Such data are established as is discussed further below.

Thus, using the Python language we implement from
scratch a feed-forward ANN whose architecture consists of
the input layer with101 neurons, four hidden layers with
404, 202, 101 and 10 neurons, respectively, and the output
layer with two neurons that performs the density and tem-
perature predictions. The Adam optimization algorithm [31]
with a learning rateγ = 0.001 [32] along with the rectified
linear unit [33] (ReLU) as an activation function were used
in order to minimise the error between the real function and
the predicted one during the learning stage.

The assessment of the training stage is mainly deter-
mined through the mean absolute error (MAE) and the mean
squared error (MSE) whose obtained values were7.7× 10−3

and1.4 × 10−4, respectively. Nevertheless, the accuracy of
the prediction stage is evaluated individually instead to per-
form a statistical analysis. This procedure allows us to clearly
identify the prediction performance of the ANN at specific
thermodynamic regions since we can determine in the mag-
nitude of deviations and identify systematic errors. Then,
the ANN prediction accuracy is taken into account through
the magnitude of the percentage relative error, defined as
100 × (X − XANN )/X, whereX stands for the real value
of ρ∗ or T ∗, respectively. Therefore,XANN is the respec-
tive prediction performed by the ANN. This error definition
allows us to identify if any individual prediction is underesti-
mated or overestimated through the sign of each result, being
positive in the former scenario and negative in the last one.

2.2. Molecular model of simple liquids and training data
set

The liquids of interest in this work are commonly referred
as noble gases and have been widely studied by experimen-
tal, theoretical and computer simulations means. In the last
two instances, the interaction between molecules has been
modelled by the Lennard-Jones (LJ) fluid with great success.
Therefore, we focus on the LJ fluid to make a database to
train the ANN. The database is composed of severalg(r) de-
termined at different thermodynamic states that spans a wide
region in the phase diagram [34].

In particular, we determine theg(r) of the LJ fluid with an
analytical equation provided by Morsaliet al. [35]. This ap-
proach was developed to be accurate in the density and tem-
perature range of0.35 ≤ ρ∗ ≤ 1.1 and0.35 ≤ T ∗ ≤ 4.5,
respectively, whereρ∗ = ρσ3 andT ∗ = kT/ε are the dimen-
sionless number density and temperature, withσ andε being
the respective molecular diameter and the energy interaction
between molecules in a specific liquid. Inside this region we

create10201 different radial distribution functions that com-
pose the database used to train and validate the ANN im-
plemented whose details are discussed further below. From
this database,80% of the data is used for the ANN learn-
ing and the remaining data is used to validate such a learning
stage in order to achieve the training of the ANN. Addition-
ally, 56 differentg(r) at four main isotherms were computed
and used in the ANN to predict the density and temperatures,
then, such predicted data is employed to compute the energy
and pressure equations of state for the different liquids of in-
terest of this work.

3. Equations of state of molecular liquids

3.1. Prediction of thermodynamic state variables

In this work the accuracy of the ANN is assess perform-
ing predictions along thermodynamic states in the isotherms
T ∗ = 1.5, 2.5, 3.5 and4.5. For all fluids studied here these
temperatures belong to supercritical states, this election at-
tends to the lack of experimental results at lower tempera-
tures and densities. Thus, once that the ANN is trained we
give them ag(r), one that was not used during the learning
or validation stages. The ANN predicts the density and tem-
perature at which theseg(r) was determined. Results about
the prediction accuracy of both density and temperature are
shown in Fig. 2. In panel a) density predictions are shown,
while temperature predictions are presented in panel b). In
the graphs, the error magnitude is associated to a specific
colour tone indicated by the bar at the right in each case.

From Fig. 2 it is clear that most of the predictions have a
very good agreement, in fact, deviations are lesser than| 1% |
for both thermodynamic variables. However, there are three
states where the density prediction is overestimated, each one
belongs to theT ∗ = 1.5, 3.5 andT ∗ = 4.5 isotherms. Never-
theless, although the maximum deviation is around the−5%
the prediction can be considered good enough. In fact, con-
sidering that only structural information where required, the
prediction accuracy is very high. In this sense, one can ex-
pect the same degree of accuracy if experimental, theoretical
or simulation microscopic structure for similar fluids than the
studied here will be used. Furthermore, the ANN architecture
could be re-trained to predict the same thermodynamic vari-
ables for more complex liquids whose microscopic structure
is known in a wide region. Such a task only depends on the
quantity and quality of data associated with the microscopic
structure available and, in the last instance, on a reasonable
assumption of the particular interaction between molecules
of such complex liquid.

3.2. Equations of state from ANN predictions

For a thermodynamic description of liquids with theoretical
or simulation frameworks usually different equations of state
are computed [13], in particular, those that involves the inter-
action potential and the microscopic structure are the most
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FIGURE 2. Accuracy of the simultaneous ANN predictions of density and temperature for different thermodynamic states. The error
magnitude is shown through the colour map in the bar at the right of each graph. Panel a) and b) shows density and temperature predictions,
respectively.

simplest ones,e.g., the pressure equation of state, given by
Eq. (1) or the internal energy equation of state given by

E

N
=

3
2
kT + 2πρ

∞∫

0

r2u(r)g(r)dr, (2)

whereE/N is the total internal energy per mol. As one can
clearly observe from Eqs. (1) and (2) if the microscopic struc-
ture g(r) for a given interaction between moleculesu(r) is
already known, the pressure and internal energy can be de-
termined. Nevertheless, if any, the temperature or density are
unknown, such equations are useless.

As we already shown, these thermodynamic state vari-
ables can be determined with a high degree of accuracy using
our ANN implementation, which, assumingu(r), only needs
the information provided byg(r). Thus, encouraged by the

FIGURE 3. Pressure equation of state as a function of the density
for Ar at different temperatures. Lines are experimental available
results provided by the NIST data-bank [12] and symbols are re-
sults computed with Eq. (1) using the ANN predictions for temper-
ature and density.

good results discussed in Fig. 1, we determined the pressure
and internal energy equations of state for different liquids and
compared them with the respective experimental results. In
order to express the reduced units of density and tempera-
ture into real ones we use the respective molecular diameter
and energy interaction of the liquid of interest. For the liq-
uids studied here, these parameters can be found elsewhere
[36-38].

In Figs. 2 and 4 results for pressure and internal energy
of Ar are displayed as a function of density for isotherms at
T (K) = 175, 292, 409 and 526. As one can notice, both
equations of state are in general well predicted by the ANN,
nevertheless, as the density and temperature increases the
ANN tends to overestimates the pressure, see for example
the isothermT = 526K in Fig. 3. This behaviour can be
traced to the slight overestimation of density predictions at
high temperatures, see Fig. 2a).

On the other hand, the internal energy prediction within
the ANN is remarkably good at any of the studied tempera-
tures as can be seen in Fig. 4.

Although the microscopic structure used to train and pre-
dict values with our ANN implementation is well known to
be good in the computation of thermophysical properties of
Ar [39-41], it should be stressed that a poor estimation of
density and/or temperature from the ANN can not give us the
good agreement found with the experimental results. At this
instance, even the deviations found in the density prediction
seems negligible in the computation of the equations of state.

Being that thermodynamic state variables predictions by
the ANN have a such good agreement we also compute the
pressure and internal energy equations of state for other noble
gases, namely, Ne, Kr, and Xe. For these fluids we found that
in general the pressure determination is more accurate than
the internal energy computation. Actually, for the last prop-
erty, we observe deviations at high temperatures despite the
fluid nature, nevertheless, this behaviour might be an effect of
the molecular parameters used to characterise the respective
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FIGURE 4. Ar internal energy as a function of the density for differ-
ent isotherms. Lines are experimental results [12] and symbols are
results of Eq. (2) computed with the ANN predictions of density
and temperature.

fluid [36-38], however, an improvement of such parameters
are out of the scope of this contribution. A comparison be-
tween pressure results determined with the state variables
predicted by the ANN and experimental ones as a function
of density and temperature is shown in Fig. 5. Again, experi-
mental results were obtained from the NIST data bank [12].

As one can see from Fig. 5, predictions shows a good
overall agreement. However, for Kr, as the density is in-
creased we can see an underestimation of the pressure. Nev-
ertheless, such deviations can be due to the molecular pa-
rameters (σ andε) used to represent Kr instead to the ANN
predictions. Additionally and unfortunately we do not have
experimental results at higher densities for Kr. In this regard,
a better estimation of those molecular parameters could im-
prove the ANN predictions, however, such task is out of the

FIGURE 5. Pressure equation of state as a function of the density
for different liquids (Ne, Ar, Kr, and Xe). Lines are experimental
results [12] and symbols are the computation of Eq. (1) using the
corresponding ANN predictions.

scope of this contribution. In any case, it is worth to stress
the fact that even for densities where experimental pressure
results are not reported, the predicted values by the ANN are
sound physically meaningful. It means that the ANN could
be used to predict such experimental values.

The prediction capabilities of the ANN are also tested
against experimental results of some molecular liquids, like
N2, CO2, CH4 and C2H4. In Fig. 6a) the pressure behaviour
as a function of the density of CH4 for three isotherms is
shown. As one can see the agreement is remarkably good,
despite that at the highest densities and temperature certain
deviations can be seen. Additionally, in Fig. 6b) results for
different molecular liquids are also shown, in this scenario
CO2 and CH4 are very well predicted but N2 and C2H4 are
slightly overestimated, nevertheless, we remark the fact that
the qualitative behaviour is well represented.

FIGURE 6. Pressure equation of state as a function of the density for different molecular liquids. Panel a) shows results for methane CH4 at
three different isotherms. Panel b) shows results for N2, CO2, CH4 and C2H4 at different isotherms.
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4. Concluding remarks

Supported by the previously discussed results, we can as-
sure that a straightforward application of ANN algorithms
can be safely used to predict thermodynamic state variables
in particular situations where only theg(r) is known. Here,
we have explored the special case of liquids described by
the LJ interaction potential and, using an ANN, supercritical
thermodynamic state variables such as density and temper-
ature were predicted. Lastly, such values were used to de-
termine equations of state in the aforementioned regime that
also were compared to experimental available results, show-
ing excellent quantitative agreement.

Since the ANN architecture was built and optimised to
deal with data related to microscopic structure of liquids, it
can be used along other related experimental databases, for
instance, that includes thermodynamic states in low density
and temperature regime. Another exciting possibility con-
sists in the training of the ANN to predict thermodynamic
state variables of different kinds of fluids, like the ones that
are commonly used to model colloidal systems,e.g., hard-
spheres, square-well or attractive Yukawa fluids among oth-
ers. Here, the determination of the structure is almost inex-
pensive but at the same time a correct determination of state
variables is fundamental for a complete description consider-

ing that data banks of such kinds of systems are scarce.
Nevertheless, it is worth to stress out the paramount rel-

evance of the database used to train any ANN, here, it di-
rectly depends on the quality of the microscopic structure
data. This impacts the predictions done by the ANN that
could be qualitative or quantitative. However, the improve-
ment of the database like the one used in this work can be
done by experimental, simulation or theoretical means while
the ANN architecture could remain the same and results with
the same degree of accuracy can be expected. Work in this
direction is in progress.
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15. M. J. Śanchez-Miranda, J. L. Carrillo-Estrada, and F. Donado,
Crystallization processes in a nonvibrating magnetic granular
system with short range repulsive interaction,Scientific Reports
9 (2019) 3531.

16. R. Rivas-Barbosaet al., Different routes into the glass state for
soft thermo-sensitive colloids,Soft Matter14 (2018) 5008.

17. Y. Zhao, Z. Wu, and W. Liu, Theoretical and analytical radial
distribution function for dense fluids,PhysicaA 389 (2010)
5007.

18. M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids
1st ed. (Oxford University Press, Oxford, 1987).

Rev. Mex. Fis.68061702

http://www.chemspider.com/, accessed: 2021-08-10�
http://www.chemspider.com/, accessed: 2021-08-10�
https://www.nist.gov/ �


PREDICTION OF EQUATIONS OF STATE OF MOLECULAR LIQUIDS BY AN ARTIFICIAL NEURAL NETWORK 7

19. B. A. Klumov, On the behavior of indicators of melting:
Lennard-jones system in the vicinity of the phase transition,
JETP Lett. 98 (2013) 259.

20. P. L. Fehder, anomalies in the radial distribution functions for
simple liquids,J. Chem. Phys.52 (1970) 791.

21. Y. Vasseghian, A. Bahadori, A. Khataee, E. N. Dragoi, and M.
Moradi, Modeling the interfacial tension of water-based binary
and ternary systems at high pressures using a neuro-evolutive
technique,ACS Omega5 (2020) 781.

22. L. H. Hall and C. T. Story, Boiling point and critical tempera-
ture of a heterogeneous data set,J. Chem. Inf. Comput. Sci.36
(1996) 1004.

23. A. Azari, S. Atashrouz, and H. Mirshekar, Boiling point and
critical temperature of a heterogeneous data set: QSAR with
atom type electrotopological state indices using artificial neural
network,ISRN Chemical Engineering36 (2013) 1.

24. K. Golzar, S. Amjad-Iranagh, and H. Modarress, Prediction of
thermophysical properties for binary mixtures of common ionic
liquids with water or alcohol at several temperatures and atmo-
spheric pressure by means of artificial neural network,Ind. Eng.
Chem. Res.53 (2014) 7247.

25. Kenji Suzuki, Artificial Neural Networks: Architectures and
Applications(InTech, Croatia, 2013).

26. D. Livingstone, D. Manallack, and I. Tetko, Data modelling
with neural networks: Advantages and limitations,J. Comput.
Aided Mol. Des.11 (1997) 135.

27. J. Bourquin, H. Schmidli, P. van Hoogevest, and H. Leuen-
berger, Advantages of artificial neural networks (anns) as alter-
native modelling technique for data sets showing non-linear re-
lationships using data from a galenical study on a solid dosage
form, European Journal of Pharmaceutical Sciences7 (1998)
5.

28. J. Sola and J. Sevilla, Importance of input data normalization
for the application of neural networks to complex industrial
problems,IEEE Transactions on Nuclear Science44 (1997)
1464-1468.

29. J. A. Snyman and D. N. Wilke, Practical Mathematical Op-
timization: An Introduction to Basic Optimization Theory

and Classical and New Gradient-Based Algorithms (Springer,
Switzerland, 2018).

30. C. C. Aggarwal, Neural Networks and Deep Learning
(Springer, Switzerland, 2018).

31. D. P. Kingma and J. Ba,Adam: A method for stochastic opti-
mization(2015), arXiv:1412.6980.

32. I. Goodfellow, Y. Bengio, and A. Courville,Deep Learning
(MIT Press, Cambridge, 2016).

33. K. Eckle and J. Schmidt-Hieber, A comparison of deep net-
works with relu activation function and linear spline-type meth-
ods,Neural Networks110(2019) 232.

34. U. Que-Salinas, P. E. Ramı́rez-Gonźalez, and A. Torres-
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