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In this work an artificial neural network (ANN) was used to determine the pressure and internal energy equations of state of noble gases anc
some molecular liquids by predicting thermodynamic state variables like density and temperature encoded in the radial distribution function.
The ANN is trained to predict the thermodynamic state variables using only the structural data. Then, predicted values are used to compute
equations of state of real liquids such as argon, neon, krypton and xenon as well as some molecular liquids like nitrogen, carbon dioxide,
methane and ethylene in the supercritical regime of each fluid. In order to assess the ANN predictions the relative percentage error with
the exact values were determined, showing that its magnitude is les$%hahhus, the comparison between equations of state computed

with the predicted variables and experimental results exhibits a very good agreement for most of the liquids studied here. Since our ANN
implementation only requires the microscopic structure as an input, data incoming from experiments, theoretical frameworks or simulations
are suitable to perform predictions of state variables and with that complement the thermodynamic characterisation of liquids through the
determination of equations of state. Moreover, further improvements or extensions related with the microscopic structure database can be
safely addressed without changing the neural network architecture presented here.
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1. Introduction The bridge between microscopic and macroscopic ther-
dnal properties is given by the equilibrium statistical mechan-
c¢s, which provides a quite robust thermodynamic description
f the liquid state [13]. This theoretical framework allows
us to determine, for example, the fluid pressurejn terms

of the microscopic structuregy(r), the interaction between
iénoleculesu(r), density,p, and temperaturd;, of the liquid

Nowadays machine learning (ML) methods are mainly use
to enhance solutions of specific problems in industry [1] and
science [2]. In the last case, applications go from molecula
design [3,4] to cosmology [5,6]. Particularly in condensed
matter physics examples of ML developments are vast [7]
However, implementations of such methods to describe th
liquid state are in the earliest stage, where problems like th&S [13]

o0

determination of the molecular interaction potential from the 2, [ adu(r)

microscopic structure [8] or the pattern identification in fluids P = pkT — gmp /7“ —g 9(r) dr, 1)
[9] as well as the determination of transport properties [10] 0

has been addressed. wherek is the Boltzmann constant. From Ed) {t is clear

On the other hand and in general terms, thermodynamithat if any of the macroscopic parameters, density or temper-
description of liquids can be done through experimental meaature, are unknown the pressure can not be determined.
surements of thermophysical properties like pressure, den- Although from a theoretical or computational point of
sity, internal energy among other thermodynamic propertiesview a situation where density and temperature are both un-
However, since the time and cost needed to perform such eknown is specially odd, there are some experimental systems
periments are high, just a subset of thermodynamic propertiesf interest where the structure is easily determined but one
are able for measurement. Actually, results from such exer both thermodynamic variables are missing, for instance,
periments can be consulted in different data banks for somim order to theoretically describe some non-vibrated granular
specific molecular fluids [11,12]. Additionally, theoretical systems it is fundamental to establish an effective tempera-
and computational approaches are commonly used to contare [14,15]. On the other hand, in temperature-dependent
plement and in some cases predict the thermodynamic beolloidal systems, like PNIPAM colloids [16], the thermal
haviour of liquids. In this regard, a correlation between thebehaviour is known but the density must be inferred.
microscopic properties of the liquids and its macroscopical It is well know that a microscopic level, for a givertr),
thermodynamic behaviour is always desirable. the microscopic structurg(r), usually called radial distribu-
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tion function (rdf), can be determined by experimental meansnultaneously predicts the density and temperature at which a
and for some liquids even with theoretical [17] or compu-giveng(r) belongs, then, the respective equations of state are
tational [18] schemes. In any case, it is well documenteccomputed and compared against experimental results. Thus,
thatg(r) has a subtle relation with the density and temperathis work is organised as follows: In Sec. 2 details about the
ture of the liquid. Indeed, although the explicit dependencemodel fluid and the ANN implementation are discussed. In
of such parameters is unknown, it is widely observed thaSec. 3 we show and discuss the results regarding to the pre-
if density, temperature or both parameters are modified, thdiction of thermodynamic state variables, determination of
rdf will have changes in consequence,, exist an implicit  equations of state and their comparison with experimental re-
dependence(r; p, T) [19], in fact, it is possible to observe sults. Finally, in Sec. 4 we give the conclusions of this work.
the start of the fluid-solid transition observing the rdf second
maximum behaviour [20].

Considering that different thermophysical properties have2. ~ Artificial neural networks to predict ther-
been already investigated using ML methods, for instance, in-  modynamic state variables
terfacial [21] and critical properties [22] as well as the liquid-
vapour phase diagrams of refrigerants [23] and even prope.1. Artificial neural network architecture and imple-
ties like dynamic viscosity in ionic liquids [24], the use of mentation
such methods has been proven to have a great potential to
complement and find solutions in a wide spectrum of differ-Depending on the particular problem that one wants to solve
ent kind of problems. This versatility is often related to oneWith an ANN, its architecture must be chosen carefully, since
of the major advantages provided by ML methods, that is théhe data processing and final predictions strongly depend on
establishment of non apparent correlations among data in [28]. Once the ANN architecture is selected, the training
large set, that ultimately allows to describe or predict paramprocedure starts feeding the ANN with a set of data where
eters of interest within the data-set [25]. Among the mostthe values and functions of interest are well known. Using
famous and used of such methods one found the so-calldfese data, hidden layers determines compute the weights of
artificial neural network (ANN) algorithms that allows us to & non-linear function [29]. Using this function variables of

model non linear statistical data or deal with incomplete orinterest are predicted, then, a comparison with the real val-
noise datasets [26,27]. ues is performed in order to computed an error. If error is

The main goal of this contribution is the determination greater than a previously established tolerance value, the ac-
of the internal energy and pressure equations of state of ndivation function is computed again using new weights, else,
ble gases like Argon (Ar), Neon (Ne), Krypton (Kr), Xenon Predictions are updated and the ANN training finishes. Ad-
(Xe) and some molecular liquids such as Nitrogen)(\Car-  ditionally, using an independent data set of well known vari-
bon Dioxide (CQ), Methane (CH) and Ethylene (§H,) us- ables, the ANN is used to predict them in order to validate
ing only the microscopic structure provided by the) of its training. A general flowchart of this algorithm is shown in
a model fluid. To this end, we implement an ANN that si- Fig. 1a).

Training Prediction
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FIGURE 1. a) Flowchart of the ANN training. Pictorial representations of the b) training and c) prediction stages of the ANN.
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In this context, the feed-forward ANN is the most com- create10201 different radial distribution functions that com-
monly architecture employed and this consists of a number gbose the database used to train and validate the ANN im-
neurons within interconnecting layers which are distributedolemented whose details are discussed further below. From
as [30]: one input layer, hidden layer(s) and one output layetthis database$0% of the data is used for the ANN learn-

In practice, the implementation of an ANN consist of two ing and the remaining data is used to validate such a learning
main stages, namely, i) training (Fig. 1b) and ii) predictionsstage in order to achieve the training of the ANN. Addition-
(Fig. 1c), where in each one an independent data-set must ladly, 56 differentg(r) at four main isotherms were computed
used. Such data are established as is discussed further bel@md used in the ANN to predict the density and temperatures,

Thus, using the Python language we implement fromthen, such predicted data is employed to compute the energy
scratch a feed-forward ANN whose architecture consists oénd pressure equations of state for the different liquids of in-
the input layer with101 neurons, four hidden layers with terest of this work.

404,202,101 and 10 neurons, respectively, and the output
layer with two neurons that performs the density and tem
perature predictions. The Adam optimization algorithm [31]
with a learning ratey = 0.001 [32] along with the rectified 3.1 Prediction of thermodynamic state variables

linear unit [33] (ReLU) as an activation function were used

in order to minimise the error between the real function andn this work the accuracy of the ANN is assess perform-
the predicted one during the learning stage. ing predictions along thermodynamic states in the isotherms

The assessment of the training stage is mainly deterf* = 1.5,2.5,3.5 and4.5. For all fluids studied here these
mined through the mean absolute error (MAE) and the meatemperatures belong to supercritical states, this election at-
squared error (MSE) whose obtained values WeFe< 103 tends to the lack of experimental results at lower tempera-
and1.4 x 104, respectively. Nevertheless, the accuracy oftures and densities. Thus, once that the ANN is trained we
the prediction stage is evaluated individually instead to pergive them ag(r), one that was not used during the learning
form a statistical analysis. This procedure allows us to clearlyr validation stages. The ANN predicts the density and tem-
identify the prediction performance of the ANN at specific perature at which thesgr) was determined. Results about
thermodynamic regions since we can determine in the maghe prediction accuracy of both density and temperature are
nitude of deviations and identify systematic errors. Thenshown in Fig. 2. In panel a) density predictions are shown,
the ANN prediction accuracy is taken into account throughwhile temperature predictions are presented in panel b). In
the magnitude of the percentage relative error, defined athe graphs, the error magnitude is associated to a specific
100 x (X — Xann)/X, whereX stands for the real value colour tone indicated by the bar at the right in each case.
of p* or T*, respectively. ThereforeX 4y is the respec- From Fig. 2 it is clear that most of the predictions have a
tive prediction performed by the ANN. This error definition very good agreement, in fact, deviations are lesser|théh|
allows us to identify if any individual prediction is underesti- for both thermodynamic variables. However, there are three
mated or overestimated through the sign of each result, beingtates where the density prediction is overestimated, each one
positive in the former scenario and negative in the last one. belongs to thd™* = 1.5, 3.5 andT* = 4.5 isotherms. Never-

theless, although the maximum deviation is around-th&

2.2. Molecular model of simple liquids and training data  the prediction can be considered good enough. In fact, con-

set sidering that only structural information where required, the

o ] o prediction accuracy is very high. In this sense, one can ex-
The liquids of interest in this work are commonly referred pact the same degree of accuracy if experimental, theoretical
as noble gases and have been widely studied by experimep; simylation microscopic structure for similar fluids than the
tal, theoretical and computer simulations means. In the lasly,gied here will be used. Furthermore, the ANN architecture
two instances, the interaction between molecules has begRyyig pe re-trained to predict the same thermodynamic vari-
modelled by the Lennard-Jones (LJ) fluid with great successypes for more complex liquids whose microscopic structure
Th_erefore, we focus on the I._J fluid to make a database tQ known in a wide region. Such a task only depends on the
train the ANN. The database is composed of sewgidlde-  q,antity and quality of data associated with the microscopic

termined at different thermodynamic states that spans a widgy,ctyre available and, in the last instance, on a reasonable

region in the phase diagram [34]. o assumption of the particular interaction between molecules
In particular, we determine thgr) of the LI fluid withan ¢ ¢,ch complex liquid.

analytical equation provided by Morsai al. [35]. This ap-

proach was developed to be accurate in the density and tem3->  Equations of state from ANN predictions

perature range di.35 < p* < 1.1 and0.35 < T* < 4.5,

respectively, wherg* = po? andT* = kT /e are the dimen-  For a thermodynamic description of liquids with theoretical
sionless number density and temperature, wiinde being  or simulation frameworks usually different equations of state
the respective molecular diameter and the energy interactioare computed [13], in particular, those that involves the inter-
between molecules in a specific liquid. Inside this region weaction potential and the microscopic structure are the most

3. Equations of state of molecular liquids
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FIGURE 2. Accuracy of the simultaneous ANN predictions of density and temperature for different thermodynamic states. The error
magnitude is shown through the colour map in the bar at the right of each graph. Panel a) and b) shows density and temperature predictions,
respectively.

simplest onese.g, the pressure equation of state, given bygood results discussed in Fig. 1, we determined the pressure
Eq. (1) or the internal energy equation of state given by and internal energy equations of state for different liquids and
compared them with the respective experimental results. In
E 3 by ) order to express the reduced units of density and tempera-
N §k‘T + QWP/T u(r)g(r)dr, (2)  ture into real ones we use the respective molecular diameter
0 and energy interaction of the liquid of interest. For the lig-

. . uids studied here, these parameters can be found elsewhere

whereE/N is the total internal energy per mol. As one can [36-38].

clearly observe from Eqs1(and ) if the microscopic struc- In Figs. 2 and 4 results for pressure and internal energy

fi i i i I i i . ; X
gjlrrs e?(g;)kr?(:vsnglzlheen r;?;irsiﬁzogn%emzfnna{n eoni(r:;:/egnlsbe d % Ar are displayed as a function of density for isotherms at
' (K) = 175,292,409 and526. As one can notice, both

termined. Nevertheless, if any, the temperature or density are . . X
unknown, such equations are useless. equations of state are in general well predicted by the ANN,

. nevertheless, as the density and temperature increases the
As we already shown, these thermodynamic state vari; .
. . . . ANN tends to overestimates the pressure, see for example
ables can be determined with a high degree of accuracy usi

our ANN implementation, which, assumingr), only needs MWe isothermr’ = 526K in Fig. 3. This behaviour can be

the information provided by(r). Thus, encouraged by the trgced to the slight overe_stlmatlon of density predictions at
high temperatures, see Fig. 2a).

On the other hand, the internal energy prediction within

Ar NIST Chemistry WebBook the ANN is remarkably good at any of the studied tempera-
ipgGl. @ SeANNEredistine M tures as can be seen in Fig. 4.
@ T=175 K v a _ Although t_he microsco_pic structure_usgd to train and pre-
© T=292 K dict values with our ANN implementation is well known to

900 A T=409 K

V=BG be good in the computation of thermophysical properties of

Ar [39-41], it should be stressed that a poor estimation of
density and/or temperature from the ANN can not give us the
good agreement found with the experimental results. At this
instance, even the deviations found in the density prediction
seems negligible in the computation of the equations of state.
Being that thermodynamic state variables predictions by
0 i ‘ the ANN have a such good agreement we also compute the
10* 2x10* 3x10* 4x10* pressure and internal energy equations of state for other noble
p (mol/m?) gases, namely, Ne, Kr, and Xe. For these fluids we found that

FIGURE 3. Pressure equation of state as a function of the density!" 9€neral the pressure determination is more accurate than
for Ar at different temperatures. Lines are experimental available the internal energy computation. Actually, for the last prop-
results provided by the NIST data-bank [12] and symbols are re-erty, we observe deviations at high temperatures despite the
sults computed with EqZj using the ANN predictions for temper-  fluid nature, nevertheless, this behaviour might be an effect of
ature and density. the molecular parameters used to characterise the respective

600

P (MPa)

300
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FIGURE 4. Ar internal energy as a function of the density for differ- for different liquids (Ne, Ar, Kr, and Xe). Lines are experimental
ent isotherms. Lines are experimental results [12] and symbols argesults [12] and symbols are the computation of EX).using the
results of Eq. 2) computed with the ANN predictions of density corresponding ANN predictions.

and temperature.
scope of this contribution. In any case, itis worth to stress

fluid [36-38], however, an improvement of such parameterghe fact that even for densities where experimental pressure
are out of the scope of this contribution. A comparison beresults are not reported, the predicted values by the ANN are
tween pressure results determined with the state variablesound physically meaningful. It means that the ANN could
predicted by the ANN and experimental ones as a functiorbe used to predict such experimental values.
of density and temperature is shown in Fig. 5. Again, experi- The prediction capabilities of the ANN are also tested
mental results were obtained from the NIST data bank [12]. against experimental results of some molecular liquids, like
As one can see from Fig. 5, predictions shows a good\,, CO,, CHy; and GH,. In Fig. 6a) the pressure behaviour
overall agreement. However, for Kr, as the density is in-as a function of the density of CHor three isotherms is
creased we can see an underestimation of the pressure. Neshown. As one can see the agreement is remarkably good,
ertheless, such deviations can be due to the molecular paespite that at the highest densities and temperature certain
rameters € ande) used to represent Kr instead to the ANN deviations can be seen. Additionally, in Fig. 6b) results for
predictions. Additionally and unfortunately we do not havedifferent molecular liquids are also shown, in this scenario
experimental results at higher densities for Kr. In this regardCO, and CH, are very well predicted but Nand GH, are
a better estimation of those molecular parameters could imslightly overestimated, nevertheless, we remark the fact that
prove the ANN predictions, however, such task is out of the the qualitative behaviour is well represented.

1500 CH, NIST Chemistry WebBook NIST Chemistry WebBook
@ CH, ANN Predictions 1,000F @® ANN Predictions
1,200F ] T=386 K
e T=223 K sook :gé
AT=372 K & 2 T=223 K
ol , ®T=521 K - i
E 900 ) v C2Ha
g, 600F T=145 K]
E E T=328 K
600 F ~
&y a, 400
300} 200
0 L L 0 ; ] \
10* 2x10* 3x10* 10* 2x10*  3x10*  4x10}
i) p (mol/m?) b) p (mol/m?)

FIGURE 6. Pressure equation of state as a function of the density for different molecular liquids. Panel a) shows results for mataane CH
three different isotherms. Panel b) shows results fgr@0,, CH, and GH, at different isotherms.
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4. Concluding remarks ing that data banks of such kinds of systems are scarce.
Nevertheless, it is worth to stress out the paramount rel-
Supported by the previously discussed results, we can asvance of the database used to train any ANN, here, it di-
sure that a straightforward application of ANN algorithms rectly depends on the quality of the microscopic structure
can be safely used to predict thermodynamic state variabledata. This impacts the predictions done by the ANN that
in particular situations where only thgr) is known. Here, could be qualitative or quantitative. However, the improve-
we have explored the special case of liquids described bynent of the database like the one used in this work can be
the LJ interaction potential and, using an ANN, supercriticaldone by experimental, simulation or theoretical means while
thermodynamic state variables such as density and tempeihe ANN architecture could remain the same and results with
ature were predicted. Lastly, such values were used to déhe same degree of accuracy can be expected. Work in this
termine equations of state in the aforementioned regime thatirection is in progress.
also were compared to experimental available results, show-
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