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In this paper we consider the discrete heat equation with a certain non-uniform space interval which is related toq-addition appearing in the
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theq-deformed diffusion equation.
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1. Introduction

Heat equation governs how heat diffuses or transfers through
a region, which was first introduced by Fourier [1] in 1822.
In one dimension, this equation take the form,

∂

∂t
u(x, t) = κ

(
∂

∂x

)2

u(x, t), (1)

whereu(x, t) is the temperature at positionx at timet andκ
is thermal diffusivity.

In this paper we are to find a deformed heat equation. To
do so we need the discrete version of heat equation where
space is discrete but time is continuous. Discrete physics
have been studied in various fields [2-15]. If we consider
discrete positions denoted by

xn = na, n ∈ Z, (2)

we have the discrete heat equation,

∂

∂t
u(xn, t) = κ∆2

xu(xn, t), (3)

where finite difference operators are defined as

∆xu(xn, t) =
u(xn+1, t)− u(xn, t)

a
. (4)

If we take the limita → 0 in Eq. (4), we have Eq. (1).
From Eq. (2), we know that

xn+1 − xn = a, (5)

which implies that the uniform space interval guarantees the
heat equation of the form (1). In other words, if we consider
a non-uniform discrete position, we will obtain another form
of heat equation.

In this paper we consider the discrete heat equation with
a certain non-uniform space interval which is related toq-
addition orq-subtraction appearing in the non-extensive en-
tropy theory [16-18]. By taking the continuous limit, we ob-
tain theq-deformed heat equation. Similarly, we derive the
q-deformed diffusion equation. This paper is organized as
follows: In Sec. 2 we discuss theq-deformed heat equation.
In Sec. 3 we discuss the solution ofq-deformed heat equation.
In Sec. 4 we discuss cooling of a rod from a constant initial
temperature. In Sec. 5 we discuss theq-deformed diffusion
equation.

2. q-deformed heat equation
In this section we discuss theq-deformed heat equation based
on the theq-addition andq-subtraction appearing in the non-
extensive thermodynamics [16-18]. As is different from the
non-extensive thermodynamics, we introduce the parameterq
so that it may have a dimension of inverse length. In the non-
extensive thermodynamics, the parameterq is dimensionless.
Thus, in theq-deformed heat equation,q can be regarded as
1/ξ whereξ denotes a length scale.

Now let us introduce the discrete position with non-
uniform interval where the distance between adjacent posi-
tions are given by

xn+1 ªq xn = a, (6)

or

xn+1 = xn ⊕q a, (7)

where theq-addition andq-subtraction [16-18] are defined as

a⊕q b = a + b + qab, (8)

aªq b =
a− b

1 + qb
. (9)
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As is different from the uniform lattice, the non-uniform lat-
tice consisting discrete points obeying Eq. (6) can be re-
garded as an example of the non-homogeneous medium in
the continuous limit (a → 0). We think that the discrete
positions defined by the different pseudo addition (deforma-
tion of the ordinary addition) can give another examples of
the non-homogeneous medium in the continuous limit. For
example, in Ref. [19], theα-addition was introduced to de-
scribe the non-homogeneous medium where anomalous dif-
fusion arose.

The Eq. (6) gives the relation

xn+1 = (1 + qa)xn + a (10)

Solving Eq. (10) we get

xn =
1
q
([1 + qa]n − 1), (11)

Whenq > 0 we have

lim
n→∞

xn = ∞ (12)

and

lim
n→−∞

xn = −1
q

. (13)

Whenq < 0 we get

lim
n→∞

xn =
1
|q| , (14)

and

lim
n→−∞

xn = −∞. (15)

In this case we demand|q|a < 1. The discrete position is not
symmetric forx0 = 0. Indeed, we have

x−n = − xn

(1 + qa)n
, n ≥ 1. (16)

For the discrete positions obeying Eq. (6), the difference op-
erator becomes

∆x:qu(xn, t) =
u(xn+1, t)− u(xn, t)

xn+1 ªq xn
= (1 + qxn)

×
(

u(xn+1, t)− u(xn, t)
xn+1 − xn

)
. (17)

Thus, in the continuum limit, we get

∆x:qu(xn, t) → Dq
x = (1 + qx)

∂u

∂x
. (18)

Here we know that theq-derivativeDq
x remains invariant un-

der theq-translationx → x⊕ δx. Recently, quantum theory
with q-translation invariance was constructed in [20]. Us-
ing Eq. (18), we obtain theq-deformed heat equation with
q-translation symmetry in the form,

∂

∂t
u(x, t) = κ (Dq

x)2 u(x, t). (19)

3. Solution ofq-deformed heat equation

Consider a rod of lengthL with the initial condition

u(x, 0) = f(x), (20)

and the boundary condition

u(0, t) = u(L, t) = 0. (21)

We look for a solution of the form

u(x, t) = X(x)T (t). (22)

Inserting Eq. (22) into Eq. (19) we get

1
κT

dT

dt
=

1
X

(Dq
x)2X = −λ, λ > 0. (23)

Thus, we have

T (t) = e−κλt, (24)

and

X(x) = A cos

(√
λ

q
ln(1 + qx)

)

+ B sin

(√
λ

q
ln(1 + qx)

)
, (25)

From the boundary function, we haveA = 0 and

sin

(√
λ

q
ln(1 + qL)

)
= 0, (26)

which gives
√

λ = λn =
qnπ

ln(1 + qL)
, n = 1, 2, · · · (27)

Thus, the general solution ofq-deformed wave equation is

u(x, t) =
∞∑

n=1

Bn sin
(

nπ
ln(1 + qx)
ln(1 + qL)

)

× exp
(
− κq2n2π2t

(ln(1 + qL))2

)
. (28)

Now let us apply the initial condition. Then we have

f(x) =
∞∑

n=1

Bn sin
(

nπ
ln(1 + qx)
ln(1 + qL)

)
. (29)

If we use the orthogonality relation

L∫

0

sin
(

nπ
ln(1 + qx)
ln(1 + qL)

)
sin

(
mπ

ln(1 + qx)
ln(1 + qL)

)

× dx

1 + qx
=

ln(1 + qL)
2q

δnm, (30)
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we have

Bn =
2q

ln(1 + qL)

L∫

0

f(x)

× sin
(

nπ
ln(1 + qx)
ln(1 + qL)

)
dx

1 + qx
. (31)

Here we solved theq-heat equation in a closed form. Our
method is to introduce theq-lattice as an example of the non-
homogeneous medium, which is not related to the numerical
solution methods based on adaptive grids [21-24] because we
obtained the exact solution.

4. Cooling of a rod from a constant initial
temperature

Suppose the initial temperature distributionf(x) in the rod
is constant,i.e. f(x) = u0. Now let us consider the case of
L = 1, κ = 1. Then we have

Bn = −2u0

nπ
((−1)n − 1) (32)

Thus, we have

u(x, t) =
4u0

π

∞∑
n=1

1
2n− 1

sin
(

(2n− 1)π
ln(1 + qx)
ln(1 + q)

)

× exp
(
−q2(2n− 1)2π2t

(ln(1 + q))2

)
. (33)

In this case, the ratio of the first and second terms in Eq. (33)
is

|second term|
|first term| =

1
3
e
− 8q2π2t

(ln(1+q))2

∣∣∣sin
(
3π ln(1+q)

ln(1+q)

)∣∣∣
∣∣∣sin

(
π ln(1+qx)

ln(1+q)

)∣∣∣
, (34)

≤ e
− 8q2π2t

(ln(1+q))2 , (35)

≤ e−8 for t ≤ tq, (36)

where we used

| sin nt| ≤ n| sin t|, (37)

and

tq =
(ln(1 + q))2

q2π2
. (38)

Thus, the first term dominates the sum of the rest of the terms,
and hence

u(x, t) ≈ 4u0

π
sin

(
π

ln(1 + qx)
ln(1 + q)

)

× exp
(
− q2π2t

(ln(1 + q))2

)
. (39)

4.1. Spatial temperature profiles

Now let us consider fixed time. Here we consider the time
t = tq. Then we have

u(x, t) ≈ 4u0

π
e−1 sin

(
π

ln(1 + qx)
ln(1 + q)

)
. (40)

This has the maxima atx = x0 where

x0 =
√

1 + q − 1
q

. (41)

Thus, center of a rod is not a line of symmetry unlessq = 0.
Fig. 1 shows the plot ofu versusx with u0 = 1 for q = 0
(Red),q = 0.2 (Brown), andq = −0.2 (Gray). We know that
the position for maximum ofu is smaller than1/2 for q > 0
while it is larger than1/2 for q < 0.

4.2. Temperature profiles in time

Settingx = x0 in the approximate solution, we have

u(x, t) ≈ 4u0

π
exp

(
− q2π2t

(ln(1 + q))2

)
. (42)

Figure 2 shows the plot ofu versust with u0 = 1, x = x0 for
q = 0 (Red),q = 0.2 (Brown), andq = −0.2 (Gray).

FIGURE 1. Plot of u versusx with u0 = 1 for q = 0 (Red),
q = 0.2 (Brown), andq = −0.2 (Gray).

FIGURE 2. Plot of u versust with u0 = 1, x = x0 for q = 0

(Red),q = 0.2 (Brown), andq = −0.2 (Gray).
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5. q-deformed diffusion equation

Theq-deformed diffusion equation has the same form as theq-deformed heat equation,

∂

∂t
u(x, t) = D(Dq

x)2u(x, t), (43)

whereu(x, t) denotes the concentration andD denotes diffusivity. Now let us impose the initial condition

u(x, 0) = f(x). (44)

Now let us introduce theq-deformed Fourier transform as

F(u(x, t)) = U(w, t) =





1
2π

∞∫
−1/q

dx
1+qxu(x, t)(1 + qx)

iw
q (q > 0)

1
2π

1/|q|∫
−∞

dx
1+qxu(x, t)(1 + qx)

iw
q (q < 0)

, (45)

and the inverseq-deformed Fourier transform

F−1(U(w, t))=u(x, t)=

∞∫

−∞
dwU(w, t)(1+qx)−

iw
q . (46)

From the definition ofq-deformed Fourier transform, we
know

F((Dq
x)nu(x, t)) = (−iw)nU(w, t). (47)

Taking theq-deformed Fourier transform in Eq. (43) we get

∂U(w, t)
∂t

= −Dw2U(w, t), (48)

which is solved as

U(w, t) = c(w)e−Dw2t. (49)

Then we have

U(w, 0) = c(w). (50)

Thus we get

c(w) = F(f(x)). (51)

Now let us set

g(x) = F−1(e−Dw2t), (52)

which gives

g(x) =
√

π

Dt
exp

(
− 1

4Dt

[
1
q

ln(1 + qx)
]2

)
. (53)

Then we have

U(w, t) = F(f(x))F(g(x)). (54)

From the convolution theorem we get

u(x, t)=





1
2π

∞∫
−1/q

dx
1+qxf(s)g

(
1
q ln

(
1+qx
1+qs

))
(q > 0)

1
2π

1/|q|∫
−∞

dx
1+qxf(s)g

(
1
q ln

(
1+qx
1+qs

))
(q < 0)

(55)

If we impose the initial condition

f(x) = δ(x), (56)

we have

u(x, t) =
1√

4πDt
exp

(
− 1

4Dt

[
1
q

ln(1 + qx)
]2

)
. (57)

From Eq. (57), the expectation value ofx are

E(x) =
1
q
eq2Dt(e3q2Dt − 1). (58)

For a smallq, we get

E(x) ≈ 3qDt. (59)

The variance is then given by

V (x) = − 2
q2

e5q2Dt
(
cosh(q2Dt) + cosh(3q2Dt)

− cosh(4q2Dt)− sinh(q2Dt)− 1
)
. (60)

For a smallq, we get

V (x) ≈ 2Dt + 16q2(Dt)2. (61)

Figure 3 shows the plot ofu(x, t) versusx with t = 1 and
D = 1 for q = 0 (Pink), q = 0.2 (Brown) andq = −0.2
(Gray). We know that the graph is asymmetric unlessq = 0.
Thus Eq. (57) is the asymmetric normal distribution. Figure 4
shows the plot ofu(x, t) versusx with q = 0.2 andD = 1
for t = 1 (Pink), t = 2 (Brown) andt = 3 (Gray). Figure 5
shows the plot ofu(x, t) versusx with q = −0.2 andD = 1
for t = 1 (Pink), t = 2 (Brown) andt = 3 (Gray).
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FIGURE 3. Plot of u(x, t) versusx with t = 1 andD = 1 for
q = 0 (Pink),q = 0.2 (Brown) andq = −0.2 (Gray).

FIGURE 4. Plot of u(x, t) versusx with q = 0.2 andD = 1 for
t = 1 (Pink), t = 2 (Brown) andt = 3 (Gray).

FIGURE 5. Plot ofu(x, t) versusx with q = −0.2 andD = 1 for
t = 1 (Pink), t = 2 (Brown) andt = 3 (Gray).

6. Conclusion

In this paper we studied theq-deformed heat equation and
q-deformed diffusion equation. From the fact that the ordi-
nary heat equation was obtained by taking continuous limit
in the discrete heat equation with a uniform space interval,
we considered the discrete heat equation with a certain non-
uniform space interval which was related toq-addition orq-
subtraction appearing in the non-extensive thermodynamics.

By taking the continuous limit, we obtained theq-deformed
heat equation. We found that theq-deformed heat equation
possessed theq-translation symmetry instead of the ordinary
translation. We solved theq-deformed heat equation for a rod
of lengthL. We discussed cooling of a rod from a constant
initial temperature. We used theq-deformed Fourier trans-
form to find the solution of theq-deformed diffusion equa-
tion. We found that the variance inx takes the form,

V (x) = − 2
q2

e5q2Dt
(
cosh(q2Dt) + cosh(3q2Dt)

− cosh(4q2Dt)− sinh(q2Dt)− 1
)
. (62)

For a smallq, we obtained

V (x) ≈ 2Dt + 16q2(Dt)2. (63)

We found that theq-deformed diffusion process is asymmet-
ric.

The q-addition andq-subtraction defined in the non-
extensive thermodynamics was rarely used in the deforma-
tion of the space-time (q-deformed space time). The appli-
cation to quantum mechanics was discussed in Ref. [20], ap-
plication to mechanics was discussed in Ref. [25], and con-
struction ofq-lattice andq-Bloch theorem was discussed in
Ref. [26].

Besides, we comment the connection of non-
homogeneous media with theq-deformation of space
briefly. It seems impossible to describe the general non-
homogeneous media in an exact way without numerical
study. Here, we adopted a special non-homogeneous me-
dia related toq-deformed space. Because asymmetry of the
q-lattice, the graphs of temperature in theq-heat equation and
concentration in theq-deformed equation became asymmet-
ric, which had different feature for positiveq and negativeq,
(See Fig. 1-5).

Finally, we compare theq-deformed diffusion equation
with the diffusion model with the effective position depen-
dent diffusion coefficientD(x) [27-29]. The diffusion equa-
tion with the effective position dependent diffusion coeffi-
cientD(x) was given in the form,

∂u(x, t)
∂t

=
∂

∂x

(
w(x)D(x)

∂

∂x

[
u(x, t)
w(x)

])
, (64)

wherew(x) denotes the variable cross section. Comparing
Eq. (43) with Eq. (64), we know

w(x) = 1 + qx, D(x) = D(1 + qx)2. (65)

Thus we know that theq-deformed diffusion equation is an
example of the diffusion model with the effective position
dependent diffusion coefficient.
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