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The ¢-deformed heat equation andy-deformed
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In this paper we consider the discrete heat equation with a certain non-uniform space interval which is relaigdition appearing in the
non-extensive entropy theory. By taking the continuous limit, we obtaig-theformed heat equation. Similarly, we obtain the solution of
the g-deformed diffusion equation.
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1. Introduction In this paper we consider the discrete heat equation with
a certain non-uniform space interval which is related;{o

Heat equation governs how heat diffuses or transfers througfqdition org-subtraction appearing in the non-extensive en-

a region, which was first introduced by Fourier [1] in 1822. tropy theory [16-18]. By taking the continuous limit, we ob-

In one dimension, this equation take the form, tain theg-deformed heat equation. Similarly, we derive the
P 5\ 2 g-deformed diffusion equation. This paper is organized as
&u(;&t) =k (8) u(z,t), (1) follows: In Sec. 2 we discuss thedeformed heat equation.
X

In Sec. 3 we discuss the solutiongtieformed heat equation.

whereu(z, t) is the temperature at positienat timet andx N Sec. 4 we discuss cooling of a rod from a constant initial
is thermal diffusivity. temperature. In Sec. 5 we discuss thdeformed diffusion

In this paper we are to find a deformed heat equation. T&guation.
do so we need the discrete version of heat equation where .
space is discrete but time is continuous. Discrete physicd- ¢-deformed heat equation
have been studied in various fields [2-15]. If we considerin this section we discuss thedeformed heat equation based
discrete positions denoted by on the theg-addition andy-subtraction appearing in the non-
extensive thermodynamics [16-18]. As is different from the
non-extensive thermodynamics, we introduce the parameter
so that it may have a dimension of inverse length. In the non-
extensive thermodynamics, the parametisrdimensionless.
Thus, in theg-deformed heat equation,can be regarded as
1/¢ where¢ denotes a length scale.

Now let us introduce the discrete position with non-
uniform interval where the distance between adjacent posi-
tions are given by

Tp, =na, nEZ, (2)

we have the discrete heat equation,

0 A2
Eu(xn,t) = rAZu(xn,, t), 3)

where finite difference operators are defined as

w(Tpt1,t) — u(Tn,t)

Agu(zn,t) = (4)
a Tn41 @q Tp = a, (6)
If we take the limita — 0 in Eq. (4), we have Eq. (1). or
From Eqg. (2), we know that
Tn4+1 = Tn EBq a, (7)
n — dn — 4, 5 .. . .
Int1— % @ ©) where thej-addition and;-subtraction [16-18] are defined as
which implies that the uniform space interval guarantees the a®yb=a+b+ qab, (8)
heat equation of the form (1). In other words, if we consider
a non-uniform discrete position, we will obtain another form a0, b= a—b 9)

of heat equation. 1+4qb
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As is different from the uniform lattice, the non-uniform lat- 3. Solution of g-deformed heat equation

tice consisting discrete points obeying Eqg. (6) can be re-

garded as an example of the non-homogeneous medium fronsider a rod of length with the initial condition

the continuous limit¢ — 0). We think that the discrete

positions defined by the different pseudo addition (deforma- u(z,0) = f(z), (20)
tion of the ordinary addition) can give another examples of;4 the boundary condition
the non-homogeneous medium in the continuous limit. For

example, in Ref. [19], ther-addition was introduced to de- u(0,t) = u(L,t) = 0. (21)
scribe the non-homogeneous medium where anomalous dif-
fusion arose. We look for a solution of the form

The Eq. (6) gives the relation u(z,t) = X (2)T(t). (22)

Tppr = (14 qa)z, +a 10
+1=(1+qa) (10) Inserting Eq. (22) into Eq. (19) we get

Solving Eq. (10) we get

1 dT 1
1 LT — (D)X =), A>0. (23)
= (1 +gd" = 1), (11) aldt X
1 Thus, we have
Wheng > 0 we have
T(t) = e "M, (24)
lim z, = oo (12)
e and
and 7
A
lim @, = —2 . (13) X(z) = Acos (q In(1+ qw))
n——oo q
Wheng < 0 we get
i g + Bsin (f In(1 4+ qx)) , (25)
lim z, = i, (24)
e a From the boundary function, we have= 0 and
and 7
: A
lim z, = —oc. (15) o <q In(1+ QL)> =0, (26)

In this case we demarjda < 1. The discrete position is not which gives
symmetric forzg = 0. Indeed, we have

Vi=a, =T o —12,... (27)
Ty = —%, n> 1. (16) (1 + qL)
qa)”
Thus, the general solution gfdeformed wave equation is
For the discrete positions obeying Eg. (6), the difference op-
erator becomes
; ; Z B, sin (mr ln((i i qz)))
Amzqu((ﬁn?t) _ U(xn+la ) - u(x'nm ) _ (1 + ql'n) q
Tn+1 eq Tn 2
(o) ulont) pr(ﬁwnﬂt>' (28)
% (U xn-‘rla U xTH ) . (17) (ln( + qL)>
xn+1 — Ty

Now let us apply the initial condition. Then we have
Thus, in the continuum limit, we get

N5 osin (e 20+ 42)
flz) = Z B, sin (mr - . ) . (29)

n=1

Ag.qu(Ty,t) — DI = (1+ qx)?
z

Here we know that the-derivative D remains invariant un-  If we use the orthogonality relation
der theg-translationt — x @ dx. Recently, quantum theory

(18)

with g-translation invariance was constructed in [20]. Us- 7 _ In(1+qz)\ . In(1 + gz)
ing Eq. (18), we obtain. the-deformed heat equation with sin n”m sin mﬂln(l Y qL)
g-translation symmetry in the form,
9 ) dx In(1+¢L) 5
ol t) = = s 30
o7 s t) = K (DI) u(a, t). (19) “Trar 5 (30)
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we have 4.1. Spatial temperature profiles

Now let us consider fixed time. Here we consider the time
t = tq,. Then we have

L
B, =
+qL /f
0

dug 4 . In(1 + gx
. In(1 + qx) dx u(z,t) ~ —2e ! sin (W(Q)) . (40)

X sin | nw . (31) T In(1 + q)

In(1+4¢L)/ 1+ qx
L This has the maxima at = =, where
Here we solved the-heat equation in a closed form. Our
method is to introduce thglattice as an example of the non- . Vvi+g—-1 (41)
o=——":

homogeneous medium, which is not related to the numerical q

solution methods based on adaptive grids [21-24] because we
obtained the exact solution. Thus, center of a rod is not a line of symmetry unless 0.

Fig. 1 shows the plot of. versusz with ug = 1 for ¢ = 0
(Red),q = 0.2 (Brown), andy = —0.2 (Gray). We know that
the position for maximum of is smaller thari /2 for ¢ > 0
while it is larger thar /2 for ¢ < 0.

4. Cooling of a rod from a constant initial
temperature

Suppose the initial temperature distributigte) in the rod
is constantj.e. f(x) = ug. Now let us consider the case of
L =1,k =1. Then we have

4.2. Temperature profiles in time

Settingz = x¢ in the approximate solution, we have

2ug 4 2.72¢
By, = —2((-1)"—1) (32) £~ 2U0 __amr 42
Thus, we have Figure 2 shows the plot of versust with ug = 1, x = ¢ for
g & - In(1 + gz) q = 0 (Red),q = 0.2 (Brown), andg = —0.2 (Gray).
u(z,t) = — sin | (2n — 1)m———~
T = 2n—1 In(1+q) u
2 2.2
q*(2n — 1)*m%t i
—_———. 33 i
X exp ( (111(1 + q))2 ( ) 0_4:_
In this case, the ratio of the first and second terms in Eq. (33) 0_35
is i
In(14+q) 02
|second term le*af(qfiff)z sin (3771 () )‘ (34) ;
[first term 3 ‘Sl (Wl?n(lltrqf) )‘ ol
8q2772t E
< e mEra)? (35) oz T e o8 0
<e® fort< tqs (36) FIGURE 1. Plot of u versusz with up = 1 for ¢ = 0 (Red),
q = 0.2 (Brown), andg = —0.2 (Gray).
where we used
|sinnt| < n|sint|, (37) o)
and 1.0:
(In(1 + q))? of
= g (38) o8

06f
Thus, the first term dominates the sum of the rest of the terms,

and hence 04]

4 In(1 0.2f
w(z,t) ~ 29 gin (wn<+qx>> ;
- :

t

0.1 02 03 04 05

In(1+ q)
__ ¢t
<o (irygE) ©9

FIGURE 2. Plot of u versust with ugp = 1,z = x¢ forqg = 0
(Red),q = 0.2 (Brown), andg = —0.2 (Gray).

Rev. Mex. Fis68 060602



4 W. SANG CHUNG, H. HASSANABADI AND J. KRI Z
5. ¢-deformed diffusion equation

The ¢-deformed diffusion equation has the same form agjtleformed heat equation,

;@) = D(DY)*u(w,t), (43)
whereu(z, t) denotes the concentration afbddenotes diffusivity. Now let us impose the initial condition
u(z,0) = f(z). (44)
Now let us introduce the-deformed Fourier transform as
v | tEule,t)(1+qx)c  (¢>0)
-1

Flu(z,t) = Ulw,t) = N | , (45)

5 | thgulz,)(1+g0)s (¢<0)

and the inversg-deformed Fourier transform

o0 v IIf we impose the initial condition
FH U (w, £))=u(z, t)= / dwU(w,t)(1+qz)" 5. (46)
e fla) = d(x), (56)

From the definition ofg-deformed Fourier transform, we

know we have
F((DI)"u(z,t)) = (—iw)"U(w,1). (47) (o) = 1 1 T1 In(1 + q2) 2 (57)
Taking theg-deformed Fourier transform in Eq. (43) we get L5 = Var Dt P 4Dt | q . e '
U (w, t)
ot —Dw?U(w,1), (48)  From Eq. (57), the expectation valueofre
which is solved as 1
_ —Dw?t E(z) = —e?’ Dt(37°Dt _ 1), 58
U(w,t) = c(w)e . (49) () q ( ) (58)
Then we have
For a smally, we get
U(w,0) = c¢(w). (50)
Thus we get E(z) ~ 3¢Dt. (59)
c(w) = F(f(z)). (51) The variance is then given by
Now let us set
2 2 2
g(x) = F (e P, (52) Viz) = —q—zeSq Dt (cosh(q>Dt) + cosh(3¢>Dt)
which gives — cosh(4¢”Dt) — sinh(¢°Dt) — 1). (60)

pe 11 ?
g(z) = 7 &P (—4Dt [qln(lﬂﬂ)] ) (53) For a smally, we get

Then we have

V(x) = 2Dt + 16¢*(Dt)?%. (61)
U(w,t) = F(f () F(g(x))- (54)
o D = 1for ¢ = 0 (Pink), ¢ = 0.2 (Brown) andq = —0.2
= [ lféw (s)g (% In (ﬁgz’)) (g >0) (Gray). We know that the graph is asymmetric unlgss 0.
(e, t)= -1/q Thus Eqg. (57) is the asymmetric normal distribution. Figure 4
’ L Yl 1y (L shows the plot ofi(x, t) versuse with ¢ = 0.2 andD = 1
a7 _‘L oz (5)9 (5 n <1+q8>) (¢ <0) fort = 1 (Pink),t = 2 (Brown) andt = 3 (Gray). Figure 5

(55)  shows the plot ofi(z, ) versusz with ¢ = —0.2 andD = 1
fort = 1 (Pink),t = 2 (Brown) andt = 3 (Gray).
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FIGURE 3. Plot of u(z,t) versusz with ¢ = 1 andD = 1 for
g = 0 (Pink), ¢ = 0.2 (Brown) andg = —0.2 (Gray).
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FIGURE 4. Plot of u(z,t) versusz with ¢ = 0.2 andD = 1 for
t = 1 (Pink),t = 2 (Brown) andt = 3 (Gray).
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FIGURE 5. Plot of u(z, t) versuse with ¢ = —0.2 andD = 1 for
t = 1 (Pink),t = 2 (Brown) andt = 3 (Gray).

6. Conclusion

By taking the continuous limit, we obtained thedeformed
heat equation. We found that tlhedeformed heat equation
possessed thgtranslation symmetry instead of the ordinary
translation. We solved thedeformed heat equation for a rod
of length .. We discussed cooling of a rod from a constant
initial temperature. We used thedeformed Fourier trans-
form to find the solution of thg-deformed diffusion equa-
tion. We found that the variance intakes the form,

V(z) = —q%e‘r’q?m (cosh(g*>Dt) + cosh(3¢*>Dt)

— cosh(4¢”Dt) — sinh(¢°Dt) — 1). (62)
For a smallg, we obtained
V(z) ~ 2Dt + 16¢*(Dt)?. (63)

We found that the;-deformed diffusion process is asymmet-
ric.

The g-addition andg-subtraction defined in the non-
extensive thermodynamics was rarely used in the deforma-
tion of the space-timegtdeformed space time). The appli-
cation to quantum mechanics was discussed in Ref. [20], ap-
plication to mechanics was discussed in Ref. [25], and con-
struction ofg-lattice andg-Bloch theorem was discussed in
Ref. [26].

Besides, we comment the connection of non-
homogeneous media with theg-deformation of space
briefly. It seems impossible to describe the general non-
homogeneous media in an exact way without numerical
study. Here, we adopted a special hon-homogeneous me-
dia related toj-deformed space. Because asymmetry of the
g-lattice, the graphs of temperature in trbeat equation and
concentration in th@-deformed equation became asymmet-
ric, which had different feature for positiveand negative,
(See Fig. 1-5).

Finally, we compare the-deformed diffusion equation
with the diffusion model with the effective position depen-
dent diffusion coefficienD(x) [27-29]. The diffusion equa-
tion with the effective position dependent diffusion coeffi-
cientD(x) was given in the form,

0 (o 1), oo

wherew(x) denotes the variable cross section. Comparing
Eq. (43) with Eq. (64), we know

w(z) =1+ qr, D(z)=D(1+qz)? (65)

Thus we know that the-deformed diffusion equation is an
example of the diffusion model with the effective position

In this paper we studied thg-deformed heat equation and dependent diffusion coefficient.
g-deformed diffusion equation. From the fact that the ordi-

nary heat equation was obtained by taking continuous limi
in the discrete heat equation with a uniform space interval;
we considered the discrete heat equation with a certain no
uniform space interval which was relatedg@ddition org-

subtraction appearing in the non-extensive thermodynamic

t
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