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Microphase and macrophase separations in discrete potential fluids
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In this paper, we study the liquid-vapor phase diagram and structural properties of discrete potential fluids using integral equations theory
and Monte Carlo simulations in Gibbs ensemble. For this purpose, we considered three discrete fluids, namely, square well, square well-
barrier, and square well-barrier-well. They represent simple models of fluids with competing interactions that exhibit rich microscopic and
macroscopic phase behavior, depending on the strength and range of attractions and repulsions in the potential. Here, we emphasized
structural behavior near the liquid-vapor coexistence. For the square well-barrier fluid, we observed a possible scenario of a microscopic
phase separation associated with a cluster-like formation near the critical region, which could be interpreted as a frustration mechanism of
the liquid-vapor transition when either the strength or the range of repulsion increases. This microscopic-like separation can be inhibited by
suppressing the repulsion or by adding an extra well to the interaction potential. However, for the square well fluid with long-range potential,
we found evidence of a microscopic aggregation driven solely by attractions.

Keywords: Discrete potential fluids; phase transitions; cluster formation.

DOI: https://doi.org/10.31349/RevMexFis.68.050502

1. Introduction ther the particle diameter or the mean interparticle distance.
Further details on the definition of microphase separation are

provided by A. Archer and co-workers [16—21]. This char-

Over the past few years, it has been demonstrated that feristic peak is associated with a type of particle aggrega-
wide range of homogeneous and inhomogeneous phases, jgp, [5]. However, it is still debatable whether such a peak in-
equilibrium and nonequilibrium, in both simple and complex gicates a correlation between aggregates, i.e., clusters, in the
fluids, can be modulated simply by changing the range angig or represents an intermediate range order structure [27].
strength of the interaction potential [1-4]. This is due to theNonetheIess, the degree of ordering of the aggregate should
superposition of repulsive and attractive contributions in the,g 5 function of the peak height, although this parameter does
interaction potentiali.e, the physical behavior of the ob- ot provide explicit information about the type of ordering
served phases results from the competition between diffefsng the possible transition from intermediate to permanent

ent types of interactions, leading to complex potentials begqer. Further studies in this direction are discussed else-
tween fluid particles [5-11,13-25]. Competing interactions,here [28].

have been widely used to investigate, for example, the forma-
tion of ordered structures in complex systems, such as globu- Hence, in this work, the terrmicrophase separatiois
lar protein solutions [5-7], the effective interactions betweensimply used to highlight the presence of an additional peak in
solute particles in a subcritical solvent [8], the tempera-S(q) at low values, which is driven by competition between
ture dependence of cluster-like formations in double-Yukawaattractive and repulsive contributions of interaction poten-
fluids [9-12], and the microphase separations in two- andial. Commonly, a continuous interaction potential that con-
three-dimensional systems [13-21]. In particular, A. Santosiders short-range attraction and long-range repulsiena
et al. [25] studied the structural properties of fluids whosedouble-Yukawa potential, is used to represent a wide variety
molecules interact via potentials with a hard core plus twoof systems with competing interactions [9-11, 13-21]. Here
piece-wise constant sections of different widths and heightsye follow a different strategy and consider a potential repre-
using the rational-function approximation method. A simi- sented by a superposition of square-wells and square-barriers.
lar fluid with a square well-barrier potential was studied with A fluid in which particles interact with this kind of potential is
excellent results. usually known as a discrete potential fluid (DPF) [29]. DPFs
From the structural point of view, a macroscopic or ther-are important since they allow to study separately the ef-
modynamic phase separation in monodisperse fluids can Hects produced by the different attractive and repulsive com-
represented using the divergence of the static structure factponents of the potential [30, 32]; an aspect that cannot be
S(q) atg = 0 in the long wavelength limit [26]. In con- investigated using continuous potentials, where only global
trast, a microphase separation refers to the presence of a pegfitects can be distinguished. The thermodynamic and struc-
in S(q) at wavelengthgy < ¢,,(= 2x/d), whered is ei- tural properties of DPFs have been studied by computer simu-
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lations, perturbation-like theories, and integral equations the- 2 ‘ '

ory [32, 33, 35-42]. Furthermore, DPFs have been found to
exhibit multiple phase transitions [30, 31]. Analytical ex-
pressions for direct correlation functions have been devel-
oped [43-46], which could be used as new reference system: 1+ R
in perturbation-like theories or incorporated into dynamical &
approaches [47, 48] considering the diffusive process in flu- = .
ids with competing interactions. Therefore, DPFs are ideal "= 8*2‘
candidates that can control the strength and range of all con- = b

tributions in the interaction potential. - I 8*3‘

Recently, we studied the structure far from the coexis-
tence region of three types of DPFs, namely, square-well - A, 3
(SW), square-well barrier (SWB), and square well-barrier- -1 ‘] ‘ L ‘ : ‘ 3
well (SWBW) [32]. We found the following interesting fea-
tures: the inclusion of attractive and repulsive components o , _ o
in the potential promotes changes in the local structure anfj/CURE 1. thfmat'c view of the discrete potential used in this
long-range order in the fluid; in particular, the attractive com-Work’ wherer” =r/a.
ponents induce higher compressibility. In addition, we eluci-
dated the possible formation of clusters or domains, but this . . . . .
point was not fully examined because aggregate formatiod- Discrete interaction potential, integral
does not occur frequently at high temperatures. However, we  €quations theory, and computer simulations
observed that some of these clusters exhibit a local fluid-like _ _ ) )
order, whereas the repulsive part tends to stabilize the fluid2ur Systém consists of spherical particles of diameter
inhibiting the formation of these domains and reducing the! "€y are in thermal equilibrium at absolute temperaflire
compressibility [32]. These properties suggest a rich Struc__F’art|cles interact through a discrete potential that sequgnnally
tural behavior when the fluid approaches the critical regionincludes a hard-sphere, square-well, and square barrier, fol-
Hence, both phase behavior and structure near the coexi@Wed by a second square well [32]. This pair potential has

tence region are discussed in the present work. In particfh€ following analytic representation:

lar, we studied the influence of interaction potential parame- 00, r <o,
ters, such as strength and range, on the macrophase and mi- —¢€, o <r < Ao,
crophase separations in DPFs. u(r) = €2, Ao <71 < Ao, Q)
o _ . . —€3, Ao <71 < Az0,
Liquid-vapor phase equilibrium was studied using the 0, > Ag0,

Gibbs ensemble Monte Carlo (GEMC) method [38,49]. The ] ] o
critical temperature and density were obtained using the laW/here the parameters A», and; define the discontinuity
of rectilinear diameters [50] and scaling laws [51]. The strucPoints and th_e range of attractive and repulsive contributions
tural properties were investigated by numerical solution ofi© the potential. Also, the parametetse;, ande;, charac-
the Ornstein-Zernike (OZ) equation [52]. The equation wad®€rize the strength of these contributions. Figure 1 presents a
solved using different closure relations, including PercusSchematic view of the potential.
Yevic (PY) [53], mean spherical approximation (MSA) [54],  'he depth of the first well is used to express the reduced
hypernetted-chain (HNC) [55], hybrid mean spherical ap-temperaturd™ = kpT/e, whereky is the Boltzmann con-
proximation (HMSA) [56], and Rogers-Young (RY) [57] to Stant, the particle dmmete@s used to reducex = r/a,_
monitor their limits of applicability for the study of the mi- A = A/o, andp* = po™; p is the particle number density.
crostructure of DPFs. This method also helps to determin&"om Ed. @), several cases can be considered depending on
the best closures for predicting microphase separations in i values chosen for the interaction parameters. For exam-
ids with competing interactions. For this purpose, we comP!€; EQ. ) reduces to the well-known hard-sphere (HS) po-
pared our theoretical predictions with Monte Carlo (MC) tentialwhene = ¢; = ¢ = 0. We will consider the following
computer simulations in the canonical ensemble. three cases of EQ1): (a) the SW potential, defined lay> 0
ande; = e3 = 0; (b) the SWB potential, defined by > 0,

The rest of the paper is organized as follows: Section Z; > 0, andes = 0; and (c) the SWBW potential, defined by
briefly describes the discrete interaction potential used téhe complete Eq.1). In this way, SW fluids are character-
model the DPF, the simulation technique, and the integraized by a single well, SWB fluids by a well and a barrier, and
equations theory. Section 3 deals with the liquid-vapor phas8WBW fluids by two wells with a barrier in between.
coexistence of the aforementioned DPFs, and in Sec. 4 the SW fluid is probably the most studied DPF [29,32,33,35—
main results of their structural behavior are presented. Fi40,42,43,45,58,63,67,71,73-76]. Here we review its ther-
nally, this paper ends with a section of concluding remarks. modynamic and structural properties, as a reference fluid. In
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particular, we explore its physical properties over an intervaterms of potential parameters, where they accurately describe

A € [1.5,3] in steps ofAX = 0.5. Note that\ = 1.5isa the microstructure of the fluid. We used three types of con-

typical value chosen in the context of simple liquids, while ventional closure relations: PY, MSA, and HNC [53-55];

A > 2.0 has been less studied. and two that incorporate thermodynamic selft-consistency:
We extensively studied different values foy ande; of  HMSA and RY [56, 57]. These relations can be expressed

the SWB fluid; however, we present only those cases whereia terms of B(r) as follows:

clear competition between microphase and macrophase sepa- PY

rations seems to be observed. More precisely, we considered B(r) =In[l+~(r)] —~(r), (4)
the following parameters for the SWB fluids =1.25 and MSA

1.5; Ay = 2.0 and 3.0; and; < [0.1,0.5]. For the SWBW

fluid, the potential parameters used afe= 1.5; A2 = 2; B(r) =In[l+~(r) = Bu(r)] + Bu(r) —~v(r), (5)

A3 = 2.5; €5 € [0,0.5]; ande} € [0,0.5].

In Gibbs ensemble simulations [49, 79], we initially
placed 2048 particles with uniform distribution inside two
cubic boxes of equal volume. Then, we carried out the fol- RY
lowing trial moves: displacement of particles in each box,

HNC
B(r) =0, (6)

O NF()
volume change while the total volume remains constant, and B(r)=1n {1 + } —5(r), 7)
particle exchange between the boxes. A Monte Carlo cycle f(r)
randomly performs theses operations in the ratio 800:199:1, HMSA
respectively. We usel5 x 10° Monte Carlo cycles to equi- (VM) =Bua(M)f(r) _
librate the system and.5 x 10° production cycles. The B(r)=In {1 + o) ]
acceptance ratio for both particle displacement and volume
changes was fixed t60%. + Buq(r) —(r), (8)

The phase diagram for the SW fluid was compared Withwhere is the attractive contribution to the interaction
results obtained using self-consistent Ornstein-Zernike ap- Ua (1)

proximation (SCOZA) [40]. For SWB fluids exhibiting a Eg;‘irrl‘gifé(g) - lg(g)xj ;‘gé’")gf‘”?&(’i"s) ':::s( i:\eptfﬁz_e
liquid-vapor phase transition, we studied the microstructureﬁon defined. asf(r)q—. 1— exp‘(_’a(r)) anda is thge Mix

near the critical point using MC computer simulations in.

NVT ensemble. We usea0s particlesi2 x 10° oydesto 3 BEEREE C B o e
equilibrate the system,x 10° cycles to obtain statistics, and Y, y €q 9

. . L isothermal compressibilityy of fluid from the virial route
50% acceptance ratio. Moreover, when the interaction is suf-"_ — (98P /p), and the compressibility route-" —

ficiently long-range, phase coexistence disappears. In such’y 7 ) 1 L4 c
case, we focused on the microstructure at low temperatures, pclq=0), i€, X, — Xu [56, 571, whereP is the

Microstructure was studied by solving the Omstein- P es3U® of the system an(y) is the Fourier transform of

. . . ) . the direct correlation function.

Zernike (OZ) equation [52], which defines the direct corre- Excess chemical potentialis not reported. but can be de-
lation functione(7) in terms of the total correlation function, . : -al potentials ported, :
h(7) = g(¥) — 1, whereg(7) is the radial distribution func- termined dyrmg S|mulat!ons with no additional cost by sim-
tion. For homogeneous and isotropic fluids, the OZ equatiorl?Iy evaluating the following expression [49]
takes the following form [52],

p1 = kBTln% <n1 j_ 1 exp(ﬁAu)> ; 9)
h(r) = e(r) + p/c(fl)h("?_ |)dr. () whereAu is the energetic cost of inserting a particle in box
1, A is the de Broglie thermal length, ard- - - > represents
To solve Eq.’2), arelation between(r) andh(r) is required,  an ensemble average. Similarhy in the second box can be
which incorporates the information of the interaction poten-easily evaluated. We also computed the pair correlation func-
tial and allows to close the set of equations. The most generabn and the pressure at coexistence. Both quantities can be

closure relation is as follows: used to test theoretical predictions based on the liquid state
theory, such as the OZ E®)([52].
—pBu(r r)+B(r y
c(r) = e PITADTBI) () — 1, ©) The equation of state for discrete potential fluids of

Eq. (1 i ing the following virial Eq. [32]:
where~(r) = h(r) — ¢(r) is the indirect correlation func- a. () can be determined using the following virial Eq. [32]

tion andB(r) is the bridge function [77]. However, the form 8P 2 3

i imati i — =14 Zmpo® | D N Ag(N)
of B(r) is unknown and further approximations are required P 3P i =G A
to find the solution to the OZ equation. In this work, we =0
numerically solved Eq.2) using the Ng method [78] and where)\; denotes the discontinuity points of the potential and
assuming a particular choice fd#(r). We used different  Ag()\;) = g(A\) —g(\;) is the difference of the contact val-
closure relations to determine the regime of applicability, inues of the radial distribution function at the discontinuity. In

: (10)
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addition, this equation is exact. For an HS fluids 0 and the L oo’ 01 oss| O0€H o
summation contains only the terfxy (o) = g(c™). Further- o-0¢’,=02
more, the SW fluid involvea\g(\) = g(A*) — g(A7), the 4 eoe 03 ros2f
SWB considers\g(\2) = g(A\f) — g(\;), and the SWBW P aae 04 »
includes the contributiot\g(\3) = g(A\]) — g(\3). 1ol e L
¢ 0.2 p 0.4 0.6
¥, o

3. Liquid-vapor phase diagram 1

3.1. SWfluid
0.8
Although phase coexistence of the SW fluid has already beer
studied in detail [29,39,58-74], we inspected the dependence e
on )\, as shown in Fig. 2. We show the phase diagram for dif- 0.2 0.3 0.4 0.5 0.6
ferent ranges of attractiork = 1.5, 2.0, 2.5, and3.0; and ob- p*
serve that an increase Aresults in high coexistence temper- Ficure 3. Liquid-vapor phase diagrams obtained with Gibbs en-
atures. This can be explained as follows: when the thermademble simulations of SWB fluids for =1.5, A2 = 2.0, ¢ =1.0,
energy is not high enough compared to the well depth, th&aryinge; = 0.1, 0.2, 0.3, 0.4, and 0.5. The inset shows the liquid-
particles on average will be located in the region of the attracvapor phase diagram for = 1.25 and A, = 2, it only appears for
tive well to minimize the free energy of the system. This ise* < 0.1._ The circle indicates the critical point and the lines are
the driving force that generates the formation of well-defined®nY @ guide for the eye.
particle domains, as discussed in Ref. [32]. Thus, to avoid
such patrticle agglomeration and to find the system within the

fluid phase, thermal energy has to increase. In addition, the?’
ia p " gy L - Y ﬁ:e potential:A = 1.5 and A, = 2. We observed that the re-
critical density does not change significantly with the interac-_ " i, :

ulsion affects the critical values of density and temperature,

tion range. Furthermore, the da_lta f“’”? the present S'mUIatloﬁwese decrease asincreases, the barrier tends to inhibit the
agree with estimates reported in the literature using Molecu-

lar Dynamics, GEMC [80, 81] (data not shown), and the Se”,ohase transition. With the simulation study, we found that

. X . LT the phase transition is completely inhibited &r> 0.8, we
Consistent Omstein-Zernike Approximation (SCOZA) [40] could observe that as the barrier height increases, the energy

difference AE = €5 + €* also increases, thus forming an
3.2. SWB fluid effective barrier that prevents the particles from falling into
the potential well, as a consequence of thermal fluctuations.
To better understand the coexistence behavior of the SWBnerefore, high thermal energy is required to transfer parti-
fluid phase, we define the following quantity; = e2/€;  cles from one well to another; this decreases the critical point
which describes the repulsion strength in reduced uaits, 35 the barrier increases.
the energy unit and its reduced value is always- 1. We estimated the effective threshold barrid; that
completely inhibits the liquid-vapor transition and found that
AFE, depends on height of; and the repulsive range. For
a short width repulsive interactiodd = Ao — A < 0/2) a
higher barrier is required to inhibit the coexistence\ # 1.5
and)\, = 2.0, a barrier height of; = 0.8 can inhibit LV co-
existence. However, fah A = Ay — A 2 ¢/2, a small barrier
is required to promote cluster-phase formation and inhibit co-
| ] existence. The inset of Fig. 3 shows the phase diagram for the

)

: m

0.65

In Fig. 3 we studied the effect of the repulsion strength,
on phase behavior; we use the following parameters for

10

R
TR

ouno

W NN =

- A | attractive and repulsive interactions at short- and long-range,
respectively, also foh = 1.25 and A\, = 2, coexistence ap-
I 1 pears ife; < 0.1. In the next section we discuss the structure
2 W W properties to elucidate this behavior.
| ottt - A AL 8 MAsaNn, ] In addition, we observed that when the barrier height de-
. ‘ ‘ . . ‘ ‘ creases below zero, the phase diagram shifts to higher tem-
% 02 04 0.6 0.8 peratures (data not shown) because the barrier acts as a sec-
p ond well and particles can distribute in both wells, strongly
FIGURE 2. Liquid-vapor phase diagrams of SW fluids far = favoring the phase transition. Theoretically, when study-

1.5,2,2.5 and3. Open symbols correspond to simulation data and iNg the liquid-vapor phase diagram of SWB fluid using ad-
lines to SCOZA results taken from [40]. Closed circles indicate vanced approaches, such as SCOZA, the standard procedure

simulation results near the critical points. described in Ref. [40] fails to converge numerically when an
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additional barrier in the interaction potential is explicitly con- ' ' ' ~ ' ooex,=0585,=03

sidered. However, further considerations of the fluid coexis-  '*[° o= &%, =0.5,e%,=02]
tence of DPFs can be evaluated using SCOZA, which is dis- i . oo &%, =0.5, e, =0.11
cussed elsewhere. 1.6 .

3.3. SWBW fluid

In the case of SWBW fluid, a secondary attractive well is
added to the SWB potential and the interaction ranges are 1.2 -
fixed atA =1.5,)5 =2.0, and\3 = 2.5. To investigate phase

coexistence of fluids with competing potential, we analyzed ! ® i

the following two interesting cases: increasing the repulsive | |
contribution, and increasing the attractive strength of the sec- &O-D\E\jﬂ‘]qﬁ

ond well, separately. The attractive and repulsive strengths % 01 02 03 04 05 05 °

are tuned as follows, in two cases: €)= 1.0 ande; = 0.1 P

are fixed and the barrier height is varied; and {2)= 1.0 FIGURE 5. Phase diagram of SWBW fluids, the valuesdf= 1.0
andes = 0.5 are fixed and is varied. ande; = 0.1 are fixed, and the effect of increasing the well depth

Figure 4 shows the results of the first case, where the bars studied. The values of the well depth afe = 0.1, 0.2, and
rier height is increased. We found that when the barrier heigh@-3. The results were computed using GEMC and the dark circle
increases, the repulsive contribution shifts the coexistence rdndicates the critical point.
gion towards low temperatures region. However, coexistence
of SWBW fluids is ot_)served at higher temperatures Fhan MrABLE I. Critical densities and temperatures for SW, SWB, and
the case of SWB fluids, thus the attractive contribution fa-q\ngw fluids.
vors liquid-vapor coexistence. Therefore, the second well in-
creases the effective attractive range. However, the barrier Type € A X A TY pe
and the second well generate an effective barrier height, SW 00 00 15 20 25 1.226 0.304
€3 + €3, wrr]]ich inhibits coc(ajxistence. As the barrigr height N~ gw 00 00 20 20 25 2624 0274
creases, the system needs more energy to attain coexistence, SW 00 00 25 20 25 G567 0276
which is reflected in a low critical temperature with increas-
ing barrier height. 00 00 30 20 25 9980 0.255

To examine the effect of the second well, we considered SWB 01 00 15 20 25 1080 0.310
three values of well depth; = 0.1,0.2, and0.3. In this SWB 02 00 15 20 25 0972 0.306
gasek,] _coexistence ;hifts .to&/yard. higEer tsmperatudres zlals well sws 03 00 15 20 25 0851 0301

epth increases, Fig. 5, indicating that the second well pro-
. 04 00 15 20 25 0.760 0.297

motes LV coexistence. In both SWBW cases, macrophase
separation appears for any well depth or barrier height. The swe 05 00 15 20 25 0700 0294
SWB 01 00 125 20 25 0.559 0.3035

SWBW 01 01 15 20 25 1440 0.313
oe',=02 - SWBW 02 01 15 20 25 1344 0312
o, =05 SWBW 05 01 15 20 25 1045 0.309

| SWBW 05 02 15 20 25 1339 0.316
SWBW 05 03 15 20 25 1640 0.328

o0-0¢’,=0.1

presence of a second well increases the effective interaction
range and well depth.
. Finally, in Table | we present the critical values for each
discrete potential fluid studied in this section. Critical tem-
peratures and densities were obtained from the law of recti-
linear diameters [50], since the critical values cannot be cal-
O —— 07 05 = 08 culated directly from GEMC simulation.

p*
FIGURE 4. Phase diagram of SWBW fluids. The values of

¢* = 1.0 and¢; = 0.1 are fixed. The effect of increasing the 4. Structure
barrier height is studied. The values of the barrier height&re:
0.1, 0.2, and 0.5. These results were obtained using GEMC and th€luster formation was studied using short attractive and large

dark circle indicates the critical point. repulsive potentials. Here we discuss the structural properties
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of SW, SWB, and SWBW fluids. The structure facts{q) il o 6 oT=080 -0 T+=0.75
is computed using MC simulation in NVT ensemble and the -1 BT o =065

OZ equation. For each case, we studied the structure in the 4| & ©°T0% b
equilibrium region and near the critical point. We explored | % 1+
a wide range of values of parameters defining the interaction 0 L

L

potential,i.e., the strength and range of each contribution. > ‘ ,
We considered two conditions on the structure factor for % . s o o & a4
cluster formation [5-7,9]: (1) a low-q peak value located at 2
q:, i.e, the cluster-cluster peak. This peak corresponds to a
mean distance between clusters2r/q¢* and characterizes
the repulsive interaction between them. (2) A main high-
g peak value, namely, monomer-monomer peak, located ai
gk, ~ (27 /o), which corresponds to the mean distancebe- L. . . o . . o . | . 1 . |
tween monomers within a single cluster (wWith< g,,).
For the SW fluid, we analyzed the structure for each value _
of A studied in Sec. 3, however, we show only the cases fof 'GURE 7. Structure factors(qx) of SWB fluids fore™ = 1.0,
A = 2.5 and3.0, because these values are less studied angz = 0-1:A =1.25, and; =2 atp” = 0.275. In the insete” =
in addition, we found an unusual structural behavior. Forll'(.)'62 = 03,1 =1.25, and\; =2. Symbols represent MC simu-
X < 2.0, the structure has been reported in Ref. [32, 34] With-atlon data, lines represent OZ-HMSA, in the outset, the solid line
- g - . is computed by PY, and dashes lines are computed from Santos et
a typical structural behavior of a homogeneous fluid. Figurey;,york [25].
6 showsS(q) of the SW fluid forA =2.5 and 3.0 (inset), the
formation of a peak aj; is observed. Foh = 2.5, the peak  creasing barrier is studied. Figure 7 shas\(g) for €5 = 0.1,
is localized atg; ~ 5.98, which corresponds to ~ 1.05;  where the value ofS(¢* — 0) increases as temperature
and forA = 3.0, the peak is localized af; ~ 5.2, which  decreases, this is a typical thermodynamic behavior in the
corresponds te ~ 1.2. In these two cases, the height of the liquid-vapor transition. However, the structure factor for
peak ay;, is slightly smaller than that of the peakgt indi- ¢4 = 0.3 exhibits an unusual peak at low-qg, which increases
cating that the structure is sensitive to the interaction rangewith decreasing temperature. This behavior is characteristic
and that a singular behavior appears for large values & of cluster-phase formation. Thus, for this interaction range,
the system, there is a characteristic lengte 27 /¢, where LV coexistence disappears and a cluster-phase formation ap-
l. > o. A peak atg} is close to a peak af;, and this behav- pears. This behavior is elicited by a slight increase in the
ior corresponds to the formation of well-defined domains omarrier height.
dimers, promoting the LV coexistence. Figure 8 showsS(q) for the system with medium-range
For the SWB fluid, we investigated the same values ofattractive and medium-range repulsive interactiaes,\; =
A and ¢* studied in Sec. 3. We first present the resultsl.5 andA; = 2.0, withej = 1.0, ande = 0.5 and 0.7 (inset).
for a short-range attractive interactioh & 1.25) and then ~ We explored the cases whetee [0.1,0.7], nevertheless, we
a medium-range repulsive interaction, where the effect of in-

&9 T*=0.90 [ @99 F% gy g
|~ & @ T=0385 ' =080
: ’ = ©-0 T*=0.75

O--0 T*=0.80

S(q*)

2 4 6 8 10 12 14
qllﬂ
q* FIGURE 8. Structure factoiS(gx*) of the SWB fluids fore* = 1.0,
€5 =0.5,\ =15, and\; =2, atp® = 0.275. Inthe inset* = 1.0,
FIGURE 6. Structure factoiS(gx) of SW fluids fore* = 1.0 and e; = 0.7, =1.5 and\, =2. Symbols represent MC simulation
A =2.5, atp” = 0.225. Inthe inset™ = 1.0 and\ =3.0. Symbols data, lines represent OZ-HMSA, the solid lines are computed by
represent MC simulation data and lines represent OZ-HMSA. PY, and dashes lines are computed from Santos et al work [25].
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FIGURE 9. Structure factorS(gx) of SWB fluids fore* = 1.0,
e; =0.1,A =1.5, and\, =3, atp™ = 0.250. In the inset™ = 1.0,
e; = 0.2,\ =1.5, and\> =3. Symbols represent MC simulation
data and lines represent OZ-HMSA.

FIGURE 10. Schematic view of cluster-phase formations and
macrophase separations as a function of the range and strength of
the interaction.

) ] o perature, in Fig. 10 we show two representative systems:
found that fore; < 0.6, the fluid has a typical behavidre.  gwB1 with\ = 1.5 and)\, = 2.0, and SWB2 with\ = 1.25
S(¢" — 0) increases as the temperature decreases and Byq \, — 2.0. In this study, we set an exponential fit for the
low-qg peak appears. For this reason, we show two repreésefpyndary between both regions. For the SWB1 case with
tative casesef, = 0.5 and 0.7). For; = 0.7, a slight peak ) '_ (33, |V coexistence is inhibited for; > 0.7, whereas
formation appears af* < 2 and this peak is more evident for the SWB2 case with\, = 0.6, LV transition is inhib-
as the temperature increases. Thus, a high barrier is requirgdq for s > 0.2. In addition, for the extreme case, when
to find a cluster-phase, which coincides with the fact that LV = > | there are microphase separations even with barrier
coexistence disappears. In Figs. 7 and 8, we observe that thl%ig_|’1te§ <0.1.
data computed from Santesal. work, in most cases, repro- - Fjna|ly, the competing effect on the structural properties

duces main peak behaviour @t ~ 2m, but fail to¢" < 2, o the SWBW case is discussed. Here we considered the fol-
this is because, for this cases, the rational functions apPrOYgwing medium interaction ranges: = 1.5, \» = 2.0, and

imation method does not reproduce the contact values of thg3 = 2.5. As in Sec. 3, interaction ranges were fixed with

radial distribution function. varying barrier height and second well depth. In the first case,
Figure 9 shows the last case of SWB fluid, correspondthe depth of the attractive contribution is fixed and the height
ing to a medium-range attraction and a long-range repulof the repulsive contribution is varied. In the second case,
sion: \; = 1.5 and X, = 3, respectively. We explored the second attractive contribution is varied and the repulsive
€5 € [0.1,0.5], but only two significant values were shown: contribution is fixed. For both cases, we found typical fluid
€5 = 0.1 and 0.2 (inset). We found that liquid-vapor coex- phase behavior. Figures 11 and 12 show the structure factors:
istence disappears even for a small repulsive barrier. We ohhe presence of the second well promotes macrophase sepa-
served cluster formation for any barrier height, which results-ations regardless of the depth of the second well, which is in
from long-range repulsive interactions. A peak at low-q val-agreement with the results presented in Sec. 3. Here, the ef-
ues was observede., we found anS(q.) atq. representing  fects induced by the barrier to favor microphase separations
cluster formation, and this peak appears for any temperatunigave vanished.
value. Structural studies use many closure relations, such as PY,
In the case of the SWB fluid, a clear relationship was ob-MSA, HNC, HMSA, and RY, to solve the OZ equation. In
served between the cluster-phase formations and the strengttis study, for SW and SWBW fluids, RY closure is not
and range of interaction. After a comprehensive study, wex good approximation to solve the OZ equation, because
found a relevant behavior, shown in Fig. 10. We studied thet is not convergent for most densities, which is consistent
microphase and macrophase formations in term4,0ind  with previous research [82]. The MSA closure converges in
e5, and explored the region in which LV coexistence rulesmost cases, but the results do not agree with simulation data.
and the region in which cluster formations or microphase ap€onversely, PY, HNC and HMSA converge for temperatures
pears; thus, we determine the boundary between phases. Tabkove the critical point, and the results agree with MC data.
white dots in Fig. 10 correspond to the macrophase or LV coHowever, HNC and HMSA do not converge near the critical
existence, and the black dots correspond to the region whegoint.
coexistence is inhibited and microphase appeared. We ex- In the case of SWB fluid, PY converged only around the
plored several temperatures near and below the critical teneritical point, however itis not a good approximation. No-
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less, forg* — 0 differences between closures results are ob-
served. In cases where LV phase separation does not appear,
most of the closure relations converge, but there are differ-
ences at low temperatures. However, PY, HMSA, and HNC
approximations reproduce the simulation data and the second
peak at g-low.

5. Conclusions

For simple attractive interactions, such as SW fluids, the
interaction range plays a primary role in microphase and
macrophase separations. Besides, the attractive potential pro-
motes LV coexistence, which appear at higher temperatures
with increasing interaction range. However, the results show
_ that increasing the interaction range favors the formation of
F*IGURE 11*. Structure factoiS(g*) of SWBW fluids f?l’e* = 1.0, microphases, in particular for > 2.5, with the appearance
€ =056 =034 =15X =2andAs = 25atp" = 0275.  of 4omains or dimers formation.
In the insete® = 1.0,¢5 = 0.3,¢5 = 0.2 A =1.5,\» =2 and o . . . . .
A3 = 2.5. Symbols represent MC simulation data, lines represent . Competing interactions, as in SWB.ﬂUIdS’ can give rise to
OZ-HMSA and solid lines in both graphics are computed by PY. .mlcrophase 'and macrlophase sepa'lratlons' that do not appear
in simple fluids. In this case, the interaction range plays a
primary role in microphase and macrophase separations and
interaction strength. We found that for short-range attrac-
tive and long-range repulsive interactions, LV coexistence is
inhibited and microphase separation appears when the bar-
rier height is increased. Besides, poor LV coexistence is re-
lated to cluster-phase formations. A similar effect is shown
in the case where the attractive interaction is medium-range
and the repulsive interaction is long-range. However, in this
case, the cluster-phase formations are independent of bar-
rier height. In addition, in both SWB cases, cluster forma-
tion is related to the absence of LV coexistence. Neverthe-
less, for medium-range attractive and repulsive interactions,
. & a large barrier height is required to observe a trace of cluster-
ob— s phase formation. In this case, macrophase separation domi-
o nates and LV coexistence appears for several values of barrier
height. In SWBW fluids, the second well favors macrophase
separations, and LV coexistence appears regardless of bar-
)" = 0.275. In the insete” = 1.0, ¢ = 0.1,¢; = 0.1, A =1.5, rier height. Thus, Io_ng-range attractive interaction inhibits
\s =2 andAs = 2.5. Symbols represent MC simulation data, lines cluster-phase formations. Finally, we showed that_ DPFs are
represent OZ-HMSA and the solid line in the inset was computedUSeful to study the effects of attractive and repulsive poten-
by PY. tials on LV coexistence and cluster formations. Furthermore,
we were able to determine the effect of the range and strength
Notably PY, HNC, and HMSA converged above the critical of the interaction on microphases and macrophases, sepa-
point, and are considered the best approximations; nevertheately.

FIGURE 12. Structure factoiS(g«) of the SWBW fluids fore* =
1.0,e5 =0.3,e3 = 0.1 A =1.5, and\, =2 and\3 = 2.5, at
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