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Two measures elaborated for entangled states: Quantum entropy and fidelity
using Schmidt coefficients of the reduced density matrix of full TRI
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In the present study, we determined quantum entanglement in a full trapped ion (TRI)-coherent system and its dependence on the Lamb-
Dicke parameter (LDP). We investigated the entanglement in view of two elaborated measurements of the family: entropy and fidelity. We
selected three values of the deep LDP to demonstrate the benefits of these two critical measures. The findings obtained in this study showed
that the maximum value of fidelity for entangled states is quantified approximately to be0.35, and the long lifetime is also observed with
entropy measurement. The findings suggest that three coupling parameters play a significant role in developing quantum entanglement.
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1. Introduction

A few months after the Einstein-Podolsky-Rosen [1] arti-
cle was published in 1935, in the same year, articles were
published in reaction by Erwin Schrödinger [2] and Niels
Bohr [3]. Schr̈odinger coined the word ”entanglement” to de-
scribe a condition in this famous EPR paper. The discussion
of these three papers focuses on describing two entangled
particle states and the characterization of the quantum corre-
lations between them. The entanglement of two-qubits, two-
qutrits or the two-quadrits is quantum-mechanically interest-
ing. Correlation in an entangled system cannot be explained
using classical correlations [4]. Quantum entanglement has
been proposed as a proof of quantum correlations [2].

The study of quantum entanglement has advanced over
the past years due to the further development of quantum
physics [5–7]. Entangled states can be worked in different
physical setups, such as massive particles like TRIs [5]. En-
tanglement between electronic levels of the TRI has been an
active field of study in recent years [6]. The high-fidelity
entanglement between a TRI and a photon is measured by
quantum frequency conversion [7].

In this context, qudits are used as higher capacity quan-
tum information sources, and could be of interest for quan-
tum communication [8]. The higher dimension of a given
Hilbert space, the more quantum correlation continuity is en-
sured. A quantum dit (qudit) is the unit of quantum infor-
mation described by a superposition of ”d” states, where the
number of states is an integer greater than two. For example,
qutrit or quadrit state can be called a qudit state. Pure and
mixed qudits can be obtained due to the interaction between
two laser beams and the three-levels TRI with specific initial

state conditions [6,9,10]. It is fundamental within the proba-
bility interpretation as initiated by M. Born and pushed into a
general form by P. A. M. Dirac, J. von Neumann, G. Birkhoff
and many others [11].

Fidelity (Transition Probability) for pairs of density ma-
trices can be defined as a tool in the hierarchy of all quan-
tum systems. Uhlmann and Jozsa’s papers are considered
classic fidelity studies [12–14]. Fidelity, negativity, purity,
and concurrence are popular methods for quantum entangle-
ment [15–17]. A structure worthy of study is presented in
Ref. [18] for multiplexed quantum repeaters that use local
connectivity to improve accuracy in entanglement distribu-
tion.

The existence of atomic motion, which becomes most
obvious for the high-dimensional Hilbert space of pure qu-
dit states is shown in [19]. A two-level atom and a two-
level ion, and a photon with spin up-spin down probability
are associated with two-dimensional Hilbert space. In gen-
eral, the n-level atom and the n-level ion are defined as the
n-dimensional Hilbert space. Interaction of an atom or an ion
with a photon is associated with a higher-dimensional Hilbert
space in the tensorial product such as (H = H1 ⊗ H2). We
expand the physical model that has been improved before for
studying Schr̈odinger cat states of the two phonons [20]. The
n-dimensional Hilbert space in Ref. [20] is restricted to 12
dimensions in this study. This limitation has led to easy an-
alytical results. Characterization of the quantum entangle-
ment can be explored using entropy [21] and fidelity [22–24],
which apply to the bipartite systems of arbitrary dimensions
in TRIs. Hence this situation fits our purposes. By means of
quantum entropy, it is shown whether the entanglement life-
time is extended or not [21]. There are both contributions and
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compatibilities between Ref. [25]’s fidelity calculations and
this paper.

The outline of this study is as follows. The theoretical
framework of the qutrit-quadrid in the physical system is in-
troduced in Sec. 2. the quantum entropy and the fidelity are
discussed with corresponding Figures in Sec. 3. Finally, we
give the results of the quantum measure in Sec. 4.

2. Evaluation of qutrit-quadrid in the physical
system

We focus a TRI in a harmonic potential and two coherent
states (or two photons). Also, we develop a new physical
system based on the quantum system mentioned in [20]. The
concept of the time evolution of the physical model is intro-
duced using the density matrix, which affects the state nec-
essary for quantum dynamics in [26]. The harmonic trap fre-
quency is designed to construct a linear trap so that the TRI’s
center-of-mass (c.m.) motion is effectively one dimensional
along thex axis. Therefore, we consider small vibrations of
a TRI in the harmonic trap which can be defined as coherent
displacements. The quantum state of the TRI’s c.m. motion
is characterized by a coherent state|α〉 with α ¿ 1 in this
way. For the first order inα, this describes as a qubit of two
phonons|0〉+ α|1〉.

The physical system is assumed to interact with two co-
herent states in aΛ scheme with the mass of the TRIm
and the linear harmonic trap frequencyν. A total Hamil-
tonian is determined in theΛ configuration for optical tran-
sitions. The total Hamiltonian of the TRI-coherent system
is Htotal = Hion + He−g + He−r, andHion is called the
Hamiltonian of the TRI. TheHion is given as the following:

Hion =
p2

x

2m
+

1
2
mν2x2

ion − δ1|e〉〈e| − (δ1 − δ2)|r〉〈r|.

Hion =
p2

x

2m
+

1
2
mν2x2

ion − δ1|e〉〈e| − 0|r〉〈r|. (1)

The assumptions and the parameters used in the TRI-
coherent system are given as follows:δ1 = ω1 − ωeg and
δ2 = ω2 − ωer. ωeg is the resonance frequency of e-g transi-
tion andωer is the resonance frequency of e-r transition. The
frequencies of the two photons are equal toω = ω1 = ω2

(See Fig. 1). Herepx is the momentum operator andxion is
the x-component of the position operator using the Planck
constant equal to one, (~ = 1). The TRI c.m. motion
is described by the standard harmonic-oscillator quantiza-
tion of Hion [20] via px = −i

√
(1/2)mν(a† − a) and

xion =
√

(1/2mν)(a† + a). Bosonic operatorsa and a†

according the usual Weyl-Heisenberg algebra are the annihi-
lation and the creation of the phonons.

We consider the lower levelsg and r to be degenerate.
Therefore, the energy of the ground level is equal to the Ra-
man energyωr = ωg = 0, the excited energy and isωe. We
focus on a nontrivial quantum case of a weakly detuned our
system in which∆ = δ1 − δ2 = 0 andδ1 = −νη2. ∆ = 0

can be true when lower levels of the ion are degenerate in
Eq. (1). The Lamb-Dicke parameter (LDP) isη = k/

√
2mν.

The wavevectorsk1 andk2 characterize the two photons with
k = k1 = k2, andk = 2π/λ. The wavelength of both photon
λ is red detuned from the upper levele by the same amount
δ1 = δ2 = −νη2. If the frequencies and wavevectors of
the two incoming photons do not take as equal (ω1 6= ω2;
k1 6= k2), then∆ 6= 0, that is, r and g levels can not be de-
generate. So that,|r〉〈r| can be visible in Eq. (1) and Eq. (4).

He−g andHe−r are the interaction Hamiltonians between
these levelse − g ande − r using~ = 1. The interaction
Hamiltonians are defined as follows:

He−g =
Ω
2

ei(k1xion−ωt)|e〉〈g|+ h.c., (2)

He−r =
Ω
2

ei(−k2xion−ωt)|e〉〈r|+ h.c. (3)

here, atomic levels of the TRI are given, such as|g〉 → TRI-
ground level,|r〉 → Raman level and|e〉 → excited level
(See Fig. 1). The Rabi frequencies of the dipole interactions
between the photons and the TRI’s are given byΩ in Eq. (2)
and Eq. (3). So that, the equality of Rabi frequencies is taken
by Ω = Ω1 = Ω2. In this approach, the mathematical equa-
tions are obtained byδ1 = δ2 andΩ1 = Ω2.

We now remove the Bose variables from the interaction
part of the Hamiltonian in Eq. (2) and Eq. (3). Thus, the ex-
ponential expressions have some variations. Because of the
degeneracy,∆ = 0 and the two exponential expressions are
as follows: ei(k1xion−ωt) = eiη(a†+a) andei(−k2xion−ωt) =
e−iη(a†+a). Therefore, the total Hamiltonian is rewritten as

H =
(

Ω
2

eiη(a†+a)|e〉〈g|+ νa†a− δ|e〉〈e| − 0

+
Ω
2

e−iη(a†+a)|e〉〈r|
)

+ h.c., (4)

with respect to the base vectors as the following:

|e〉 =




1
0
0


 , |r〉 =




0
1
0


 , |g〉 =




0
0
1


 . (5)

FIGURE 1. Three internal electronic levels of the TRI interacting
with two photons in theΛ configuration. The coupling parameters
of the system are assumed asΩ = Ω1 = Ω2, ω = ω1 = ω2, and
δ = δ1 = δ2.
H̃ = U†HU is the transformed Hamiltonian. The Hamil-
tonian in Eq. (4) turns into the Hamiltonians of Eqs. (7-8)
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with the transformation process. In this transformation we
used the most extended weak excitation regime. The weak
excitation regime is applied byΩ = 2ν. With this mathe-
matical approach, this opticalΛ configuration demonstrated
to be equivalent to a cascade configuration for the phonon
transition, under the unitary transformation [20]. The TRI-
coherent system evolves in the opticalΛ configuration. The
transformation matrixU is defined as [20]:

U =
1
2




0
√

2
√

2
−√2B[η] B[η] −B[η]√

2B[−η] B[−η] −B[−η]


 . (6)

Here, Glauber displacement operators are represented by
B(±η) = e±(iη(a+a†)). The transformed Hamiltonian,̃H is
described with cascade-type transitions of the two phonons,
under a rotating wave approximation (RWA). The RWA is
valid forη < 1/α, whereα characterizes the amplitude of co-
herent displacement of the phonons [20]. The RWA and the
transformation method in Eq. (6) allow for working effects
of largerη, for example, the third value ofη (See Figs. 2, 3
and 4). After this transformation operation,H̃ is written as
H̃ = H̃0 + Ṽ , where

H̃0 = ν(|r〉〈r| − |g〉〈g|) + νη2 + νa†a, (7)

and

Ṽ = −i

√
2δη

2
(
a†|e〉〈r| − a†|e〉〈g|+ h.c.

)
. (8)

Under the unitary transformation method [20], the time evo-
lution of an early positionψ(0) is defined as follows:

|ψ(t)〉 = U†
0Ue−itH̃0K(t)U†|ψ(0)〉

= U†
0Ue−itH̃0K(t)|ψK(t)〉, (9)

whereK(t) is the propagator vector ande(−itH̃0) is term
of the interaction picture transformation. The two right-
most factorsU†|ψ(0)〉 = |ψK(t)〉 act as the early state for
the cascade system, evolvingK(t) into |ψK(t)〉. The ro-
tating frame transformation is given by the prefactor matrix
U0 = exp (−iωt|e〉〈e|) [20]. The propagator is obtained as

K(t)=
1
2




Cos(Λt) −εSa† −εSa
εaS 1 + ε2aGa† ε2aGa
εa†S ε2a†Ga† 1 + ε2a†Ga


 , (10)

hereε = νη/
√

2, Λ = ε
√

2a†a + 1, G = Cos(Λt)− 1/Λ2,
andS = Sin(Λt)/Λ. The trap frequency of the system is
taken byν = 104 Hz. Because the most suitable mathemat-
ical values for the systems are the trap frequencies between
103 and106 Hz. Under all approaches and transformations,
the new general formula of the system is given as

|ψ(0)〉 =
[

1√
3
|g〉+

1√
3
|r〉+

1√
3
|e〉

]

⊗
( ∞∑

n=0

Fn(b)|n〉
)

. (11)

The initial state of the TRI-coherent system is defined as

|ψ(0)〉 =
1√
3
[|g〉+ |r〉+ |e〉]⊗ (b|0〉+ α|1〉), (12)

here, the matrix representations of the coherent states are
〈0| = (1, 0) , and〈1| = (0, 1). The generalized coherent
state isFn(α) = e−|α|

2/2(αn/
√

n!) in Eq. (11).n = 0 and
n = 1, F0 = b andF1 = α are the amplitudes of the Fock
number states of two phonons. The probability amplitudes of
the coherent states are given asb = 1 andα = 0.005. The
TRI normalization condition is exactly[1/

√
3]2 +[1/

√
3]2 +

[1/
√

3]2 = 1, and two phonons normalization condition is
approximately‖b‖2 + ‖α‖2=|1|2 + |0.005|2 ' 1. We have
shown the TRI-coherent system asl ⊗ l′ in Eqs. (11-12).
Considering Eq. (12), the dimensionality of the Hilbert space
is defined as: The Hilbert space dimensions arel = 4 for the
two-phonons andl′ = 3 for the full TRI. The TRI-coherent
system is in Hilbert 12-space. For the two rightmost terms of
Eq. (9), the TRI-coherent state is transformed into an early
case of the cascade

|ψK(t)〉 = U†|ψ(0)〉 =
∑
σ,m

Mσ,m(t)|σ,m〉. (13)

Because of the transformation matrix, Eq. (12) is produced
by

∑
σ,m Mσ,m(t)|σ,m〉 in the system. The twelve probabil-

ity amplitudes belong to the TRI-coherent system are given
as

Me0(t) =

[√
2
3

cos (
√

0.5t)− 1√
6

sin (
√

0.5t)α +
iη√
3

sin
√

0.5t

]
exp[−itη], (14)

Me1(t) =

[
− 1√

18
sin

(√
3
2
t

)
+

√
2
3
α cos

(√
3
2
t

)]
exp

[−it

η

]
, (15)

Me2(t) =

[
− α√

15
sin

(√
5
2
t

)
− iη

√
2
15

sin

(√
5
2
t

)]
exp

[−2it

η

]
, (16)
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Mr0(t) =

[
α

√
2
3

sin

(√
3
2
t

)
+

2√
54

+
1√
54

cos

(√
3
2
t

)]
exp

[−it

η

]
, (17)

Mr1(t) =


α

(
3√
150

+
2√
150

cos

(√
5
2
t

))
+ i




3 + 2 cos
(√

5
2 t

)
√

75


 η


 exp

[−2it

η

]
, (18)

Mg0(t) =
1√
6

exp[−itη] (19)

Mg1(t) =

[
α

1√
6

cos

(√
1
2
t

)
+

√
2
3

sin

(√
1
2
t

)
− iη√

3
cos

(√
1
2
t

)]
exp[−itη] (20)

Mg2(t) =

[
− 1√

27
+

1√
27

cos

(√
3
2
t

)
+ α

2
3

sin

(√
3
2
t

)]
exp

(−it

η

)
, (21)

Mg3(t) =


α


−1 +

cos
(√

5
2 t

)

5


 + αiη

√
2
25

(
−1− cos

(√
5
2
t

))
 exp

[−2it

η

]
, (22)

and the three amplitudes are zero:Me3(t) = Mr2(t) = Mr3(t) = 0. In Eqs. (14)-(22), the first indexσ is located in the
atomic states (e, r, g), the second indexm is located in the vibrational quantum numbers (0, 1, 2, 3). In the above equations,t
is dimensionless time scaled byνη. In Figs. 2, 3, and 4, a scaled time of 6 is equal to 2000 microseconds for LDP=0.3. The
calculation is as follows: Ifη = 0.3 andν = 1× 104 Hz, thenνη = 3× 103, and the scaled time of 6 is(6/νη) = 2× 10−3 =
2000 microseconds. Under the unitary transformation and the interaction picture, we calculated the new general existing state
vector as the following:

|ψlower(t)〉 =
3∑

n=0

(An(t) |e, n〉+ Bn(t) |r, n〉+ Cn(t) |g, n〉), (23)

whereAn(t), Bn(t), Cn(t) are these amplitudes of the state vector for the TRI-coherent system. Then, the new detailed existing
state vector (Eq. 23) is given by

|ψlower(t)〉 = A0 |e, 0〉+ A1 |e, 1〉+ A2 |e, 2〉+ A3 |e, 3〉+ B0 |r, 0〉
+ B1 |r, 1〉+ B2 |r, 2〉+ B3 |r, 3〉+ C0 |g, 0〉+ C1 |g, 1〉+ C2 |g, 2〉+ C3 |g, 3〉. (24)

We denoted the total density operator byρion−phonon for a composite quantum state with finite-dimensional Hilbert space.
Therefore, we limit the Hilbert space so that the quantum state is easily examined through Eqs. (23-24). The total density
operator for three-levels of the TRI interacting with two photons has the form

ρion−phonon(t) = |ψlower(t)〉〈ψlower(t)|. (25)

For the new detailed state vector and the density operator of the TRI-coherent system, we use the new notation below:

|ψlower(t)〉 =
12∑

n=1

Aj |ej〉, (26)

〈ψlower(t)| =
12∑

n=1

A∗l 〈el| (27)

ρion−phonon = |ψlower(t)〉〈ψlower(t)| =
12∑

j=1

12∑

l=1

AjA
∗
l |ej〉 〈el|. (28)

Here |e1〉 = |e, 0〉, |e2〉 = |e, 1〉, |e3〉 = |e, 2〉, |e4〉 = |e, 3〉, |e5〉 = |r, 0〉, |e6〉 = |r, 1〉, |e7〉 = |r, 2〉, |e8〉 = |r, 3〉,
|e9〉 = |g, 0〉, |e10〉 = |g, 1〉, |e11〉 = |g, 2〉, |e12〉 = |g, 3〉 for both j and l. After long calculations, these coefficients of the new
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detailed state vector are defined as follows:

Ac(t) =
1√
2
e−iωt/νη[Mrc(t) + Mgc(t)], (c = 0, 1, 2, 3), (29)

B0(t) =
{ − (

1/
√

2
)
Me0 (t)− iη

((
1/
√

2
)
Me1 (t) + 0.5Mg1 (t)

)
+ 0.5 (Mr0 (t)−Mg0 (t))

}
, (30)

B1(t) =
{ {− (

1/
√

2
)
Me0 (t) + 0.5 (Mr0 (t)−Mg0 (t))

}
iη −√0.5Me1 (t)

+0.5 (Mr1 (t)−Mg1 (t)) + iη0.5
√

2 (Mr2 (t)−Mg2 (t))

}
, (31)

B2(t) =
{ (−Me1 (t)−√1.5Me3 (t)− (0.5)

√
2Mg1 (t)

)
iη

+
(−√0.5Me2 (t) + (0.5) (Mr2 (t)−Mg2 (t))

)
}

, (32)

B3(t) = −0.5
(
iη
√

3Mg2 (t) + Mg3 (t)
)

, (33)

C0(t) =
√

0.5Me0 (t) + 0.5 (Mr0 (t)−Mg0 (t))− iη
(√

0.5Me1 (t)− 0.5Mg1 (t)
)

, (34)

C1(t) =
{

iη(0.5)
√

2Mg2 (t)− iη
(√

0.5Me0 (t) + 0.5 (Mr0 (t)−Mg0 (t))
)

+
√

0.5Me1 (t) + (0.5) (Mr1 (t)−Mg1 (t))

}
, (35)

C2(t) = −iη
√

2
(√

0.5Me1 (t)− 0.5Mg1 (t)
)
− 0.5Mg2 (t) , (36)

C3(t) = 0.5
(
iη
√

3Mg2 (t)−Mg3 (t)
)

, (37)

where,ωeg is the resonance frequency of e-g levels,ω = ωeg−νη2. Four of the 12 coefficients (Eq. 29) are plotted forη = 0.3
in Fig. 2. The number of peaks in all plots of Fig. 2 are more numerous than in the remaining eight probability amplitudes.

We showed two the measures of entangled states in Figs. 3, 4 and 5. By quantum mechanical tracing method, we obtained
a reduced density operatorρion = Trphonon(ρion−photon) using Eq. (39). From Eq. (25), the analytic solution of the total
density operator becomes

ρion−phonon = U†(t)[ρi(0)⊗ ρp(0)]U(t). (38)

Qudit entangled states can be made observable by measuring quantum entropy [6, 24]. The operatorρion−phonon is rep-
resented by a12 × 12 matrix. Taking trace over the phonon system,3 × 3 reduced density operator,ρion can be written
as

ρion = Trphonon(ρion−phonon) =




Tr|e〉〈e| Tr|e〉〈r| Tr|e〉〈g|
Tr|r〉〈e| Tr|r〉〈r| Tr|r〉〈g|
Tr|g〉〈e| Tr|g〉〈r| Tr|g〉〈g|


 , (39)

where diagonal terms,|e〉〈e|, |r〉〈r|, and|g〉〈g| are these4× 4 matrices. The matrix representation of first diagonal term using
basis vectors is defined as:

|e〉〈e| =




A0A
∗
0 A1A

∗
0 A2A

∗
0 A3A

∗
0

A0A
∗
1 A1A

∗
1 A2A

∗
1 A3A

∗
1

A0A
∗
1 A1A

∗
2 A2A

∗
2 A3A

∗
2

A0A
∗
2 A1A

∗
3 A2A

∗
3 A3A

∗
3


 . (40)

One of the nine traces in Eq. (39) is defined as:Tr|e〉〈e| = A0A
∗
0 + A1A

∗
1 + A2A

∗
2 + A3A

∗
3. Similarly, other diagonal trace

terms can be calculated.
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FIGURE 2. Time is dimensionless and scaled byνη. Graphs showing the change ofA0, A1, A2, andA3 coefficients versus scaled time.
System’s initial state isψ(0) = ([1/

√
3|]|g〉+ [1/

√
3|]|r〉+ [1/

√
3|]|e〉)⊗ (|0〉+ α|1〉 with α = 0.005 andη = 0.3. The linear harmonic

trap frequency isν = 1× 104 Hz, the resonance frequency isωeg = 4× 1012 Hz using the Planck constant equal to one.

FIGURE 3. The quantum entropy versus scaled time forη = 0.01, 0.1, and0.3. System’s initial state isψ(0) = ([1/
√

3|]|g〉+[1/
√

3|]|r〉+
[1/
√

3|]|e〉)⊗ (|0〉+ α|1〉. The other coupling parameters are the same as Fig. 2.

FIGURE 4. The fidelity versus scaled time forη = 0.01, 0.1, and0.3. The other coupling parameters are the same as Fig. 2.
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FIGURE 5. The LDP dependence of quantum entropy and fidelity in the two-dimensional graphics. The parameters used are taken as
ωeg = 4× 1012 Hz, α = 0.005, ν = 1× 104 Hz, and the optimum scaled timet = 33 (11.000µs).

3. Fidelity, quantum entropy and discussion

It is significant to measure whether there is entanglement in
the TRI-coherent system with entropy and fidelity. We in-
vestigate the entanglement of the system for values of the
LDP between0.0 and1.0, according to entropy and fidelity.
The internal states of the TRI subsystem are associated with
a three-dimensional Hilbert spaceHi of a qutrit spanned by
the basis statesHi. The coherent state subsystem is described
by a four-dimensional Hilbert spaceHp. In particular, the
Hilbert space of the TRI-coherent systemH is the twelve-
dimensional, such asH = Hi ⊗ Hp = C3 ⊗ C2 ⊗ C2 =
C3 ⊗ C4 = C12. The dimensions of Hilbert space of the
system are guides for understanding the density operators.
From the new detailed state vector|ψlower(t)〉 (See Eq. 24),
the density operator of the TRI-coherent system is shown by
ρion−phonon = |ψ(t)〉〈ψ(t)| in Eq. (38). The quantum en-
tropy (S) of the TRI-coherent system is defined as in [27]

Sion(t) = −Trphonon[ρionLog(ρion)]

= −[λ1Log(λ1) + λ2Log(λ2) + λ3Log(λ3)], (41)

whereρion = Trphonon(ρion−phonon) is the reduced density
operator in Eq. (39). Entropy can be calculated with three
eigenvalues (Schmidt coefficients) of the reduced density op-
erator [21]. The normalization condition of the three eigen-
values is exactly‖λ1‖+ ‖λ2‖+ ‖λ3‖ = 1.

In quantum mechanics, especially in quantum informa-
tion science, fidelity is used to evaluate the transformation
between the changing states and the fixed states. With the
help of the basic formulas in Ref. [25], we obtained the fi-
delity of the system as follow: [28,29]

F (t) =
√
〈ψ(0)|ρ̂(t)|ψ(0)〉 = |〈ψ(0)|ψ(t)〉|

=
1√
3
[A0(t) + α∗A1(t) + B0(t)

+ α∗B1(t) + C0(t) + α∗C1(t)] (42)

where |ψ(t)〉 is given by Eq. (24) and|ψ(0)〉 is given by
Eq. (12).

We focus on the quantum dynamics and the quantum cor-
relations of two quantum measures with figures. The entropy

in Fig. 3 and the fidelity in Fig. 4 are obtained for three dif-
ferent LDPs. These three values of LDP are within the deep
LDP. This is called the deep LD regime is qualified by a small
η = 0.01 or η = 0.3; on the other hand, beyond the LD
regime isη = 0.4 [20]. The fidelity is certainly recorded
F = 0.34 at the peak forη = 0.1 in Fig. 4. The scaled
optimum time (scaled time=33, 11.000 ns) was found with
this research, by evaluating in Figs. 3 and 4. These findings
are consistent with the findings obtained in previous stud-
ies [19, 21, 25]. We can see in Fig. 3 that the entanglement
values increase with the rise of LDP. If Fig. 5 and these re-
sults are evaluated together, the experimental limit for fidelity
is compatible with LDP = 1.0 via Eq. (42) [28].

Figure 5 appears that the entropy (left panel) rather than
fidelity (right panel) allows more entanglement lifetime. We
demonstrated quantum entanglement with entropy in the
deep LD regime distinctively in Ref. [21]. In this graph,
as LDP grows the entropy increases, which means that the
entangled lifetime is raising. For example, the state of the
TRI-coherent system is disentangled at scaled time 18,t =
6.000 µs for η = 0.3. The system reaches a local minimum
which corresponds to a separable quantum state

|ψ(t = 18)〉 = (0.623|r〉+ 0.52|g〉+ 0.61|e〉)⊗ |0〉. (43)

Similarly the state of the TRI-coherent system is maximally
entangled at scaled time 33,t = 11.000 µs for η = 0.3. We
get a local maximum which corresponds to a partially quan-
tum state

|ψ(t = 33)〉 = (0.51|r〉+ 0.42|g〉+ 0.43|e〉)⊗ |0〉
+ (0.471|e〉+ 0.22|r〉+ 0.31|g〉)⊗ |1〉
+ (0.1|r〉+ 0.1|g〉)⊗ |2〉. (44)

The optimum time to reach an arbitrary entangled state is
11.000 ns (scaled time 33); see Fig. 5. In line with of the
measures and the results reported above, we observed that
the maximally entangled states do not collapse in the TRI-
coherent system. We examined withS that the measurement
degrees have a sudden appearance of the entangled state in
parallel with raisingη, which is in agreement with previous
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observations [21, 28–30]. The article in Ref. [31] character-
ized the application of Schmidt mode analysis for pure states.

4. Concluding remarks

In this paper, we examined whether the full TRI-coherent sys-
tem with a harmonic trap frequency of104 Hz is entangled or
not. We analyzed the quantum correlations of the system via
three coupling parameters (η, ν andΩ). After that, we dis-
covered that forη = 0.3 it survives longer than forη = 0.1
andη = 0.01. This observation demonstrates that entangled
states are directly connected with the LDP. We show a high
degree of the quantum entanglement of the full TRI-coherent
system using two elaborated measures of the family consist-
ing of S andF . The entropy behavior is similar to the fidelity
behavior when we change the LDP. Comparing three graphs
in the Fig. 3, we determined that entangled states are stored
in the TRI-coherent system. Besides, the amount of entangle-
ment has two maximum values forS = 0.68 andF = 0.35
in η = 0.3. Also, the first graph of Fig. 3 shows that the
system’s entropy is described by a Gaussian-like profile as a
function of scaled time.

Our results can be helpful in engineering the science of
entanglement. The quantum correlations yielded the follow-
ing significant developments in this study.

(1)
√

1/3 is taken the three probability amplitudes of the
TRI, based on the analytic solution for the new existing
state vector. Then, the full TRI has been achieved with

these probability amplitude values. The total density
and the reduced density operators of the new existing
state vector are calculated theoretically in this study.

(2) In the right panel of Fig. 5, it can be easily seen that the
amount of fidelity increases when the LDP increases.
In the left panel of Fig. 5, we have shown that the life-
time of entropy, namely, entanglement, also increased
when the LDP increased.

(3) Figure 3 and the left panel of Fig. 5 have been plotted
using three eigenvalues of the reduced density matrix,
called Schmidt coefficients.

In summary, theS measurement indicates the length of
life of entanglement, whileF indicates the maximally en-
tangled state. The long-lived and maximally entangled states
presented in this study can serve as a guide to researchers try-
ing to add innovative aspects to the science of entanglement.
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