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Two measures elaborated for entangled states: Quantum entropy and fidelity
using Schmidt coefficients of the reduced density matrix of full TRI
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In the present study, we determined quantum entanglement in a full trapped ion (TRI)-coherent system and its dependence on the Lamb
Dicke parameter (LDP). We investigated the entanglement in view of two elaborated measurements of the family: entropy and fidelity. We
selected three values of the deep LDP to demonstrate the benefits of these two critical measures. The findings obtained in this study showe
that the maximum value of fidelity for entangled states is quantified approximatelyG@®eand the long lifetime is also observed with

entropy measurement. The findings suggest that three coupling parameters play a significant role in developing quantum entanglement.
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1. Introduction state conditions [6,9, 10]. It is fundamental within the proba-
bility interpretation as initiated by M. Born and pushed into a
A few months after the Einstein-Podolsky-Rosen [1] arti-general form by P. A. M. Dirac, J. von Neumann, G. Birkhoff
cle was published in 1935, in the same year, articles werénd many others [11].
published in reaction by Erwin Sdbdinger [2] and Niels Fidelity (Transition Probability) for pairs of density ma-
Bohr [3]. Schidinger coined the word "entanglement” to de- trices can be defined as a tool in the hierarchy of all quan-
scribe a condition in this famous EPR paper. The discussiofum systems. Uhlmann and Jozsa’s papers are considered
of these three papers focuses on describing two entangleglassic fidelity studies [12—14]. Fidelity, negativity, purity,
particle states and the characterization of the quantum corremd concurrence are popular methods for quantum entangle-
lations between them. The entanglement of two-qubits, twoment [15-17]. A structure worthy of study is presented in
qutrits or the two-quadrits is quantum-mechanically interestRef. [18] for multiplexed quantum repeaters that use local
ing. Correlation in an entangled system cannot be explainegonnectivity to improve accuracy in entanglement distribu-
using classical correlations [4]. Quantum entanglement hagon.
been proposed as a proof of quantum correlations [2]. The existence of atomic motion, which becomes most

The study of quantum entanglement has advanced ovedhvious for the high-dimensional Hilbert space of pure qu-
the past years due to the further development of quanturgit states is shown in [19]. A two-level atom and a two-
physics [5-7]. Entangled states can be worked in differenfevel jon, and a photon with spin up-spin down probability
physical setups, such as massive particles like TRIs [5]. Engre associated with two-dimensional Hilbert space. In gen-
tanglement between electronic levels of the TRI has been agra|, the n-level atom and the n-level ion are defined as the
active field of study in recent years [6]. The high-fidelity n-dimensional Hilbert space. Interaction of an atom or an ion
entanglement between a TRI and a photon is measured Ryith a photon is associated with a higher-dimensional Hilbert
quantum frequency conversion [7]. space in the tensorial product such &6 € H, ® H,). We

In this context, qudits are used as higher capacity quanexpand the physical model that has been improved before for
tum information sources, and could be of interest for quanstudying Schidinger cat states of the two phonons [20]. The
tum communication [8]. The higher dimension of a givenn-dimensional Hilbert space in Ref. [20] is restricted to 12
Hilbert space, the more quantum correlation continuity is endimensions in this study. This limitation has led to easy an-
sured. A quantum dit (qudit) is the unit of quantum infor- alytical results. Characterization of the quantum entangle-
mation described by a superposition of "d” states, where thenent can be explored using entropy [21] and fidelity [22—24],
number of states is an integer greater than two. For exampl&yhich apply to the bipartite systems of arbitrary dimensions
qutrit or quadrit state can be called a qudit state. Pure anih TRIs. Hence this situation fits our purposes. By means of
mixed qudits can be obtained due to the interaction betweequantum entropy, it is shown whether the entanglement life-
two laser beams and the three-levels TRI with specific initiattime is extended or not [21]. There are both contributions and
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compatibilities between Ref. [25]'s fidelity calculations and can be true when lower levels of the ion are degenerate in
this paper. Eqg. (1). The Lamb-Dicke parameter (LDPYjs= k/v/2muv.
The outline of this study is as follows. The theoretical The wavevectors; andk, characterize the two photons with
framework of the qutrit-quadrid in the physical system is in-k = k; = ko, andk = 27 /\. The wavelength of both photon
troduced in Sec. 2. the quantum entropy and the fidelity are\ is red detuned from the upper leveby the same amount
discussed with corresponding Figures in Sec. 3. Finally, we; = 6, = —uvn?. If the frequencies and wavevectors of
give the results of the quantum measure in Sec. 4. the two incoming photons do not take as equal & ws;
k1 # k), thenA # 0, that is, r and g levels can not be de-
: . .y ; generate. So thalt;) (r| can be visible in Eg. (1) and Eq. (4).
2. Evaluation of quirit-quadrid in the physical H._gandH._, are the interaction Hamiltonians between
system these level: — g ande — r usingh = 1. The interaction

We focus a TRI in a harmonic potential and two coherent|_|am||tonlans are defined as follows:

states (or two photons). Also, we develop a new physical = Qei(klz;onwt)‘eﬂm the, @)
system based on the quantum system mentioned in [20]. The 72
concept of the time evolution of the physical model is intro- Q

; i ; i H,_, = —e(Thamion=wt) o) (1| 4 ¢ (3)
duced using the density matrix, which affects the state nec- et T 9 -

essary for quantum dynamics in [26]. The harmonic trap fre- . . )
guency is designed to construct a linear trap so that the TRI’here’ atomic levels of the TRI are given, suchigjs— TRI

center-of-mass (c.m.) mation is effectively one dimensionaﬁround level|r) — Raman level ande) — excited level
S . y o (See Fig. 1). The Rabi frequencies of the dipole interactions
along ther axis. Therefore, we consider small vibrations of

. . : : etween the photons and the TRI's are giverfhbin Eq. (2)
a TRI in the harmonic trap which can be defined as coheren . . )
displacements. The quantum state of the TRI's c.m. motio nd Eq. (3). So that, the equality of Rabi frequencies is taken

is characterized by a coherent staié with o < 1 in this by 0 = 0, = 0. In this approach, the mathematical equa-

- : . . . tions are obtained = andQy = Qs.
way. For the first order i, this describes as a qubit of two ~ '\ "' removg%he 8203e varliableé from the interaction
phonond0) + «|1).

The phvsical svstem i dtoint ¢ with t part of the Hamiltonian in Eg. (2) and Eqg. (3). Thus, the ex-
herente sFt)a{esslcﬁ\ Xssihmelriss\;il:?fhe cr)nlgszr?)? t\ma Tl\gto CO'ponential expressions have some variations. Because of the

) . . degeneracyA = 0 and the two exponential expressions are
and the linear harmonic trap frequengy A total Hamil- g ya b P

L N : : . as follows: ei(k1@ion—wt) — gin(a’+a) gngei(—kazion—wt) —
tonian is determined in th& configuration for optical tran-  ~_;, 4 14) Lo .
" o e~ . Therefore, the total Hamiltonian is rewritten as
sitions. The total Hamiltonian of the TRI-coherent system
iS Hyotat = Hion + He—g + Hc_,, and H,, is called the Q intat+a) i
grat | A . H=|(—=¢e" -0 -0
Hamiltonian of the TRI. Thd{,,, is given as the following: 2 ¢ le)gl +vala le) el

2 1 Q —i7(aT+a)
Hion = 5—72 + §my2x?0n — S1le)(e] — (61 — 82)|r)(r]. +ge le)(r| ) + h.c., 4
P21 5, with respect to the base vectors as the following:
Hion = 5= 4 Smv i, — dile)(e| — Olr)(r]. @
2m 2
1 0 0
The assumptions and the parameters used inthe TRI- |e)=| 0 |, = 1|, lg99={ 0 |. (5
coherent system are given as follow: = w; — w,, and 0 0 1

J2 = wa — Wer. Wegq 1S the resonance frequency of e-g transi-
tion andw,,. is the resonance frequency of e-r transition. The
frequencies of the two photons are equalte= w; = ws s T '\ """"""

; ; ; le)
(See Fig. 1). Herg, is the momentum operator angl,, is
the x-component of the position operator using the Planck ¥ =rrrrmmopmrm e N 000
constant equal to onefi(= 1). The TRI c.m. motion

o b

is described by the standard harmonic-oscillator quantiza-—~-"" f"““;‘i
tion of Hi,, [20] via p, = —i\/(1/2)mv(a’ — @) and photon 1

Tion = +/(1/2mv)(a’ + a). Bosonic operatora andaf

according the usual Weyl-Heisenberg algebra are the annihi- le)

lation and the creation of the phonons. FIGURE 1. Three internal electronic levels of the TRI interacting

We consider the lower levelg andr to be degenerate. with two photons in the\ configuration. The coupling parameters
Therefore, the energy of the ground level is equal to the Raef the system are assumed@s= Q; = Qs, w = w1 = wo, and
man energy, = w, = 0, the excited energy andis.. We  § = 61 = do.
focus on a nontrivial quantum case of a weakly detuned ouff = UTHU is the transformed Hamiltonian. The Hamil-
system in whichA = §; — 6, = 0 andd; = —vn?. A =0  tonian in Eg. (4) turns into the Hamiltonians of Eqgs. (7-8)
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with the transformation process. In this transformation we heree = vn/v/2, A = ev/2ata + 1, G = Cos(At) — 1/A2,

used the most extended weak excitation regime. The weaknd S = Sin(At)/A. The trap frequency of the system is
excitation regime is applied b = 2v. With this mathe- taken byr = 10* Hz. Because the most suitable mathemat-
matical approach, this optical configuration demonstrated ical values for the systems are the trap frequencies between
to be equivalent to a cascade configuration for the phonoi0? and10° Hz. Under all approaches and transformations,
transition, under the unitary transformation [20]. The TRI-the new general formula of the system is given as

coherent system evolves in the optidatonfiguration. The

transformation matriX/ is defined as [20]: I 1 1
e v 50 = | 5lo) + Jelr) + =l
U=5| -v2B[n] Bl =B |. (6 s
VaBl-n] Bl-n] —B-] ® (Z Fn(b)n>> | o
n=0

Here, Glauber displacement operators are represented by

B(=£n) = ex(n(ata’))  The transformed Hamiltoniar] is

described with cascade-type transitions of the two phonongjhe initial state of the TRI-coherent system is defined as
under a rotating wave approximation (RWA). The RWA is
valid forn < 1/«, wherexa characterizes the amplitude of co-
herent displacement of the phonons [20]. The RWA and the
transformation method in Eq. (6) allow for working effects
of largern, for example, the third value of (See Figs. 2, 3  here, the matrix representations of the coherent states are
and 4). After this transformation operatioH, is written as (0] = (1,0) , and(1| = (0,1). The generalized coherent

$(0)) = %nm 1)+ e ® (bl0) +af1)),  (12)

H = Hy + V, where state isF, (a) = e~l"/2(am /v/nl) in Eq. (11).n = 0 and
Ho = v(|r)(r] — |9){g]) + vn? + va'a, (7) n =1 Fo=bandF = « are the amplitudes of the Fock
number states of two phonons. The probability amplitudes of
and the coherent states are giventas: 1 anda = 0.005. The

- V261 TRI normalization condition is exactlyt/v/3]% +[1/v/3]? +
V=—i f —al h.c.). 8
) (alle)(rl = a'le) gl + hc) ® [1/V/3]? = 1, and two phonons normalization condition is
Under the unitary transformation method [20], the time evo-approximately]|b||? + |l«||?>=|1|* + ]0.005* ~ 1. We have
lution of an early position)(0) is defined as follows: shown the TRI-coherent system &s I’ in Egs. (11-12).
oty o—itH, ¥ Considering Eq. (12), the dimensionality of the Hilbert space
[ (t)) = UgUe K®UTp(0)) is defined as: The Hilbert space dimensionslare4 for the
= UlUe "o K (1) (1)), (9)  two-phonons and’ = 3 for the full TRI. The TRI-coherent
system is in Hilbert 12-space. For the two rightmost terms of

where K (t) is the propagator vector and~"*"0) is term  Egq. (9), the TRI-coherent state is transformed into an early
of the interaction picture transformation. The two right- c3se of the cascade

most factorsUT|1(0)) = |4k (t)) act as the early state for
the cascade system, evolvidg(t) into Y (t)). The ro-
tating frame transformation is given by the prefactor matrix
Uy = exp (—iwt|e)(e|) [20]. The propagator is obtained as

WK (8)) = UTlp(0) ZMM Jom).  (13)

1 Cos(At) —%%T : ;65@ Because of the transformation matrix, Eq. (12) is produced
K(t)=3 eaTS e aGg <aGa » (0 by M, (t)|o,m) inthe system. The twelve probabil-
ea's ealGa l+ealGa ity amplitudes belong to the TRI-coherent system are given
| as

Meo(t) = \/>c05(\/7t) \[bln(rt) \Z/ngbln\/it] exp[—itn), (14)

Me(t) = —\/% sin (\/§t> + acos ( )

Mo (t) = —\/%sin (\/E)ﬁ) in sm(

exp (15)

(16)

\_/l—l
[
[¢]
o]
’U
l\')
~.
L
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= o (3 (5[ 2] .

3 2 5 ] 3 + 2 cos \/g t) —2it
M(t) = |« <\/ﬁ 15 cos (\/?1?)) +i 7 7| exp [ ; } , (18)
Myo(t) = % exp[—itn] (29)

M (t) = :a\}écos (\/}5) + \/z sin ( ;t) _ %cos Q/})] exp|—itn] (20)
Mya(t) = - } \} <\/§> +a§Sm <\/§t>] exp (:) (21)
Mys(t) = _a i <\ft) +omy\/; (—l—cos <\/§t>> exp [‘f]it], (22)

and the three amplitudes are zem,.3(t) = M,2(t) = M,3(t) = 0. In Egs. (14)-(22), the first index is located in the

atomic statesd, r, g), the second index: is located in the vibrational quantum numbebsi( 2, 3). In the above equations,

is dimensionless time scaled by). In Figs. 2, 3, and 4, a scaled time of 6 is equal to 2000 microseconds for LDP=0.3. The
calculation is as follows: Ify = 0.3 andv = 1 x 10* Hz, thenvn = 3 x 103, and the scaled time of 6 {§/vn) =2 x 1073 =

2000 microseconds. Under the unitary transformation and the interaction picture, we calculated the new general existing state

vector as the following:
3

[Yrower(t)) = Y (An(t) e, n) + Bu(t) [r,n) + Cu(t) |g,m)), (23)

n=0

whereA,,(t), B, (t), Cy,(t) are these amplitudes of the state vector for the TRI-coherent system. Then, the new detailed existing
state vector (Eq. 23) is given by

[Yiower(t)) = Ag |e, 0) + Ay |e, 1) + Az |e, 2) + As |e, 3) + Bq |r, 0)
+ Bi|r,1) + Bz |r,2) + B3 [r,3) + Colg,0) + Cilg, 1) + C2 19, 2) + C3 g, 3). (24)

We denoted the total density operator @y, ,nonon fOr @ composite quantum state with finite-dimensional Hilbert space.
Therefore, we limit the Hilbert space so that the quantum state is easily examined through Egs. (23-24). The total density
operator for three-levels of the TRI interacting with two photons has the form

pionfphonon(t) = ‘wlower(t)><¢lower(t)|~ (25)

For the new detailed state vector and the density operator of the TRI-coherent system, we use the new notation below:

12
ower®)) = 3 A les), (26)
12
(Wower®)] = 3 A7 (el (27)
n=1
12 12
Pion—phonon = |¢Iower(t)><¢lower(t)| = Z Z AjAzk |ej> <€[|. (28)
j=11=1
Herele;) = |e,0), e2) = e, 1), |es) =

€»>2>, lea) = le,3), les) = |r,0), lee) = [r, 1), ler) = [r,2), |es) = |r,3),

|
lea) = 1g,0), lero) = |g,1), le11) = |g,2), |e12) = |g, 3) for both j and I. After long calculations, these coefficients of the new

Rev. Mex. Fis68050703
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detailed state vector are defined as follows:

1

AAQZ;EEWW”MLJﬂ+A@4m7(C:QL23) (29)

Bo(t) ={ = (1/v2) M, (t) —in ((1/V2) M. )+05Mm(D+05Mﬂ(ﬂ*A@J0)% (30)
[ {=(1/V2) Mg, (t) + 0.5 (M, () — My, (1))} in — V0.5M, (t)

Bl“){ 0.5 (My, () = My, (1)) + in0.5v/2 (M, (1) — My, (1) } (1)
_ [ (M ()Jﬁmm>w5f%1)m

Balt) = { ' (—VOBM,, (1) + (0.3) (M, (t) } (32)

B3(t) =-05 (in\/§M92 (t) + My, (t)) ) (33)

&ﬁy:VEM@JU+05MLJU—A@Aﬂ)fm(JﬁﬁLJﬂ—05M@QO, (34)
[ n(05)VEM,, (1) — in (VOBM,, (t) + 0.5 (My, (t) — My, (1))

ale) = { CVOBM,, (1) + (0.5) (M, () ~ M, (1)) } ’ (39)

Ca(t) = —inV2 (VOSM,, (1) = 0.5My, (1)) = 0.5M,, (1), (36)

Ca(t) = 0.5 (inV3My, (1) ~ My, (1) (37)

where w,, is the resonance frequency of e-g levels w., —vn*. Four of the 12 coefficients (Eq. 29) are plottedfor 0.3
in Fig. 2. The number of peaks in all plots of Fig. 2 are more numerous than in the remaining eight probability amplitudes.

We showed two the measures of entangled states in Figs. 3, 4 and 5. By quantum mechanical tracing method, we obtaine
a reduced density operatpfo, = Trphonon (Pion—photon) USING EQ. (39). From Eq. (25), the analytic solution of the total
density operator becomes

Pion—phonon = UT (£)[p'(0) @ pP(0)]U (t). (38)

Qudit entangled states can be made observable by measuring quantum entropy [6, 24]. The gpergitos.n is rep-
resented by 42 x 12 matrix. Taking trace over the phonon systeink 3 reduced density operatas;,,, can be written
as

Trle){e| Trle)(r| Trle) (g
Pion = Trphonon (pion—phonon) = TT|T> <€| 7‘|7"> <7n| T7’|7"> <g| ; (39)
Trlg)(el Trlg)(rl Trlg)(gl

where diagonal terme) (e[, |) (r|, and|g)(g| are thesd x 4 matrices. The matrix representation of first diagonal term using
basis vectors is defined as:

AoAs  AvAE AsAr A A
| acar aar AnAr anal
el = | Agar AA; AsA; AsAp | (40)

AoAs AAS As A% AsAj

One of the nine traces in Eq. (39) is defined &sle) (e| = AgAf + A1 A} + A2 A% + Az AL, Similarly, other diagonal trace
terms can be calculated.

Rev. Mex. Fis68050703



FIGURE 2. Time is dimensionless and scaled by. Graphs showing the change df,, A;, A2, and A coefficients versus scaled time.
System’s initial state ig)(0) = ([1/v/3]|g) + [1/V3]]|7) + [1/v3]]]e)) @ (|0) + a|1) with o = 0.005 andn = 0.3. The linear harmonic
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FIGURE 5. The LDP dependence of quantum entropy and fidelity in the two-dimensional graphics. The parameters used are taken as

Weg = 4 x 10'? Hz, a = 0.005, v = 1 x 10* Hz, and the optimum scaled tine= 33 (11.000us).

3. Fidelity, quantum entropy and discussion in Fig. 3 and the fidelity in Fig. 4 are obtained for three dif-
o . ferent LDPs. These three values of LDP are within the deep
It is significant to measure whether there is entanglement il pp. This is called the deep LD regime is qualified by a small
the TRI-coherent system with entropy and fidelity. We in-77 = 0.01 orp = 0.3; on the other hand, beyond the LD
vestigate the entanglement of the system for values of th?egime isn = 0.4 [20]. The fidelity is certainly recorded
LDP betweer0.0 and1.0, according to entropy and fidelity. r _ (.34 at the peak fom = 0.1 in Fig. 4. The scaled
The internal states of the TRI subsystem are associated Wi%btimum time (scaled time=33, 11.000 ns) was found with
a three-dimensional Hilbert spa¢# of a qutrit spanned by  thjs research, by evaluating in Figs. 3 and 4. These findings
the basis statei;. The coherent state subsystem is describedyre consistent with the findings obtained in previous stud-
by a four-dimensional Hilbert spadk,. In particular, the jes [19, 21,25]. We can see in Fig. 3 that the entanglement
Hilbert space of the TRI-coherent syste;m IS t?e twglve- values increase with the rise of LDP. If Fig. 5 and these re-
dimensional, such afl = H; @ H, = C° ® C* ® C* = gylts are evaluated together, the experimental limit for fidelity
C?® @ C* = C'2. The dimensions of Hilbert space of the g compatible with LDP = 1.0 via Eq. (42) [28].
system are guides_ for understanding the density operators. Figure 5 appears that the entropy (left panel) rather than
From the new detailed state vect@iouer (1)) (See Ed. 24), fidelity (right panel) allows more entanglement lifetime. We
the density operator of the TRI-coherent system is shown byjemonstrated guantum entanglement with entropy in the
Pion—phonon = [{(1))(¥(t)] in Eq. (38). The quantum en- geep LD regime distinctively in Ref. [21]. In this graph,
tropy (5) of the TRI-coherent system is defined as in [27] 55 | DP grows the entropy increases, which means that the
Sion(t) = —T7pronon|PionL0Y(pion)] entangled lifetime is raising. For example, the ;tate of the
TRI-coherent system is disentangled at scaled timet 18,
= —[ALog(A1) + AaLog(A2) + AsLog(Az)], (41)  6.000 us forn = 0.3. The system reaches a local minimum

. .. which corresponds to a separable qguantum state
wherepion = TTphonon (Pion—phonon) IS the reduced density P P q

operator in Eq. (39). Entropy can be calculated with three £ —18)) = (0.623

; ; o . = = (0. +0.52|g) 4+ 0.61]e)) ® |0). (43
eigenvalues (Schmidt coefficients) of the reduced density op- W = Ir) 92 ) @ 10). (43)
erator [_21]. The normalization condition of the three eigen'SimiIarIy the state of the TRI-coherent system is maximally
values is exactlyiAr[| + [[Azf| + [[As]] = 1. entangled at scaled time 38= 11.000 us forn = 0.3. We

_In quantum mechanics, especially in quantum informayet 3 local maximum which corresponds to a partially quan-
tion science, fidelity is used to evaluate the transformatiof,y, state

between the changing states and the fixed states. With the
help of the basic formulas in Ref. [25], we obtained the fi- |4 (¢ = 33)) = (0.51|r) + 0.42|g) + 0.43|¢)) @ |0)
delity of the system as follow: [28, 29]

F(t) = V(£(0)[p(0)]4(0)) = [{¢(0)]4(2))]

+(0.471]€) 4 0.22r) + 0.31]g)) ® |1)

) + (0.1]r) +0.1]g)) ® |2). (44)
= —[Ap(t) + " A1 (t) + Bo(t

\/5[ o(f) +a™ A1) o(®) The optimum time to reach an arbitrary entangled state is
+a*Bi(t) + Colt) + a*Ci(1)] (42) 11.000 ns (scaled time 33); see Fig. 5. In line with of the

measures and the results reported above, we observed that
where |1 (t)) is given by Eq. (24) andy(0)) is given by  the maximally entangled states do not collapse in the TRI-
Eq. (12). coherent system. We examined wihhat the measurement

We focus on the quantum dynamics and the quantum cordegrees have a sudden appearance of the entangled state in
relations of two quantum measures with figures. The entropyarallel with raising;, which is in agreement with previous
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observations [21,28-30]. The article in Ref. [31] character-
ized the application of Schmidt mode analysis for pure states.

these probability amplitude values. The total density
and the reduced density operators of the new existing
state vector are calculated theoretically in this study.

4. Concluding remarks (2) Inthe right panel of Fig. 5, it can be easily seen that the
amount of fidelity increases when the LDP increases.
In the left panel of Fig. 5, we have shown that the life-

time of entropy, namely, entanglement, also increased

when the LDP increased.

In this paper, we examined whether the full TRI-coherent sys-
tem with a harmonic trap frequency t#* Hz is entangled or
not. We analyzed the quantum correlations of the system via
three coupling parameters, (v and{2). After that, we dis-
covered that for; = 0.3 it survives longer than fon = 0.1
andn = 0.01. This observation demonstrates that entangled
states are directly connected with the LDP. We show a high
degree of the quantum entanglement of the full TRI-coherent
system using two elaborated measures of the family consist-  |n summary, theS measurement indicates the length of
ing of S andF'. The entropy behavior is similar to the fidelity jife of entanglement, whilé® indicates the maximally en-
behavior when we change the LDP. Comparing three graphgngled state. The long-lived and maximally entangled states
in the Fig. 3, we determined that entangled states are storggtesented in this study can serve as a guide to researchers try-

in the TRI-coherent system. Besides, the amount of entangleng to add innovative aspects to the science of entanglement.
ment has two maximum values f6r = 0.68 and F' = 0.35

(3) Figure 3 and the left panel of Fig. 5 have been plotted
using three eigenvalues of the reduced density matrix,

called Schmidt coefficients.

inn = 0.3. Also, the first graph of Fig. 3 shows that the
system’s entropy is described by a Gaussian-like profile as Acknowledgments
function of scaled time.
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