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Magnetic susceptibility of ferrofluids
determined from diffusion coefficient of a tracer
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Linear response methods allow studying magnetic susceptibility relaxation in isotropic colloidal magnetic fluids. We show a relationship be-
tween the susceptibility of macroscopic magnetization at thermal equilibrium and the diffusion constant of a tracer particle. The comparison
of the predicted frequency-dependent susceptibility with computer simulations shows their agreement. Besides, at a low concentration of
particles, it has the expected Debye behavior. However, the initial susceptibility yields only the qualitative trends of the existing experiments
at a low volume fraction of particles and its temperature dependence.
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1. Introduction Planck equation perspectives of non-interacting particles sys-
tems [17-19]. Their further development to include mag-

Presently, Altern Current magnetic techniques measure thetic colloids of moderate concentration where direct inter-
dynamic magnetic susceptibility of ferrofluids in the absenceaction among particles is meaningful lead to mean-field the-
of external magnetic fields [1-3]. It uses the fact that theOries cast into a Smoluchowski equation [15,20,21]. In most
Brownian motion of the particles becomes affected by theof these papers, colloidal particles perform only rotational
fluctuations of the macroscopic magnetization created by thBrownian relaxation of their orientations. A comprehensive
Altern currents. Consequently, this technique provides a wagiccount of the experiments [1, 15, 22] remains still a strin-
to determine several equilibrium properties, including; thegent test on existing theories [15, 20, 21]. The Fokker-Planck
particle shape and its diameter [4—6], phase transitions chagguation method describes the dynamics of a single particle
acterization [7], the rotational diffusion coefficient of a ferro- through the probability density of its orientational degrees of
magnetic particle in a polymer solution [8, 9]. It also allows freedom. In the present manuscript, however, we adopt a lin-
the measurement of the viscosity of the supporting media [1]ear response theory and apply it further to attain a relation-
Ferrofluids are magnetic colloids made of nanometric siz&hip between the magnetic susceptibility with the coherent
ferromagnetic particles dispersed in a solvent. The particleiltermediate scattering function at thermal equilibrium. This
possesses a rigidly attached magnetic moment and perforf¢attering function is the equilibrium correlation of particles’
Brownian relaxation as a single object. The study of the equidensity of homogeneous fluids without external fields. To
librium dynamics of magnetic fluids have become necessargur knowledge, the determination of the dynamical suscep-
because their collective behavior is related to diverse tecHibility in ferrofluids using such dynamical structure factor
nological applications among others in Breast-cancer therconstitutes a promising perspective not considered before in-
moablation [10] and hyperthermia health treatments [11-14]vestigating the magnetic susceptibility. Consequently, this
Yet, the frequency domain behavior of the complex magapproach includes equal footing both for the rotation and the
netic susceptibility serves to test statistical microscopic modtranslational diffusion of the particles. Thus, it constitutes a
els of this property. Recent interesting experiments [15, 1610vel approach worth investigating to study ferrofluids” mag-
have also investigated the effect of temperature and volum@etic relaxation. We compared this method with experiments
fraction of particles on the behavior of the initial magnetic On the initial susceptibility in ferrofluids and found qualita-
Susceptibi”ty in the zero frequency domain. From the the.tive|y similar trends as in the observed data at a low density
oretical viewpoint, the interpretations of the observed initialof particles. Whereas our comparison with original simula-
susceptibilities have reached a successful agreement with etons on the dynamical susceptibility and with reports of other
periments [15]. However, the explanation of the observed€searchers on this relaxation function yields a good agree-
frequency relaxation of the dynamical susceptibility modu-ment. For increasing frequency of relaxation, the imaginary
lus remains nowadays an open problem. Attempts to expart of the susceptibility shifts, whereas there is a reduction
plain the observed susceptibility of ferrofluids use Fokker-0f the amplitude of its real component. These behaviors oc-
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cur for increasing magnetic interaction among the particle§ his impliesy depends only on the short range particle cor-
when they form chain-like structures. These findings agreeelations about. =~ 27 /k,.x Of the maximum peak of the
gualitatively with the relaxation behavior of the susceptibil- liquid structure factor. In this case particle correlations are
ity observed experimentally [22, 23]. Our expression of themore important. Furthermore, the used experimental mag-
magnetic susceptibility possesses as memory kernel the dyetic fields of wave vectdk are spatially inhomogeneous on
namical structure factor. This kernel is a function of thelarge wave length compared tp. At this long wave length
time-dependent translational and rotational self-diffusion codimit, kr. < 1, k = |k|, the susceptibilityy is independent
efficient of a tracer particle in the colloid. Thus, our expres-of the magnitude and direction &. Such a condition can
sion of susceptibility is directly related to the measured tracebe assumed to be reached experimentally. It is expressed by
diffusion and the structure factor of the colloid. Experimen-the relationship limp_ox(k,w) = x(w)1. Because of the
tally, both of these equilibrium properties are feasible to ob-internal fieldH depends on the state of the material, there-
tain with small-angle neutron scattering techniques [24—30]fore, the response is re-written in terms of the external field
In what follows, we first present our adaptation of the linearH". That is to sayM(k,w) = {°(k,w) - H°(k,w) where
response method in Section Il to obtain the colloidal dynamict®(k, w) is independent oH (k,w), a property determined
susceptibility in terms of the intermediate scattering functionfrom the microstructure of the liquid wheregsk,w) does
In Sec. Ill, we compare the susceptibility moduli with orig- not. Following the same approximations as in [31] and select-
inal computer simulations and those provided by other auing k parallel to axis-Z the magnetic polarization and fields
thors. There is also the comparison of the static susceptibilitgatisfyH (k, w) = H°(k, w) — kkM (k, w) wherek = k/k.
with experimental data. From the above relationships B = [1 — kk - x°] - H? =
1+ kk - ¢]~! - H° and using the independence condi-
tion of the susceptibility on wave number the transversal
2. Linear response method for the magnetic and normal|| components of® (and of /i,), can be ob-
susceptibility tained fromx® = (1 — kk)x + kaH From the ex-
perimental condition, & independent susceptibility is de-
In this section, we shall adapt the expression of the magrived from lim._oxY (k,w) = x(w) = pr(w) — 1, and
netic susceptibility within linear response theory for infinite imx—ox{ (k, w) = x(w)/(1+x(w)) = (kW) = 1) /pr(w).
systems of polarizable molecular fluids to magnetic colloidsEither of these expressions yieldw). The total suscepti-
For this purpose we follow the microscopic derivation of thebility is the averagey = lim,_o(2x§ + x?)/3 which it
correlation functions of bulk polarization for dense polar flu- has the right ideal Debye limit (see beIowS. The magnetic
ids of [31]. We consider an isotropic ferrofluid made of N polarization of the fluid under the fiel® can be known
identical spherical particles of diametérmass per particle from the variation of the fluid internal energy. To proceed,
mo and moment of inertid = mgd?/10, which occupies We follow [31] and consider the Hamiltonian up to first or-
a volumeV, and is thermally equilibrated at temperatte  der in dipolar contributiongf;,o = — Zjvzl pu; - HO(r;) =
Each particle possesses a constant magnetic dipole moment/ dr 3~ pu;d(r —1;) -H’(r). The change in internal en-
pu of strengthy with orientationu given by the polar an- ergy due to a varying local magnetic fiebd< h® < H°
glesQ = (0,¢) in the Laboratory framef andy are the  can be written a§/;0 = —(1/2) [drM - H® = fOHO dhO -
polar and azimuthal angles, apd= N/V is the number v,,(Hj.),o with (...),0 the statistical average in the pres-
density. We adopt the International System of units in theence ofh?. And V0 the functional derivative with respect
Sommerfeld convention [32] for the magnetic induction of ato the local fieldn®. The average in the internal energy can
magnetically polarizable material givenBs= no(H + M)  be approximated to lowest order hf as(...),0 = (...) +
with 1o = 47 x 10~ 7A /m? the permeability of vacuum and [Vio(...)po] - hO. Thus,Ugo = —(1/2) [ dr( z pa(r —
H is the magnetic field wittM the magnetization. The en- r.)),,.-H. From which it results for the liquid magnetlzatlon
ergy of a particle (in free space) with magnetic moment  ynder the external fieltI(k,w) = (22 pujd(r —1;)) pro.
under the external fiel#I° is defined a&/ = —uopu-H®.  This molecular average can be evaluated following the meth-
For two point-like dipolar (dd) particles with constant mag- ods of [31, 34]. To linear order in the fiell’, the magneti-
netic momenjuu; and positions in the Laboratory franeg zation has the general form
i = 1,2, the mutual potential energy of their interaction is
Uaa(r12) = (pop® /4m) (1 - V1) (ug - Vi) /|r1 — ra| with M(k,w) = X"(k,w) - H. (€h)
V. the gradient operator [33]. A colloid of particles with
this pairwise interaction develops a magnetic polarization adlote thaty? is independent of the fielHI®. The susceptibil-
a response to an external field. In terms of the internal fieldty matrix that results i° (k,w) = (47u.3/V)[(M(k,t =
of the fluid H in Fourier reciprocal and frequency spaces0)M(—k,t = 0)) + iw [ dte™*(M(k, t)M(-k,t))]. The
is M(k,w) = [drExplik - r] [;° dt Exp[—iwt]M(r,t) =  magnetization is a slow variable which, however, as we
x(k,w) - Hk,w) = B/ug — Hor B = pfi, - H, where  have shown above it is completely determined from the
x(k,w) = pg.(k,w) — 1. x andj, are intensive proper- knowledge of the magnetic susceptibility. Because of this
ties that do not depend on the sample shape and size [3fhct, it is not required an independent dynamical equa-
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tion for the slow variableM (k,¢). We notice that the

3

pair potential of a dipolar liquid, the main components of

correlation function of the magnetization in the integrandEq. (3) are completely determined from the spherical har-
above is related to the microstructure formed by the parmonic projection$ = 0, m = 0, 1. Therefore, the correlation
ticles in the colloid. This fact can be seen by construct-functions derived from (2) now become [31, 36]

ing in reciprocal space the macroscopic fluctuation in mag
netizatonM(k,t) = u [ drdQe’™*Tu(t)dn(r,2,t). Here
on(r,,t) n(r,Q,t) — n®(r,Q) is the fluctuation
in the instantaneous particle’s concentratiofr, 2,t) =
Zf;l O(r —r;(2))0(2 — Q;(t)) about its equilibrium value
n®(r, Q) (n(r,,t)). The solid angle is defined by
dQ = sinfdfdp, and{(...) is a canonical ensemble aver-
age. The time correlation function matrix of magnetization
has rank three and it is given by the thermal average

C(k,t) = (M(k,t)MT(k,0))
(t)> - (@

o

N
Z eik'(ri(t)_rj(t))ui(t)u;

4,j=1

Where} means transpose and conjugate. We made use also

of the Fourier transform definitiofi(k) = [ dke®®* f(r) of
a function f. The spherical harmonic representatiomnf
yields the components of the correlator (2) as

drp? N (e (1) — s "
Clm;l/m’(kat) = Tﬂzl ! < Z elk (rl(t) r](t))}/lm(ui(t))
i,j=1
Ny?
X Vi (w5 (0)) ):==3= St (B 1), (3)

which defines the coherent intermediate scattering function

Simsrme (K, t) [35], wherel = 0,1,2,...,coand—! < m < .
Notice that the initial time value of this dynamical function

is the static structure factor which according to Eq. (3) has

the definitionSlm;l/m/(k, 0) = <5n’,glm5nkl/m/>/]\7. Thus,
Simsrme (K, t) 1s also the dynamical structure factor, with the
microscopic density

N

i () =Y e T Y (1 (2).

i=1

By selecting the intermolecular franle = (0,0,k = [k|)

Np? -
sz(k,()) = TSf;Ll:lo_l(k)’

Np? oy
Craz(k,0) = TSmell LK),

N 2
sz(kat) = TMS}Ol(kvt)a

Ny?

Cxw(k’, t) - T‘S’,lll(k’ t)

®)

Thus, it results at the overdamped regime- 0 for both of
Ea. (3)

xj) (k. 0) (k),

_ Bppop? il
3 0

2
50/;0# Sl 1 (6)

X(J)_(kao) = 1 (k)
In the limit p — 0, the structure factoS!) (k) — 1,
thenxﬂ(k,O) = x%(k,0) = 4wAp*/3 := x yields the
Langevin static susceptibility with dipole coupling :=
upo/AnkpTd® and reduced density* := pd. The re-
sult of using Egs. (5) and (6) are the complex susceptibility
components [31, 36]

X

x(i(k,w) = XL [S}ll(k) +iw5}11(k,w)] .

(kaw) = XL [S,lol(k) + iws,lol(kvw)] ’

(1

Equations (7) summarizes the main results that we will use in
this manuscript from the known theory of dynamic suscepti-
bility of molecular fluids.

2.1. Modeling the magnetic Susceptibility of magnetic

tracers

the structure factor simplifies to depend on two indicesin this section, we derive a new expression of the susceptibil-

Simsime (k,0) = S (k). Therefore the longitudinal [ zz
and transversall() x= components to wave vectar of the
susceptibility now read as [31]

o0

C..(k,0)+iw / dte™'C,.(k,t)| ,
0

:47TM059
N

0
X]|

(k,w)

4 [ e
:M Cm<k,0)+iw/dte“"tcmx(kvt) ’

N

X1

(k,w)

0

(4)

with 8 = 1/kgT andkgp the Boltzmann constant. In Egs. (4),
we use the spherical harmonic components of the intermed

ity of magnetic colloids. It depends on the dynamical struc-
ture factorSffn of the suspension of magnetic particles, and
for which we provide its explicit analytical form. The suscep-
tibilities (7) depend on the intermediate scattering functions
S (k,w), S (k,w). In Ref. [37] we derived these functions
from a hydrodynamic theory. They are given at the over-
damped limitl 2 /¢°, mo2/¢° < 1, by the expression

Shn (k)

k2 D00
Ctras(z)

U
Sk, 2) = 1041 DI
Crot(z)

)
“+ s )

with the Laplace parameter= iw, andD° := kgT/¢° and
B = kpT/¢°. To make a specific application of the gen-

ate scattering function. Due to the spatial symmetry of theeral formulas for the magnetic susceptibility (7), we use the
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experimental conditiok — 0. In addition, we need to deter-
mine the projections of the static structure factdy, (k = 0). SU* (s o) =
These static properties can be provided either by experiment, ™"’

theory of liquid approaches or through simulation calcula- S” (k)
tions. In Eg. (8), the time dependence of the total friction co- D(w ;
efficients of a magnetic tracer particle in the colloid are given tiw +k2DO[S” B D ; )]H(Hl)D [S” O D(O )]

by their translational friction functiongas(t) = ¢° + A((t), (11)
and similarly for rotational movemetio(t) = ¢ + A( (). with D(w) = kgT/Ciras(w), Dy(w) = ksT/Cror(w). Sub-
The Stokes frictions on the tracer due to the presence of th&itution of Eqgs. (8) in (7) yields the result

solvent are® = 3mnsoid?, and(? = mnsd® with 7o) the

11
viscosity of the solvent. The additional contribution to the Xﬁ(k;,w) = M
translational friction due to direct interactions is [37] 1 —iwrg (k,w)
xrSH (k)
1 A he) = 1 (12)
Ac() = =l /dwz T (k)
672p where x;, = 8X\¢, ¢ = 7r,0d3/6 7'11 kyw) =

S (k)/[k*D(w) + 2Dy (w)], m = 0,%1. The total sus-

l 1 ihili _ 0 0
SU (k) —1 ceptibility then readsy = (2xY + x )/3,
x 3 ” Sl};(k;t). 9) -
=, Sm( ) ’ 3x(k,w)  Su(k) 251, (k)
= A (13)
XL 1—2w7‘0 1 —wT 5y
Whereas the coefficient of its rotational friction is [37] At the low density of particles and considering the hydrody-
namic limit, Eq. (12) yields as a consistency check the ideal
T paramagnetic gas Debye susceptibility
B 2
AG(t )_ /dkk Z Z [f1+ fo+ f3] lim hmx(k w) = Xi_L, (14)
=0 m=—1 p—0k— 1 —1wtp
S (k) —1 where 7p = lim,, o limy, o 74, (k, w) =
v mui S (ks ), lim, o S%}(0)/2D,(w) = 1/2D is the Debye relaxation
S8 (k) time.
(m+D(1+1—m) [ ST _(k)—1 _ _ o
fi= 5 ST (k) |’ 3. Approximate expressions of the susceptibil-
et ity
l— 1+1) | S% . . . :
fo = ( m)(n; +1+0) “( )k) ] , The intermediate scattering function of Eq. (3) has the fol-
7m+1( lowing exact expression for the self (s) pﬂ’tfn (k,t) =
S (k) —1 (4mp2 3N )il (SN et @ OO Y (u(8)) Vi
fs=m W (10)  (u;(#))). We derived a closed expression of this function
i in Ref. [37], and it is given above. Because we consider

two approximate expressions for the dynamic structure fac-

We point out that Eq. (9) and (10) of the tracer’s fric- tor, namelyS" it (k,t) and S'L#(k,t), we applied these two
tion can also be expressed in terms of the pair interactiodynamical correlation functions to Egs. (7). Using first
potential between particles (see [38]). The propagator irb’},(k,t), Eq. (8), for the propagator the result is Eq. (13),
Eqg. (9) and (loﬁff;(k,t) is referred to a reference frame whereas from (7) the self part becomes
with origin at the tracer’s center of mass. Next, we intro- x* (k, w) 1
duce the decoupling approximation [37] for this quantity as =
S*(t) =~ S%(t)S°(t) where theS*(z) is the (self) tracer’s
propagator defined below. Similarl§e(t) is the collective 7:=1/[k*D(w) + 2D, (w)]. (15)
or host particles’ propagator referred to the Laboratory COOrgjnajly, our expression of susceptibility is the average of Egs.
dinate. From Eq. (8), we obtained for tracer (self, s) scatter(13) and (14)
ing functionS™.# (k, z) = 1/[z + (k*D°¢°/(uas(2) + 1(1 + I
1)D¢0 /Got(2))]. Whereas for the cloud (c) of other parti- 2Xavemge(kvw) _ S (k)
cles diffusing around the tracer the propagator is from Eq. (8) XL 3(1 - WTlol)
Sk, z) = 84, (k)/[z + (K*D° + 1(L + 1) DY) / 8%}, (k)]
D’ y H H H . 2S,:|:1( ) 1

ue to the decoupling approximation, the Laplace transform — S—
of the propagatoy;* dte~“*S'* (k; t) is 3(1—iwrlyy)  1—iwr

L 1—iwr’

(16)
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Equation (16) is the main theoretical result of this contact. The equilibrium states correspond to typical material
manuscript. In the next section, we provide applicationgparameters such as those from [39-42], and they span mag-
of this approach using material parameters of typical fernetic dipole moment on the order pf, = 2.3352 x 10~'°
rofluids. For this purpose in what follows, we shall denoteAm? at room temperatur€ = 300 K. For aqueous ferroflu-
X2Vea9¢ k. w) simply asy (k,w). ids, the solvent viscosity igs,; = 0.852 x 1073 Kg/ms,

d =10"8m, mg = 2.707x10~2! Kg, and we set the strength
eo = kgT. For the simulations, we used the Lammps pack-
age [43] and restricted our study to the overdamped diffusive

In this section, we use the susceptibility formula, Eq. (16),regime. As a result of the simulation, we attained the equi-
outlined above and apply it to material data of a known sterlibrium position and orientation of the particles. The sim-
ically stabilized ferrofluidFe,O5 [39, 40]. Then, we will  ulation of the susceptibility derives from the standard for-
compare theory predictions versus Brownian simulation calmula x(t) = x(1 — iw) [;* dt(u(t) - uf(0))Exp[—iwt].
culations for the thermal equilibrium susceptibility from low Meanwhile, for the theory predictions, the structure factor
up to high particles volume fraction and as a function ofprojectionssS’), (k) required in Eq. (16) are provided ana-
magnetic dipole interactions of the particles. In this nu-lytically within [44] in the Mean Spherical Approximation.
merical work, we modeled the ferrofluid by the total po- This approximation is valid for a low concentrated dipolar
tential energyUr = Upj(r) — Ups(r = 2Y/60) + Uge(r),  liquid of identical spheres, and at small strength dipolar cou-
r < 265 which has a Lennard-Jones short-range repulsiv@ling. We made calculations of the dynamical susceptibility
partUps(r) = 4eo((a/r)'2 — (o/r)8) with > 21/65 and ~ (16) versus the frequency at the experimental condition of
strengtheo. This part represents the repulsive interaction that — 0, from low up to moderate values of reduced dipole
stabilizes the suspension, anis the distance from the origin  coupling0 < A < 6.17, and reduced density in the range
whereUp;(r = o) = 0. The truncated Lennard-Jongg; 0 < p* < 0.9. The magnetic susceptibility is of the general
yields the short-range repulsion between pair of particles aorm x(w) = x’(w) + ix" (w).

4. Results and discussion

(0 tB

FIGURE 1. Semi-logarithmic plot of normalized susceptibilifw)/x(0) versus reduced frequenays at six increasing values of dipole
coupling: (@)A = 0.5, (D) A =1, (c) A = 1.5, (d) A = 2, (e) A = 2.5, and (A = 3 and moderately concentrated ferrofluid of reduced
densityp™ = 0.2. The continuous lines are from theory Eq. (16) (With= 0) which is compared with the Brownian dynamic simulations
(symbolo) adapted from [20]. Dash line is the Debye model, Eq. (14). Theory calculations use the Mean Spherical Approximation for
the structure factor projectiorﬁf)oo(r). We note that theory, Eqg. (16) deviates from simulations at the highest dipole coupling starting from
A = 3 (see Fig. 1(f)).

Rev. Mex. Fis68 031003



6 R. PEREDO-ORIZ AND M. HERNANDEZ-CONTRERAS

1 \mant — r‘1 - ‘ | O
o] Simulation Simulation
— Theory
% Theory e
0.8 v === Debye
1
_ e
o | p*=0.6 =
—_d 3
= A=1.0 | =
_— P
8 CRENY
gt N
=
0.2 BT
oo © 0‘;\‘\‘
0 - 1
10_2 10_1 100 101 102 " 10" 10 ? 0 0.5 . 1
o tg oty ¥ (@)/3(0)

FIGURE 2. Frequency-dependent susceptibilititv) as a function FIGURE 3. The semi-logarithmic plot of the Magnetic susceptibil-
of reduced frequencyts. Theory of Eq. (16) (continuous line) ity x(w)/x(0) versus dimensionless frequeneyg. This figure
versus simulation results (symbgl adapted from [20] depicted at  provides comparisons of our original simulations (symtjolvith
the higher concentration of particles = 0.6 than the system of  theory (continuous line) of Eq. (16) &t = 0 for low density of
Fig. 1, and forA = 1. The dashed line depicts the ideal paramag- particlesp* = 0.1, and four increasing values of dipole coupling
netic gas. We observe that at this high concentration of particles,\. The right column of panels depict the results of our simulations
theory, Eq. (16), still captures all features of the simulations. for the magnetic susceptibility components as Cole-Cole plots, ver-
sus theory Eqg. (16). The dotted line is the ideal gas Debye theory
In Fig. 1, we compared the predictions of Eg. (16) (con-of Eq. (14).
tinuous lines) with the simulations of [20] for a monodis-
perse ferrofluid (symbat) at various thermodynamic states of S';;*(k,t) thatk = 0 ignores the translational diffusion
of equilibrium with low density of particleg* = 0.2 and  D(w) of the magnetic particles. Therefore, there is only ro-
dipole couplings\ = 0.5,1,1.5,2,2.5,3. We note that the- tational diffusion of these interacting colloidal particles. We
ory (16) starts to deviate from the simulations only at thecan observe in Fig. 3 that there is an agreement between the
highest dipole strength considerad= 3, see Fig. 1(f). This theory of Eq. (16) with our simulations calculations. We ob-
inaccuracy is due to the failure of Mean Spherical approxi-serve quantitative differences between them starting from the
mation to capture correctly the microstructure at high dipolehighest dipole moment = 4.0. On the other hand, Debye
interactions. The dashed line corresponds to the ideal Deby&eory Eq. (14) only agrees at low dipole momant 1.31
model of a paramagnetic gas given by Eq. (14). with Eqg. (16) and simulations, see the first panel on the top
In Fig. 2 is made the comparison of Eq. (16) (continu-of Fig. 3. This ideal Debye model deviates even more from
ous lines) against the simulation data (symboteported in  theory (16) and our simulation results for increasing dipole
Ref. [20] for the same but higher concentrated monodispers@oment and density.
ferrofluid than in Fig. 1. In this plot authors of [20] used a  Figure 4 shows results for the case of a highly concen-
single value of dipole strength = 1 and higher density of trated ferrofluid withp* = 0.9.
particlesp* = 0.6 with respect to Fig. 1. Yet, we find there Figures 3 and 4 include the so-called magnetic Cole-Cole
is an agreement between their simulations and our model gflots of the imaginary component’ versus the real part
Eg. (16). Additionally, we compared in Figs. 3 and 4, the x’ (calculated with equation (16) in the hydrodynamic limit
frequency-dependent susceptibility of (16) with our originalk = 0 and plotted with black line). The symbolrepresents
Brownian dynamic simulations. simulations. In these figures, we depict the Debye theory
In Fig. 3 depictsy’ (with black continuous line) and (dotted line).
x"" with gray line (red color online) for the fixed reduced In Fig. 5 are depicted comparisons of dynamic suscep-
densityp* = 0.1, and for increasing dipole strength =  tibility from Eq. (16) at the hydrodynamic limit = 0
1.31,2.37,3.37 and4.0, respectively. Simulation results are and seven increasing values of dimensionless dipole strength
represented with black symbolfor the real component of X\ = 1.31,2.37,3.37,4,4.6,5.36,6.17 and for two reduced
susceptibilityy’, and a gray circle (red color online) for the densitiesp* = 0.1, 0.5. We notice from these plots that there
imaginary party”. Whereas the dashed line symbols are thes a frequency shift to lower values of the imaginary contri-
Debye theory of Eq. (14). We recall from the expression  butiony” as the dipole moment was raised from= 1.31
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& FIGURE 6. Initial susceptibilityx(w = 0) = x[¢] as a function
o of the particles magnetic concentratign,. Black lines depicts
” b P i x[0] = xz (14 5xL/18 + 11x7 /96) as derived from Eq. (16) for
£ (@)/%(0) ¢ << 1. Experiments adapted from [15] are given by symhols

for a magnetite in kerosene ferrofluid at temperatlire- 300 K.
FIGURE 4. Same properties and description as in Fig. 3 at the Best fitting particle’s interaction strength used in the theory above
highest reduced densigy = 0.9. was\ = 2.81 and the approximatiop ~ ¢,,, was used. The exact

theoryx(w = 0) = xr.(1 + x./3 + X3 /144) adapted from [15]

is depicted with grey line (red color online). Hexg = 8A¢.

up to4.0 where there is chain formation as observed in sim-
ulations (not depicted). Experimentally chain formation is
currently observed in similar conditions [41]. Whereas the
magnitude ofy’ drops to lower values (the slop of the branch
diminish fromwtg = 0 wherex’ = 1 up towtg = 103
wherey’ = 0) confirming qualitatively the observations of
[22]. Authors of [22] used an ionically stabilized ferrofluid
Fe;O4 in NaCl electrolyte solutions. They concluded that a
decrease ofis related to particle aggregation and the fre-
guency shift ofy” peak is due to a larger hydrodynamic
size of the cluster (chain). Remmet al. observed sim-
ilar behaviors for the susceptibility of Cof®, nanoparti-
cles dissolved in viscoelastic media of gelatin [23]. Our ap-
proach can be applied to study mixtures of magnetic with
non-magnetic colloids. We derived from our dynamic sus-
ceptibility model (16) its static value at = 0. This ob-
servable was determined under the experimental condition of
k — 0, and in the limit of small volume fractiop < 1.
o RS ot Under this condition onp < 1 and A < 1, the Mean
oty oty Spherical Approximation for the structure factors appearing
in (16) are expanded in a Taylor series expansion. The ap-
FIGURE 5. The semi-logarithmic plot of normalized suscepti- proximated expression of initial susceptibility that resulted is
bility x(w)/x(0) versus reduced frequenayts at two increas-  [¢] ~ y (1 + 5xr/18 + 11x2 /96) which differs from the
mfg_ values_ of r(t;:ductenij (il)entsr:w* = 0‘,1,dq.5, tgnd Zt_aveln value|§ known exact expressiog[¢] ~ xr(1 + x1/3 + x%/144)
o s wa st o e g demonstated by hanost al. (ere . = 10 (5,16
’ ’ »o ! ’ We compared first our approximated susceptibility with the

ures, a shift to lower values of the frequencyith and a reduction . ts of 115 functi fvol fracti f
of the slop (and amplitude) of’ as the dipole moment per parti- experlmen s of [ _] as atunction or volume fraction or mag-
dietic colloidal particles.

cle is increased and consequently an enhancement of the particl

particle interactions. Al = 4, there appear chain formations by Figure 6 compares the best fit using our expression

the particles. xl¢] ~ xr(1+ 5x5/18 + 11x% /96) (black line) to the ex-
periments of the magnetic suspension studied in [15] at room
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x(T)(1 + 5xr(T)/18 + 11xr(T)?/96) wherexr(T) =
10¢ : X(1 = B1(1 = )T — T.))(1 — BoT*)T%/[(1 — BoT2)*T]
[15,16]. The datal, = 285 K, 3; = 0.87 x 1073/K,
b = 8 X 10—7/K2 were taken from the same experi-
ments in Ref. [15]. We see that we can find qualitative
agreement with the experiments of [15] by usifig \) =

8 4

6

4} (0.068,4.25), (0.092,2.45), (0.12,1.4). The gray lines (red

’ ] colour online) are the results of the correct equation of lvanov
i etal x(w =0) = xz(T)(14xz/3+ x7 /144) which yields

0

agreement with their data for = 5.1, 2.8, 1.6 for the same
¢ as above, respectively.

200 220 240 260 280 300 320 340
TIK]

FIGURE 7. Initial susceptibilityx(w = 0) as a function of ab-

solute temperatur@. Black lines depict tge apprqximated theory | this paper, we presented the adaptation of the linear re-
z‘l[g :t XL<(?§1 EerLn(ani{] glti;tlei(\fvgt?s/ 2?;:';’5?;2’52 Etgd sponse method for the susceptibility of polar liquids to the
4 - BXP y P frequency-dependent susceptibility of magnetic colloids in

from [15]. Exact theory adapted from [15] is depicted with grey . .
line (red color online). For the approximated theory from (16) the terms of the dynamical structure factor. Comparing the pre-

best fitting values to the experiments occur from top to bottom asdicted initial magnetic susceptibility with existing reported
(6 = 0.068,\ = 4.25),(0.042,2.45), and (0.12,1.4), respec-  €xperiments yields the general trends of those observations

tively. as a function of the colloid’s volume fraction and tempera-
ture. Our calculations of the magnetic susceptibility using

temperature” = 300 K (black dots). We find that the best material data of typical ferrofluids such as,Pg yields good
fit occurs with the single valug = 2.81, whereas the gray agreement with simulations at low dipole moments per par-
line (red color online) is the theory for the initial susceptibil- ticle and density. Finally, our approach enables us to de-
ity x(w = 0) = x5(1 + xr/3 + x2/144) used by authors termine magnetic susceptibility in mixtures of magnetic and
Ivanovet al. to interpret their data. non-magnetic colloids.

In Fig. 7 it is given the comparison of our expression of
the initial susceptibilityy[¢] =~ xz (1 +5xz /18 + 11x2 /96)
(black lines) versus temperature with those experiments oACcknowledgments
Ivanovet al. (gray lines, red color online) for their first three
low volume fractions of particles (see Fig. 6 in Ref. [15]). In The authors acknowledge to the General Coordination of In-
this case, the Langevin susceptibility,(T") is temperature formation and Communications Technologies (CGSTIC) at
dependent, and its correction to account for this dependendy!NVESTAV for providing HPC resources on the Hybrid Su-
is considered in Refs. [15, 16]. percomputer “Xiuhcoatl” which contributed to the research

Thus, our static susceptibility becomeg|¢] ~  resultsreported within this paper.
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