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Received 26 October 2021; accepted 10 December 2021

Linear response methods allow studying magnetic susceptibility relaxation in isotropic colloidal magnetic fluids. We show a relationship be-
tween the susceptibility of macroscopic magnetization at thermal equilibrium and the diffusion constant of a tracer particle. The comparison
of the predicted frequency-dependent susceptibility with computer simulations shows their agreement. Besides, at a low concentration of
particles, it has the expected Debye behavior. However, the initial susceptibility yields only the qualitative trends of the existing experiments
at a low volume fraction of particles and its temperature dependence.
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1. Introduction

Presently, Altern Current magnetic techniques measure the
dynamic magnetic susceptibility of ferrofluids in the absence
of external magnetic fields [1–3]. It uses the fact that the
Brownian motion of the particles becomes affected by the
fluctuations of the macroscopic magnetization created by the
Altern currents. Consequently, this technique provides a way
to determine several equilibrium properties, including; the
particle shape and its diameter [4–6], phase transitions char-
acterization [7], the rotational diffusion coefficient of a ferro-
magnetic particle in a polymer solution [8, 9]. It also allows
the measurement of the viscosity of the supporting media [1].
Ferrofluids are magnetic colloids made of nanometric size
ferromagnetic particles dispersed in a solvent. The particles
possesses a rigidly attached magnetic moment and perform
Brownian relaxation as a single object. The study of the equi-
librium dynamics of magnetic fluids have become necessary
because their collective behavior is related to diverse tech-
nological applications among others in Breast-cancer ther-
moablation [10] and hyperthermia health treatments [11–14].
Yet, the frequency domain behavior of the complex mag-
netic susceptibility serves to test statistical microscopic mod-
els of this property. Recent interesting experiments [15, 16]
have also investigated the effect of temperature and volume
fraction of particles on the behavior of the initial magnetic
susceptibility in the zero frequency domain. From the the-
oretical viewpoint, the interpretations of the observed initial
susceptibilities have reached a successful agreement with ex-
periments [15]. However, the explanation of the observed
frequency relaxation of the dynamical susceptibility modu-
lus remains nowadays an open problem. Attempts to ex-
plain the observed susceptibility of ferrofluids use Fokker-

Planck equation perspectives of non-interacting particles sys-
tems [17–19]. Their further development to include mag-
netic colloids of moderate concentration where direct inter-
action among particles is meaningful lead to mean-field the-
ories cast into a Smoluchowski equation [15,20,21]. In most
of these papers, colloidal particles perform only rotational
Brownian relaxation of their orientations. A comprehensive
account of the experiments [1, 15, 22] remains still a strin-
gent test on existing theories [15,20,21]. The Fokker-Planck
equation method describes the dynamics of a single particle
through the probability density of its orientational degrees of
freedom. In the present manuscript, however, we adopt a lin-
ear response theory and apply it further to attain a relation-
ship between the magnetic susceptibility with the coherent
intermediate scattering function at thermal equilibrium. This
scattering function is the equilibrium correlation of particles’
density of homogeneous fluids without external fields. To
our knowledge, the determination of the dynamical suscep-
tibility in ferrofluids using such dynamical structure factor
constitutes a promising perspective not considered before in-
vestigating the magnetic susceptibility. Consequently, this
approach includes equal footing both for the rotation and the
translational diffusion of the particles. Thus, it constitutes a
novel approach worth investigating to study ferrofluids’ mag-
netic relaxation. We compared this method with experiments
on the initial susceptibility in ferrofluids and found qualita-
tively similar trends as in the observed data at a low density
of particles. Whereas our comparison with original simula-
tions on the dynamical susceptibility and with reports of other
researchers on this relaxation function yields a good agree-
ment. For increasing frequency of relaxation, the imaginary
part of the susceptibility shifts, whereas there is a reduction
of the amplitude of its real component. These behaviors oc-
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cur for increasing magnetic interaction among the particles
when they form chain-like structures. These findings agree
qualitatively with the relaxation behavior of the susceptibil-
ity observed experimentally [22, 23]. Our expression of the
magnetic susceptibility possesses as memory kernel the dy-
namical structure factor. This kernel is a function of the
time-dependent translational and rotational self-diffusion co-
efficient of a tracer particle in the colloid. Thus, our expres-
sion of susceptibility is directly related to the measured tracer
diffusion and the structure factor of the colloid. Experimen-
tally, both of these equilibrium properties are feasible to ob-
tain with small-angle neutron scattering techniques [24–30].
In what follows, we first present our adaptation of the linear
response method in Section II to obtain the colloidal dynamic
susceptibility in terms of the intermediate scattering function.
In Sec. III, we compare the susceptibility moduli with orig-
inal computer simulations and those provided by other au-
thors. There is also the comparison of the static susceptibility
with experimental data.

2. Linear response method for the magnetic
susceptibility

In this section, we shall adapt the expression of the mag-
netic susceptibility within linear response theory for infinite
systems of polarizable molecular fluids to magnetic colloids.
For this purpose we follow the microscopic derivation of the
correlation functions of bulk polarization for dense polar flu-
ids of [31]. We consider an isotropic ferrofluid made of N
identical spherical particles of diameterd, mass per particle
m0 and moment of inertiaI = m0d

2/10, which occupies
a volumeV , and is thermally equilibrated at temperatureT .
Each particle possesses a constant magnetic dipole moment
µu of strengthµ with orientationu given by the polar an-
glesΩ = (θ, ϕ) in the Laboratory frame,θ andϕ are the
polar and azimuthal angles, andρ = N/V is the number
density. We adopt the International System of units in the
Sommerfeld convention [32] for the magnetic induction of a
magnetically polarizable material given asB = µ0(H + M)
with µ0 = 4π × 10−7A/m2 the permeability of vacuum and
H is the magnetic field withM the magnetization. The en-
ergy of a particle (in free space) with magnetic momentµu
under the external fieldH0 is defined asU = −µ0µu ·H0.
For two point-like dipolar (dd) particles with constant mag-
netic momentµui and positions in the Laboratory frameri,
i = 1, 2, the mutual potential energy of their interaction is
Udd(r12) = (µ0µ

2/4π)(u1 · ∇r1)(u2 · ∇r2)/|r1 − r2| with
∇r the gradient operator [33]. A colloid of particles with
this pairwise interaction develops a magnetic polarization as
a response to an external field. In terms of the internal field
of the fluid H in Fourier reciprocal and frequency spaces
is M(k, ω) =

∫
dr Exp[ik · r] ∫∞

0
dt Exp[−iωt]M(r, t) =

χ̂(k, ω) · H(k, ω) = B/µ0 − H or B = µ0µ̂r · H, where
χ̂(k, ω) = µ̂r(k, ω) − 1. χ̂ and µ̂r are intensive proper-
ties that do not depend on the sample shape and size [31].

This impliesχ̂ depends only on the short range particle cor-
relations aboutrc ≈ 2π/kmax of the maximum peak of the
liquid structure factor. In this case particle correlations are
more important. Furthermore, the used experimental mag-
netic fields of wave vectork are spatially inhomogeneous on
large wave length compared torc. At this long wave length
limit, krc ¿ 1, k = |k|, the susceptibilitŷχ is independent
of the magnitude and direction ofk. Such a condition can
be assumed to be reached experimentally. It is expressed by
the relationship limk→0χ̂(k, ω) = χ(ω)1. Because of the
internal fieldH depends on the state of the material, there-
fore, the response is re-written in terms of the external field
H0. That is to sayM(k, ω) = χ̂0(k, ω) · H0(k, ω) where
χ̂0(k, ω) is independent ofH0(k, ω), a property determined
from the microstructure of the liquid whereasχ̂(k, ω) does
not. Following the same approximations as in [31] and select-
ing k parallel to axis-Z the magnetic polarization and fields
satisfyH(k, ω) = H0(k, ω)− k̂k̂M(k, ω) wherek̂ = k/k.
From the above relationships isH = [1 − k̂k̂ · χ̂0] ·H0 =
[1 + k̂k̂ · χ̂]−1 · H0, and using the independence condi-
tion of the susceptibility on wave number the transversal⊥
and normal|| components of̂χ0 (and of µ̂r), can be ob-
tained from χ̂0 = (1 − k̂k̂)χ0

⊥ + k̂k̂χ0
||. From the ex-

perimental condition, ak independent susceptibility is de-
rived from limk→0χ

0
⊥(k, ω) = χ(ω) = µr(ω) − 1, and

limk→0χ
0
||(k, ω) = χ(ω)/(1+χ(ω)) = (µr(ω)−1)/µr(ω).

Either of these expressions yieldχ(ω). The total suscepti-
bility is the averageχ = limk→0(2χ0

⊥ + χ0
||)/3 which it

has the right ideal Debye limit (see below). The magnetic
polarization of the fluid under the fieldH0 can be known
from the variation of the fluid internal energy. To proceed,
we follow [31] and consider the Hamiltonian up to first or-
der in dipolar contributionsHh0 = −∑N

j=1 µuj ·H0(rj) =
− ∫

dr
∑

j µujδ(r− rj) ·H0(r). The change in internal en-
ergy due to a varying local magnetic field0 ≤ h0 ≤ H0

can be written asUH0 = −(1/2)
∫

drM ·H0 =
∫ H0

0
dh0 ·

∇h0〈Hh0〉h0 with 〈...〉h0 the statistical average in the pres-
ence ofh0. And∇h0 the functional derivative with respect
to the local fieldh0. The average in the internal energy can
be approximated to lowest order inh0 as 〈...〉h0 = 〈...〉 +
[∇h0〈...〉h0 ] · h0. Thus,UH0 = −(1/2)

∫
dr〈∑j µujδ(r −

rj)〉h0 ·H0. From which it results for the liquid magnetization
under the external fieldM(k, ω) = 〈∑j µujδ(r − rj)〉H0 .
This molecular average can be evaluated following the meth-
ods of [31, 34]. To linear order in the fieldH0, the magneti-
zation has the general form

M(k, ω) = χ̂0(k, ω) ·H0. (1)

Note thatχ̂0 is independent of the fieldH0. The susceptibil-
ity matrix that results iŝχ0(k, ω) = (4πµoβ/V )[〈M(k, t =
0)M(−k, t = 0)〉+ iω

∫∞
0

dteiωt〈M(k, t)M(−k, t)〉]. The
magnetization is a slow variable which, however, as we
have shown above it is completely determined from the
knowledge of the magnetic susceptibility. Because of this
fact, it is not required an independent dynamical equa-
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tion for the slow variableM(k, t). We notice that the
correlation function of the magnetization in the integrand
above is related to the microstructure formed by the par-
ticles in the colloid. This fact can be seen by construct-
ing in reciprocal space the macroscopic fluctuation in mag-
netizationM(k, t) = µ

∫
drdΩeik·ru(t)δn(r,Ω, t). Here

δn(r, Ω, t) = n(r, Ω, t) − neq(r,Ω) is the fluctuation
in the instantaneous particle’s concentrationn(r, Ω, t) =∑N

i=1 δ(r − ri(t))δ(Ω − Ωi(t)) about its equilibrium value
neq(r,Ω) = 〈n(r, Ω, t)〉. The solid angle is defined by
dΩ = sin θdθdϕ, and 〈...〉 is a canonical ensemble aver-
age. The time correlation function matrix of magnetization
has rank three and it is given by the thermal average

C(k, t) = 〈M(k, t)M†(k, 0)〉

= µ2

〈
N∑

i,j=1

eik·(ri(t)−rj(t))ui(t)u
†
j(t)

〉
. (2)

Where† means transpose and conjugate. We made use also
of the Fourier transform definitionf(k) =

∫
dkeik·rf(r) of

a functionf . The spherical harmonic representation ofui

yields the components of the correlator (2) as

Clm;l′m′(k, t) =
4πµ2

3
il−l′

〈
N∑

i,j=1

eik·(ri(t)−rj(t))Y ∗
lm(ui(t))

× Yl′m′(uj(t))

〉
:=

Nµ2

3
Slm;l′m′(k, t), (3)

which defines the coherent intermediate scattering function
Slm;l′m′(k, t) [35], wherel = 0, 1, 2, ...,∞ and−l ≤ m ≤ l.
Notice that the initial time value of this dynamical function
is the static structure factor which according to Eq. (3) has
the definitionSlm;l′m′(k, 0) = 〈δn∗klmδnkl′m′〉/N . Thus,
Slm;l′m′(k, t) is also the dynamical structure factor, with the
microscopic density

nklm(t) :=
N∑

i=1

e−ik·riYlm(ûi(t)).

By selecting the intermolecular framek = (0, 0, k = |k|)
the structure factor simplifies to depend on two indices
Slm;l′m′(k, 0) = Sll

,m(k). Therefore the longitudinal (||) zz
and transversal (⊥) xx components to wave vectork of the
susceptibility now read as [31]

χ0
||(k, ω)=

4πµ0βρ

N


Czz(k, 0)+iω

∞∫

0

dteiωtCzz(k, t)


 ,

χ0
⊥(k, ω)=

4πµ0βρ

N


Cxx(k, 0)+iω

∞∫

0

dteiωtCxx(k, t)


 ,

(4)

with β = 1/kBT andkB the Boltzmann constant. In Eqs. (4),
we use the spherical harmonic components of the intermedi-
ate scattering function. Due to the spatial symmetry of the

pair potential of a dipolar liquid, the main components of
Eq. (3) are completely determined from the spherical har-
monic projectionsl = 0, m = 0, 1. Therefore, the correlation
functions derived from (2) now become [31,36]

Czz(k, 0) =
Nµ2

3
Sl=1l=1

,m=0 (k),

Cxx(k, 0) =
Nµ2

3
Sl=1l=1

,m=1 (k),

Czz(k, t) =
Nµ2

3
S11

,0 (k, t),

Cxx(k, t) =
Nµ2

3
S11

,1 (k, t). (5)

Thus, it results at the overdamped regimeω = 0 for both of
Eq. (3)

χ0
||(k, 0) =

βρµ0µ
2

3
S11

,0 (k),

χ0
⊥(k, 0) =

βρµ0µ
2

3
S11

,1 (k). (6)

In the limit ρ → 0, the structure factorS11
,m(k) → 1,

then χ0
||(k, 0) = χ0

⊥(k, 0) = 4πλρ∗/3 := χL yields the
Langevin static susceptibility with dipole couplingλ :=
µ2µ0/4πkBTd3 and reduced densityρ∗ := ρd3. The re-
sult of using Eqs. (5) and (6) are the complex susceptibility
components [31,36]

χ0
||(k, ω) = χL

[
S11

,0 (k) + iωS11
,0 (k, ω)

]
,

χ0
⊥(k, ω) = χL

[
S11

,1 (k) + iωS11
,1 (k, ω)

]
. (7)

Equations (7) summarizes the main results that we will use in
this manuscript from the known theory of dynamic suscepti-
bility of molecular fluids.

2.1. Modeling the magnetic Susceptibility of magnetic
tracers

In this section, we derive a new expression of the susceptibil-
ity of magnetic colloids. It depends on the dynamical struc-
ture factorSll

,m of the suspension of magnetic particles, and
for which we provide its explicit analytical form. The suscep-
tibilities (7) depend on the intermediate scattering functions
S11

,1 (k, ω), S11
,0 (k, ω). In Ref. [37] we derived these functions

from a hydrodynamic theory. They are given at the over-
damped limitIz/ζ0

r ,m0z/ζ0 ¿ 1, by the expression

Sll
,m(k, z) =

Sll
,m(k)

z + 1
Sll

,m(k)

(
k2D0ζ0

ζtras(z) + l(l+1)D0
rζ0

r

ζrot(z)

) , (8)

with the Laplace parameterz = iω, andD0 := kBT/ζ0 and
D0

r := kBT/ζ0
r . To make a specific application of the gen-

eral formulas for the magnetic susceptibility (7), we use the
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experimental conditionk → 0. In addition, we need to deter-
mine the projections of the static structure factorSll

,m(k = 0).
These static properties can be provided either by experiment,
theory of liquid approaches or through simulation calcula-
tions. In Eq. (8), the time dependence of the total friction co-
efficients of a magnetic tracer particle in the colloid are given
by their translational friction functionsζtras(t) = ζ0 +∆ζ(t),
and similarly for rotational movementζrot(t) = ζ0

r + ∆ζr(t).
The Stokes frictions on the tracer due to the presence of the
solvent areζ0 = 3πηsold

2, andζ0
r = πηsold

3 with ηsol the
viscosity of the solvent. The additional contribution to the
translational friction due to direct interactions is [37]

∆ζ(t) =
kBT

6π2ρ

∞∫

0

dkk4
1∑

l=0

×
l∑

m=−l

[
Sll

,m(k)− 1
Sll

,m(k)

]2

Sll∗
,m(k; t). (9)

Whereas the coefficient of its rotational friction is [37]

∆ζr(t) =
kBT

3π2ρ

∞∫

0

dkk2
1∑

l=0

l∑

m=−l

[f1 + f2 + f3]

×
[

Sll
,m(k)− 1
Sll

,m(k)

]
Sll∗

,m(k; t),

f1 :=
(m + l)(l + 1−m)

2

[
Sll

,m−1(k)− 1
Sll

,m−1(k)

]
,

f2 :=
(l −m)(m + 1 + l)

2

[
Sll

,m+1(k)− 1
Sll

,m+1(k)

]
,

f3 := m2

[
Sll

,m(k)− 1
Sll

,m(k)

]
. (10)

We point out that Eq. (9) and (10) of the tracer’s fric-
tion can also be expressed in terms of the pair interaction
potential between particles (see [38]). The propagator in
Eq. (9) and (10)Sll∗

,m(k, t) is referred to a reference frame
with origin at the tracer’s center of mass. Next, we intro-
duce the decoupling approximation [37] for this quantity as
S∗(t) ≈ Ss(t)Sc(t) where theSs(z) is the (self) tracer’s
propagator defined below. Similarly,Sc(t) is the collective
or host particles’ propagator referred to the Laboratory coor-
dinate. From Eq. (8), we obtained for tracer (self, s) scatter-
ing functionSll,s

,m (k, z) = 1/[z + (k2D0ζ0/ζtras(z) + l(l +
1)D0

rζ0
r /ζrot(z))]. Whereas for the cloud (c) of other parti-

cles diffusing around the tracer the propagator is from Eq. (8)
Sll,c

,m (k, z) = Sll
,m(k)/[z + (k2D0 + l(l + 1)D0

r)/Sll
,m(k)].

Due to the decoupling approximation, the Laplace transform
of the propagator

∫∞
0

dte−iωtSll∗
,m(k; t) is

Sll∗
,m(k; ω) =

Sll
,m(k)

+iω+k2D0[ 1
Sll

,m(k)
+D(ω)

D0 ]+l(l+1)D0
r [ 1

Sll
,m(k)

+Dr(ω)
D0

r
]
,

(11)

with D(ω) = kBT/ζtras(ω), Dr(ω) = kBT/ζrot(ω). Sub-
stitution of Eqs. (8) in (7) yields the result

χ0
||(k, ω) =

χLS11
,0 (k)

1− iωτ11
,0 (k, ω)

χ0
⊥(k, ω) =

χLS11
,±1(k)

1− iωτ11
,±1(k, ω)

, (12)

where χL = 8λφ, φ = πρd3/6, τ11
,m(k, ω) :=

Sll
,m(k)/[k2D(ω) + 2Dr(ω)], m = 0,±1. The total sus-

ceptibility then reads,χ = (2χ0
⊥ + χ0

||)/3,

3χ(k, ω)
χL

=
S11

,0 (k)
1− iωτ11

,0

+
2S11

,±1(k)
1− iωτ11

,±1

. (13)

At the low density of particles and considering the hydrody-
namic limit, Eq. (12) yields as a consistency check the ideal
paramagnetic gas Debye susceptibility

lim
ρ→0

lim
k→0

χ(k, ω) =
χL

1− iωτD
, (14)

where τD = limρ→0 limk→0 τ11
,±1(k, ω) =

limρ→0 S11
,m(0)/2Dr(ω) = 1/2D0

r is the Debye relaxation
time.

3. Approximate expressions of the susceptibil-
ity

The intermediate scattering function of Eq. (3) has the fol-
lowing exact expression for the self (s) partSll,s

,m (k, t) =
(4πµ2/3N)il−l′ 〈∑N

i=j=1 eik·(ri(t)−rj(t)) Y ∗
lm(ui(t)) Yl′m′

(uj(t))〉. We derived a closed expression of this function
in Ref. [37], and it is given above. Because we consider
two approximate expressions for the dynamic structure fac-
tor, namelySll

,m(k, t) andSll,s
,m (k, t), we applied these two

dynamical correlation functions to Eqs. (7). Using first
Sll

,m(k, t), Eq. (8), for the propagator the result is Eq. (13),
whereas from (7) the self part becomes

χs(k, ω)
χL

=
1

1− iωτ
,

τ := 1/[k2D(ω) + 2Dr(ω)]. (15)

Finally, our expression of susceptibility is the average of Eqs.
(13) and (14)

2
χaverage(k, ω)

χL
=

S11
,0 (k)

3(1− iωτ11
,0 )

+
2S11

,±1(k)
3(1− iωτ11

,±1)
+

1
1− iωτ

. (16)
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Equation (16) is the main theoretical result of this
manuscript. In the next section, we provide applications
of this approach using material parameters of typical fer-
rofluids. For this purpose in what follows, we shall denote
χaverage(k, ω) simply asχ(k, ω).

4. Results and discussion

In this section, we use the susceptibility formula, Eq. (16),
outlined above and apply it to material data of a known ster-
ically stabilized ferrofluidFe2O3 [39, 40]. Then, we will
compare theory predictions versus Brownian simulation cal-
culations for the thermal equilibrium susceptibility from low
up to high particles volume fraction and as a function of
magnetic dipole interactions of the particles. In this nu-
merical work, we modeled the ferrofluid by the total po-
tential energyUT = ULJ(r) − ULJ(r = 21/6σ) + Udd(r),
r ≤ 21/6σ which has a Lennard-Jones short-range repulsive
partULJ(r) = 4ε0((σ/r)12 − (σ/r)6) with r > 21/6σ and
strengthε0. This part represents the repulsive interaction that
stabilizes the suspension, andσ is the distance from the origin
whereULJ(r = σ) = 0. The truncated Lennard-JonesULJ

yields the short-range repulsion between pair of particles at

contact. The equilibrium states correspond to typical material
parameters such as those from [39–42], and they span mag-
netic dipole moment on the order ofµm = 2.3352 × 10−19

Am2 at room temperatureT = 300 K. For aqueous ferroflu-
ids, the solvent viscosity isηsol = 0.852 × 10−3 Kg/ms,
d = 10−8m, m0 = 2.707×10−21 Kg, and we set the strength
ε0 = kBT . For the simulations, we used the Lammps pack-
age [43] and restricted our study to the overdamped diffusive
regime. As a result of the simulation, we attained the equi-
librium position and orientation of the particles. The sim-
ulation of the susceptibility derives from the standard for-
mula χ(t) = χL(1 − iω)

∫∞
0

dt〈u(t) · u†(0)〉Exp[−iωt].
Meanwhile, for the theory predictions, the structure factor
projectionsS11

,m(k) required in Eq. (16) are provided ana-
lytically within [44] in the Mean Spherical Approximation.
This approximation is valid for a low concentrated dipolar
liquid of identical spheres, and at small strength dipolar cou-
pling. We made calculations of the dynamical susceptibility
(16) versus the frequency at the experimental condition of
k → 0, from low up to moderate values of reduced dipole
coupling0 ≤ λ ≤ 6.17, and reduced density in the range
0 ≤ ρ∗ ≤ 0.9. The magnetic susceptibility is of the general
form χ(ω) = χ′(ω) + iχ′′(ω).

FIGURE 1. Semi-logarithmic plot of normalized susceptibilityχ(ω)/χ(0) versus reduced frequencyωtB at six increasing values of dipole
coupling: (a)λ = 0.5, (b) λ = 1, (c) λ = 1.5, (d) λ = 2, (e) λ = 2.5, and (f)λ = 3 and moderately concentrated ferrofluid of reduced
densityρ∗ = 0.2. The continuous lines are from theory Eq. (16) (withk = 0) which is compared with the Brownian dynamic simulations
(symbol◦) adapted from [20]. Dash line is the Debye model, Eq. (14). Theory calculations use the Mean Spherical Approximation for
the structure factor projectionsS00

,0 (r). We note that theory, Eq. (16) deviates from simulations at the highest dipole coupling starting from
λ = 3 (see Fig. 1(f)).
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FIGURE 2. Frequency-dependent susceptibilityχ(ω) as a function
of reduced frequencyωtB . Theory of Eq. (16) (continuous line)
versus simulation results (symbol◦) adapted from [20] depicted at
the higher concentration of particlesρ∗ = 0.6 than the system of
Fig. 1, and forλ = 1. The dashed line depicts the ideal paramag-
netic gas. We observe that at this high concentration of particles,
theory, Eq. (16), still captures all features of the simulations.

In Fig. 1, we compared the predictions of Eq. (16) (con-
tinuous lines) with the simulations of [20] for a monodis-
perse ferrofluid (symbol◦) at various thermodynamic states
of equilibrium with low density of particlesρ∗ = 0.2 and
dipole couplingsλ = 0.5, 1, 1.5, 2, 2.5, 3. We note that the-
ory (16) starts to deviate from the simulations only at the
highest dipole strength consideredλ = 3, see Fig. 1(f). This
inaccuracy is due to the failure of Mean Spherical approxi-
mation to capture correctly the microstructure at high dipole
interactions. The dashed line corresponds to the ideal Debye
model of a paramagnetic gas given by Eq. (14).

In Fig. 2 is made the comparison of Eq. (16) (continu-
ous lines) against the simulation data (symbol◦) reported in
Ref. [20] for the same but higher concentrated monodisperse
ferrofluid than in Fig. 1. In this plot authors of [20] used a
single value of dipole strengthλ = 1 and higher density of
particlesρ∗ = 0.6 with respect to Fig. 1. Yet, we find there
is an agreement between their simulations and our model of
Eq. (16). Additionally, we compared in Figs. 3 and 4, the
frequency-dependent susceptibility of (16) with our original
Brownian dynamic simulations.

In Fig. 3 depictsχ′ (with black continuous line) and
χ′′ with gray line (red color online) for the fixed reduced
densityρ∗ = 0.1, and for increasing dipole strengthλ =
1.31, 2.37, 3.37 and4.0, respectively. Simulation results are
represented with black symbol◦ for the real component of
susceptibilityχ′, and a gray circle (red color online) for the
imaginary partχ′′. Whereas the dashed line symbols are the
Debye theory of Eq. (14). We recall from the expression

FIGURE 3. The semi-logarithmic plot of the Magnetic susceptibil-
ity χ(ω)/χ(0) versus dimensionless frequencyωtB. This figure
provides comparisons of our original simulations (symbol◦) with
theory (continuous line) of Eq. (16) atk = 0 for low density of
particlesρ∗ = 0.1, and four increasing values of dipole coupling
λ. The right column of panels depict the results of our simulations
for the magnetic susceptibility components as Cole-Cole plots, ver-
sus theory Eq. (16). The dotted line is the ideal gas Debye theory
of Eq. (14).

of Sll,s
,m (k, t) that k = 0 ignores the translational diffusion

D(ω) of the magnetic particles. Therefore, there is only ro-
tational diffusion of these interacting colloidal particles. We
can observe in Fig. 3 that there is an agreement between the
theory of Eq. (16) with our simulations calculations. We ob-
serve quantitative differences between them starting from the
highest dipole momentλ = 4.0. On the other hand, Debye
theory Eq. (14) only agrees at low dipole momentλ = 1.31
with Eq. (16) and simulations, see the first panel on the top
of Fig. 3. This ideal Debye model deviates even more from
theory (16) and our simulation results for increasing dipole
moment and density.

Figure 4 shows results for the case of a highly concen-
trated ferrofluid withρ∗ = 0.9.

Figures 3 and 4 include the so-called magnetic Cole-Cole
plots of the imaginary componentχ′′ versus the real part
χ′ (calculated with equation (16) in the hydrodynamic limit
k = 0 and plotted with black line). The symbol◦ represents
simulations. In these figures, we depict the Debye theory
(dotted line).

In Fig. 5 are depicted comparisons of dynamic suscep-
tibility from Eq. (16) at the hydrodynamic limitk = 0
and seven increasing values of dimensionless dipole strength
λ = 1.31, 2.37, 3.37, 4, 4.6, 5.36, 6.17 and for two reduced
densitiesρ∗ = 0.1, 0.5. We notice from these plots that there
is a frequency shift to lower values of the imaginary contri-
butionχ′′ as the dipole moment was raised fromλ = 1.31
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FIGURE 4. Same properties and description as in Fig. 3 at the
highest reduced densityρ∗ = 0.9.

FIGURE 5. The semi-logarithmic plot of normalized suscepti-
bility χ(ω)/χ(0) versus reduced frequencyωtB at two increas-
ing values of reduced densityρ∗ = 0.1, 0.5, and seven values
of increasing (denoted by the arrows’ direction) dipole coupling
λ = 1.31, 2.37, 3.37, 4, 4.62, 5.36, 6.17. We observe in these fig-
ures, a shift to lower values of the frequency inχ′′ and a reduction
of the slop (and amplitude) ofχ′ as the dipole moment per parti-
cle is increased and consequently an enhancement of the particle-
particle interactions. Atλ = 4, there appear chain formations by
the particles.

FIGURE 6. Initial susceptibilityχ(ω = 0) = χ[φ] as a function
of the particles magnetic concentrationφm. Black lines depicts
χ[φ] ≈ χL(1 + 5χL/18 + 11χ2

L/96) as derived from Eq. (16) for
φ << 1. Experiments adapted from [15] are given by symbols•
for a magnetite in kerosene ferrofluid at temperatureT = 300 K.
Best fitting particle’s interaction strength used in the theory above
wasλ = 2.81 and the approximationφ ≈ φm was used. The exact
theoryχ(ω = 0) = χL(1 + χL/3 + χ2

L/144) adapted from [15]
is depicted with grey line (red color online). HereχL = 8λφ.

up to4.0 where there is chain formation as observed in sim-
ulations (not depicted). Experimentally chain formation is
currently observed in similar conditions [41]. Whereas the
magnitude ofχ′ drops to lower values (the slop of the branch
diminish from ωtB = 0 whereχ′ = 1 up to ωtB = 103

whereχ′ = 0) confirming qualitatively the observations of
[22]. Authors of [22] used an ionically stabilized ferrofluid
Fe3O4 in NaCl electrolyte solutions. They concluded that a
decrease ofχ′is related to particle aggregation and the fre-
quency shift ofχ′′ peak is due to a larger hydrodynamic
size of the cluster (chain). Remmeret al. observed sim-
ilar behaviors for the susceptibility of CoFe2O4 nanoparti-
cles dissolved in viscoelastic media of gelatin [23]. Our ap-
proach can be applied to study mixtures of magnetic with
non-magnetic colloids. We derived from our dynamic sus-
ceptibility model (16) its static value atω = 0. This ob-
servable was determined under the experimental condition of
k → 0, and in the limit of small volume fractionφ ¿ 1.
Under this condition onφ ¿ 1 and λ ¿ 1, the Mean
Spherical Approximation for the structure factors appearing
in (16) are expanded in a Taylor series expansion. The ap-
proximated expression of initial susceptibility that resulted is
χ[φ] ≈ χL(1 + 5χL/18 + 11χ2

L/96) which differs from the
known exact expressionχ[φ] ≈ χL(1 + χL/3 + χ2

L/144)
demonstrated by Ivanovet al. (hereχL = 8λφ) [15, 16].
We compared first our approximated susceptibility with the
experiments of [15] as a function of volume fraction of mag-
netic colloidal particles.

Figure 6 compares the best fit using our expression
χ[φ] ≈ χL(1 + 5χL/18 + 11χ2

L/96) (black line) to the ex-
periments of the magnetic suspension studied in [15] at room
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FIGURE 7. Initial susceptibilityχ(ω = 0) as a function of ab-
solute temperatureT . Black lines depict the approximated theory
χ[φ] ≈ χL(T )(1+5χL(T )/18+11χL(T )2/96 derived from Eq.
(16) atφ << 1. Experimental data with symbols• were adapted
from [15]. Exact theory adapted from [15] is depicted with grey
line (red color online). For the approximated theory from (16) the
best fitting values to the experiments occur from top to bottom as
(φ = 0.068, λ = 4.25), (0.042, 2.45), and (0.12, 1.4), respec-
tively.

temperatureT = 300 K (black dots). We find that the best
fit occurs with the single valueλ = 2.81, whereas the gray
line (red color online) is the theory for the initial susceptibil-
ity χ(ω = 0) = χL(1 + χL/3 + χ2

L/144) used by authors
Ivanovet al. to interpret their data.

In Fig. 7 it is given the comparison of our expression of
the initial susceptibilityχ[φ] ≈ χL(1+5χL/18+11χ2

L/96)
(black lines) versus temperature with those experiments of
Ivanovet al. (gray lines, red color online) for their first three
low volume fractions of particles (see Fig. 6 in Ref. [15]). In
this case, the Langevin susceptibilityχL(T ) is temperature
dependent, and its correction to account for this dependency
is considered in Refs. [15,16].

Thus, our static susceptibility becomesχ[φ] ≈

χL(T )(1 + 5χL(T )/18 + 11χL(T )2/96) whereχL(T ) =
χL(1− β1(1− φ)(T − T∗))(1− β2T

2)T∗/[(1− β2T
2
∗ )2T ]

[15, 16]. The dataT∗ = 285 K, β1 = 0.87 × 10−3/K,
β2 = 8 × 10−7/K2 were taken from the same experi-
ments in Ref. [15]. We see that we can find qualitative
agreement with the experiments of [15] by using(φ, λ) =
(0.068, 4.25), (0.092, 2.45), (0.12, 1.4). The gray lines (red
colour online) are the results of the correct equation of Ivanov
et al. χ(ω = 0) = χL(T )(1+χL/3+χ2

L/144) which yields
agreement with their data forλ = 5.1, 2.8, 1.6 for the same
φ as above, respectively.

5. Conclusions

In this paper, we presented the adaptation of the linear re-
sponse method for the susceptibility of polar liquids to the
frequency-dependent susceptibility of magnetic colloids in
terms of the dynamical structure factor. Comparing the pre-
dicted initial magnetic susceptibility with existing reported
experiments yields the general trends of those observations
as a function of the colloid’s volume fraction and tempera-
ture. Our calculations of the magnetic susceptibility using
material data of typical ferrofluids such as Fe2O3 yields good
agreement with simulations at low dipole moments per par-
ticle and density. Finally, our approach enables us to de-
termine magnetic susceptibility in mixtures of magnetic and
non-magnetic colloids.
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