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We present a theoretical framework to study equilibrium configurations of filaments within a spinor representation of curves. The curve

representing the filament is described by a unit two-component spinor field and its charge conjugate satisfying two-dimensional equations
coupled by the curvature and torsion. The spinor field replaces the Frenet-Serret frame, whereas its structure equations replace the Frene
Serret equations. Employing this spinorial description of curves, we derive the Euler-Lagrange equations of curves whose energies depent
on their curvature and torsion. We analyze the conservation laws of the spinors representing the balance of the forces and torques along th

filament. We illustrate this framework by applying these results to the Euler Elastica, whose bending energy is quadratic in the curvature.
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1. Introduction embedding functions or the tangent vector in the variational
principle using these spinors.

Often the physical properties of filaments are mainly de- |n this work, using spinorial quantities we develop varia-
scribed in terms of their geometry [1, 2]. The most relevantijonal principles for curves whose associated energy depends
modes of deformation being their bending and twist, penalon their geometry. Although one could consider energies
ized by the squares of their curvature and of the sum of thgyith additional degrees of freedom such as the twist, stretch
torsion and the arc length derivative of the twist angle. Usugr shear, whose equilibrium equations have been presented
ally, these degrees of freedom are analyzed employing a vegefore using the usual vectorial framework [16—19], to illus-
tor basis adapted to the curve, being the Frenet-Serret (F&ate this spinorial framework it suffices to consider an energy
frame the natural choice, although one can use any materiglependent only on the curvature and torsion. We enforce the
frame instead [2, 3], or even a complexification of the normaldefinition of the curvature and torsion by introducing spino-
curvatures and normal vectors [4, 5]. Furthermore, by meangal Lagrange multipliers implementing the structure equa-
of the homomorphism of the grougU(2) onto SO(3), al-  tions of the spinor basis. To implement the definition of the
ternatively one can consider a two component spinor basigangent vector, we use its associated second rank spinor, as
instead of the FS frame. In this approach a unit two compowell as the one associated to the embedding functions. The
nent spinor and its charge conjugate play the role of the F@efinition of the former as the derivative of the latter spinor is
frame, whereas their structure equations correspond to thghplemented in the variational principle usin another second
spinorization of the FS equations [6-10]. rank spinorial Lagrange multiplier. The vector associated to

Although this correspondence between vectors andhis spinorial Lagrange multiplier is identified as the force
spinors has been studied in detail, their application to th@n the curve and is conserved. The normal projections of
development of variational principles is not so straightfor-the conservation law of this force vector provide the Euler-
ward. As shown by one of the authors for the case of surtLagrange (EL) equations governing the equilibrium configu-
faces described within the generalized Weierstrass-Ennepeations of the curve, [14, 16, 17]. Also, the rotational invari-
representation, it is necessary to take into account the struance of the energy allows for the identification of the con-
ture equations in the variational principles [11]. Furthermore served vector and its associated second rank spinor represent-
as demonstrated before, for geometric variational principlegng the torques along the curve. To exemplify this spinorial
for curves and surfaces, the introduction of the definition offramework, we apply it to the planar Euler-Elastica, whose
the tangent vector as the derivative of the embedding funcenergy is quadratic in the curvature. We determine the com-
tions permits one to identify the vector or tensor representingonents of the complex force and EL equations, and we also
the forces or stresses on the curve or surface [12—-16]. Howdetermine the components of the spinors corresponding to the
ever it is not obvious how to implement the definition of the solutions describing wavelike curves.
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This paper is organized as follows. We begin in Sec. 2n terms of these spinors, the complex FS frame is given by
by reviewing the spinor basis associated to the complex Fg — /J,Tmz,, U= ¢,’rm; andT = (1/2) (W(w, _ @ij,),
frame adapted to a curve, along with their structure ey hereg = o ® E;, with o* the Pauli matrices anE; the
tions. Using this spinor representation we develop Variatio”aéanonical Euclidean basis. In full they read ’
principles for curves in Sec. 3. In Sec. 4 we examine the Eu-

clidean invariance of the energy leading to the identification P2 — 1hy?
of the force and torque vectors, as well as their associated v= | 1 (1/)12 + %2) , (8a)
spinors. These results are applied to the Euler Elastica in — 21109
Sec. 5. We close with the discussion of our results and poten- _
tial applications of our framework. 2Re E¢1 1#2;
T=| 2Im (Y112 , (8b)
[1[? = |ha?

2. FS spinorial representation i
) ) _ ) ) ~ Since these spinor fields are orthogonally) = 0, they are
The filament is described by a curve in three-dimensionafinearly independent so they form a spinor basis. The con-

spacel’ : s — Y(s) = Y'(s)E; € E° parametrized by gitions thatr has norm2 and T is unit, impose the nor-
arc lengths. The geometric quantities of the curve are de-mgajization of these spinor fields, that|is; |2 + |1s|? =

scribed using the FS frame adapted'tdormed by the right-  Thys we can express the completeness of this spinor basis as
handed basis given by the principal normal, the binormal and,,t |t = 1, wherel is the2 x 2 identity matrix.

the tangent vecto{ N, B, T = Y'}, (' = d/ds). The FS The spinorial structure equations are obtained by using
equations, describing the change of the FS basis along thge spinorial expressions of the FS complex begjsr( the
filament in terms of the basis itself, are given by complex FS Eqgs/5), which read [6, 9]

I I ’_ 1 ~ ~ 1 ~
N kT+7B, B TN, T =kN, Q) 77//:§<*i7'1/)+m/)>, W:i(”w*m/’)» )
wherex andr are the curvature and torsion Bff20, 21].

Instead of working with the FS frame, one can use the®
complexification of the normal vectors

r in components

Yy = *i%d’l - 21/_12, Py = *i%d’? + gi/_)l (10)

v=N+iB, 2 - - i
Thus, similar to the vectorial case, the curvature and torsion

along with its complex conjugate (CC¥, (the overbar de- are given b}/ the projeictions of the derivativgs~of the spinor
notes complex conjugation) and the tangent vector, for thepasisk = ¢y’ — ¢Ty’ andr = i (WW - ww’), orin

constitute an orthogonal trihedron satisfying terms of spinor components
v=iTxv, v=ivxT, T= %V xv. (3) k= 2Re(yy)y —ot}), 7 =2Im(Y1] +1h2vy). (11)

fln the next section we develop variational principles for

Therefore, the complex normal vector is orthogonal to itsel N : .
curves within this spinor representation.

and to the tangent vector, while its norm is constant:

vov=v-T=0; |[v|’=v v=2. (4) 3. Spinorial variational principle: energy and

. : . forces
The structure equations of this complex basis are

The energy density may depend on the spinor basis, but it
should be in a manner that their combination transforms ap-
propriately. To avoid such complications, we consider en-
ergies whose dependence on the spinors occurs through the
curvature and torsion of the filameng. in the form£L(x, 7).

For instance, in the harmonic approximation the principal en-

2 ergetic cost associated to a deformation of a filament is due
) . ) to bending, which is quadratic in the curvature. Furthermore,
Since the complex normal vectorand its complex conju- e could also consider an energy penalizing the square of

gate are isotropic, we can express them and the tangent vecigf, y4rsjon. Thus, up to quadratic order, the local energy as-
using a two-component spinor field and its charge conjugat,iped to the filament i€(k, 7) = L (k) + Lo (7), with L3

vV =—xkT—itv, T =kRer, (5)

and the complex conjugate expressionf Thus, the cur-
vature and torsion are given by by

1
k=T  -Rev, 7=-Im@  v). (6)

¥(s) andy)(s) defined by [6, 9] andL, given by [17—19]
o= () i=(02) w0 Lw=Eeowt. )= te-n?. @2
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wherek andt are the bending and torsion moduti and Lp =L+ 1tr[<1>(® -]
are the spontaneous curvature and torsion [1, 2].

In the following we consider an arbitrary energy density il 1 . ~
of the form £ (k, 7), which integrated along the length of the tA Y =3 <_”¢ t mb)

curve provides the total energy, ]
+ ! <1/~)/ -3 (ZTt/; — m/}))

LY]= /ﬁ(:‘i,’]’) ds, (13)
1 -
- +A (2 (vt +910) - 1) , (16)
whereds is the line element af'.
In the calculation of the variation of the total enerfly ) )
under a change of the filament's embedding functizgns- [N full this effective energy reads

Y + 6Y, one has to take into account that the curvature and

torsion are related to the spinor basis by the spinorial struc- Lg=L+Re[p (2192 —0')]
ture equations. The simplest way would be to implement the 3 9 9 2
definitions ofx and~ given in Eqgs.[L1) using two real La- +F? ([ = o = Y¥)
grange multipliers. However, as shown in Appendix A such +Re [Ay (20 + T + Kibo)]
relations are insufficient, so the spinorial structure E@p. ( - ~
must be implemented in the variational principle using two + Re [A2 (204 + iTeps — K1) |

spinor Lagrange multipliers\ = (v1,1)T and its charge
conjugate) = (—y, 1h1)T.

The identification of the forces on the curve in the vari- ] ) ]
ational principle involves the implementation of the defini- Thus, we can vary independently the embedding functions,
tion of the tangent vector as the arc length derivative of théh€ curvature, the torsion, the spinor components and their
embedding functions. To do this we could introduce a termCC-

F - (T —-7Y’), whereF is a real vector. However, instead The EL equations obtained from the variation of the
of working with these real vectors, we can use the fact thaspinors®, A\, and\, reproduce the definition of the tangent
the scalar product of two vectors is equal to one half of thevector and the structure equations of the spinor basis, given
trace of their associated second rank spinors. Thus the wie Egs. ).

can express such term in spinorial form as The EL equations obtained from the variations with re-
spect to the curvature and torsion are

+ A (Jgr ]+ [wo]® — 1) . (17)

F-(T-Y')= %tr[@(@ -1, 14
_ 0Lp B
where® =T -0,® =F .o, andY =Y - o, are the second T e Lt Re(¥odi = 1d2) =0, (182)
rank spinors associated ©, F andY. Spanning these vec- SLp _ _
tors asF = F'E; andY = Y'E;, i = 1,2, 3, these matrices €ri= 5= = Lo +Tm (1A +2A2) =0, (18b)
can be recast as
g where we have defined the the derivatives of the energy den-
P = < 6 _F ) . ¢ =F4iF?, (15a) sity with respect to the curvature and torsion by
2 2 21 1) oL oL
o= ( IVl =1l 12 ), 15b == - =, 19
( Wibs el — i l? (150) L= =% 19)
(Y 0 =Y!+4Y? (15c) - i 7 and A
= v —Y3 ) VT Texs. Solving these equations we g&t= oy + By and A =

awy — [, or in components
These matrices are traceless and Hermitian by construction,
so they have only three independent components [21, 22]. M o= aty — By, Ao =aths + B, (20)
We also have to impose the normalization of the spinor
basis, wh_ich impli_es the normalization_ of _the tangent V€Cand their CC expressions, where we have defined
tor and this in turn implies the parametrization by arc-length.
This can be done by introducing a real Lagrange multiplier
imposing the unit norm of the spinor basis. a=r1—ily, [=Ls+ir, (21)
Taking into account these facts, we consider the effective
spinorial energ\Lz = | Lgds, where the energy density is andr, 2 € R are two real scalar functions to be deter-
defined by mined.
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Using these results in the EL equation for the spinor com{orques on the curve, defined below in Sec. 4. Despite this

ponents, we obtain fact, the tangential componeRt’ can be determined from
5L B the structure equations of the complex FS frame. We have
£1:= —Z =4y (F3 — 7, + A — i (L + k1)) that arc-length derivative & isF’ = Re (“») + 7T = 0,
6
where
+abo (L —Tro +i(kLr — TL, —15))
+ ¢y =0, (22a) e =F" +irF” + kFT | (27a)
5L . e’ =F" — kReF”. 27b
£2:= —2 =ty (=F3 — 71 + A —i(LL + Kkra)) (27b)
Oths
— (L — 1o+ i(KLr — 7Ly — 1)) Using the identity
+ ¢ = 0. (22b)

L= (kLo +7L,) — KL, — 7L, (28)
The EL equations for the CC spinogs, := 6Lp /)1 = 0
andé, := L g /dy = 0 provide the CC of Eqs22).

S i and Eq. 264 we get that
The combinatioAm (11 + ¥9e9) = 0 determines,

_& ' (23) kReF” = (kL + 7L, — L) . (29)
K

To =

From the variations with respect to the embedding spinors wenys:7 s a total derivative, which permits us to determine

get that the components @fare conserved the tangential component
0Lp T 0LE 3/
Sv ¢ JY3 (24) FT =kl +7L, —L—p1, (30)

along with the CC of the first equation. Thds = 0 or

F’ = 0. In terms of these components we can express th@here, is a constant of integration. This constant of inte-
vector asF = Re(¢€) + F°E3, where€ = E; +iEz. The  gration can be identified as the Hamiltonian density associ-
components) andF; can be determined from the combina- ated to the energy density, whose conservation stems from
tionsyser + Y182 = 0 andRe (Y161 — Pae2) = 0, respec-  the fact thatC does not depend explicitly on[14, 23]. Also,
tively. However, it is more convenient to span the vedadn one could consider the energy dengﬁy.l_ I and obtain the

the complex FS basig, 7, T}, asF = Re(F“#) + F'T. same EL equations, but in such caseould be interpreted

To determine the normal complex compondtsand its  as a global Lagrange multiplier fixing the total lenght of the
CC, as well as the tangential componEft we express them cyrve.

in terms of their Euclidean counterparts as This completes the determination of the components of

FY = ¢y — gy — 2F%nehn, (252)  the spinor.

- The EL equations governing the critical points of the en-

T _ 3 2 2
FT = 2Re(¢n92) + F(|¢1 [%2]%). (25b) ergy are given by Eq.27g and its CC, which upon substi-
Using these expressions, along with E@3)(in the combi- tUVt'O” ?Vf the gomponents given in Eq26g and B0), read
nationsy; &, — 28, = 0 andRe(1h1e1 + 1haes) = 0, where €7 =& +ic” =0, where
the EL derivatives;, i = 1,2, are defined in Eqs/20), we
get that the complex normal componétitand the tangential N N, L
componenk? are given by e =Lptor (o) T
!/

/
FY =L+l —i ({ET} + Rl — 7£K,> ., (26a)
KR K E, " 7_2
(8 (-2
F'=rl —A. (26b) K i

+7' Ly — KL, +27L =0, (31b)

+ (K2 = T2) Ly +287L, — k(L4 p) =0, (31a)

Having determined the complex normal component, we can
readily obtain the real components along the principal nor-
mal and the binormal, given by = F - N = ReF” and are the EL equations corresponding to directions along the
FB =F.N = ImF”. FS normal [17]. Thus the vanishing of the real and imaginary
At this pointr; andA cannot be determined from a com- parts reproduce the EL for the FS frame, just as in the case
bination of the EL equations, because as as shown in Apwhere the complex FS frame is used [5]. It is straightforward
pendix B, they can be determined from the definition of theto verify that these EL equations agree with the EL E&4).(
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SPINOR REPRESENTATION OF CURVES AND COMPLEXIFIED FORCES ON FILAMENTS 5

4. Identification of the force and torque asdefined by Eqil6k). Therefore, under a constant infinites-
spinors imal rotation of the curve, the changes in the components of
the spinor basis are given by
The change of the energy has two contributions due to the .
variations of the bulk and the boundary, given by Sy = —% (6why — 6w”ehs) (37a)

L = / (;U"(@'m + 5Q> ) (32) 0z = —% (0w o + 6wty ) . (37b)

Under this change of the spinor basis the curvature and tor-
sion do not changéx = 0 anddr = 0.
Using these expressions, we have that under a constant

o , infinitesimal rotation of the curve, the change in the energy is
SL = / [Re (€V0Y") 4+ 0Q'] ds, (33)  given by

wheredQ = —(1/2)tr(®6Y) + A6y + Atd). In compo-
nents, we have

_! !
where oL = 3 /tr (6QM') ds, (38)

_ _ where we have defined the second rank spinor,
6Q = Re [2 (A16¢1 + Aadtps) — @60 — F36Y3 . (34)

1
_ ' _ M=_—[T,®]+3, 39
In equilibriume” = 0, so the first order variation of the en- 2 [ I+ (39)
ergy is given by the boundary terms. with
Taking into account that the energy depends only on the B Lo "
curvature and torsion, we have that it is invariant under trans- 2 =Re e +il. | NT)+L,0. (40)

lations and rotations. , It follows from Eq. B8) thatM is conserved!’ = 0. In
The translational invariance of the energy applied to the{:onsequence the derivative Bfis given by
boundary terms reproduces the conservation lawp ofin-

stead, we consider a constant infinitesimal translation of a v l[q) E,]. (41)
boundary of the curve}Y = 6T, the FS frame and its asso- 2i

ciated spinor basis do not change, = d:> = 0. Therefore, The vector associated to the spindris
the change in the energy due to the boundary change is

1 M=Y xF+8, (42)
OL = 5tr (20%o) = F - oY, B35 heres — Re (S*i7) 4+ ST'T, with
so the constant vectdt (or its associated spind) is identi- L

v __ T . T _
fied as the force on the boundary [17, 24]. On account of the S” = — +iL,, S'=L,. (43)

conservation oF along the curve, we have that it represents __ . .
. . . By an argument similar to the one used to identify the force
the force exerted by a line element of the curve on its neigh-"~. . : .
pinor, the consideration of the rotation of one boundary of

bor segment ;N'th greater a2rc Ie_ngh_t. Moreover, its constan[ e curve leads to identification B andM as the vector and
norm,1/2tr & = F - F = F4, which in full reads X o
spinor describing the torques on the curve.
) L 2 From the conservation of the force and torque spinors we
F2 — (52 4 ZL’T) n [LT] T KL, — 7L, have a second conserved quantify,= (1/2) Tr(®M) =
Sk K F-M=F S =Re (F"S") + F'S”, which in full reads

J=L

F (KLw+ 7Ly — L —p)? (36) (g;) , (L;)’

provides a first integral of the EL Eq$31). "
We now consider the energy invariance under rotations. L 2 ) )

Under a rotation defined by the constant vector = T [,{] HLL Lo ) = L (Lt p) (44)

Re (wv) + wT'T, the change in the embedding functions

is Y = w x Y. In terms of the their associated sec- In the derivation of the force and torque spinors it was un-

ond rank spinor§2 = w - o and Y, such change is given necesary to determine the Lagrange multipllerand the

by their commutatopY = 1/(2:)[2, Y]. Under a rotation scalar functions;. However, they can be determined from

the spinors transform ag — Uq andy — U4, where the definition of the intrinsic torque spinat as shown in

U = e /2@ ¢ SU(2), is the second rank spinor as- Appendix B.

sociated to the rotation. For an infinitesimal constant vec- In the next section we apply this framework to derive the

tor dw, the spinor is given byU = —%6«: - o, where  complex forces and the equilibrium equations of the Euler

dw-o = Re(dw’NT)+6wTO,with N = v-cand® = T-o  Elastica.

Rev. Mex. Fis68030701



6 D. A. SOLIS AND P. VAZQUEZ-MONTEJO

5. Planar Euler Elastica by dn’(u,m) = 1 — msn?(u,m); ¢1,co € € are two con-
) . ) ] stants of integration. The other two components are obtained
For the classic Euler-Elastica, the associated energy is due tgym the CC expressions of these two components. The nor-

bending,L = L, defined in Eq.112). In this case we have mgajization of the spinors imposes the constraint
L. =k(k — ko) andL, = 0. The scaled components of the

complex force vectof” := F” /k andf” := FT /k, are ler]? 4 |ea? = 1. (52)

f =K' +ir(k — ro), f1 = 1 (k* —K2) — ¢, (45) Letus consider that the curve is on the platie- Y. Since
2 the principal normal and the binormal are on and orthogonal

where¢ = p/k. The complex EL equation reads to the plane, from Eqs8j we have
% = k" + (k — ko) <g(/ﬁ:+l€0) —7'2) — (R N-E; = Rev - E3 = Re(¢192) =0, (53a)
+i (5 — o)’ +24'r) = 0. (46) BB = tuw By =dm{ngz) =1 (530)

The real and the imaginary parts provide the EL associatedn€se two conditions imply the following three equations
with deformations along the two normal directions. The 1
rescaled first integralg, := F/k andj := J/k are le1]? = |e2|?, Re(e1éz) =0, Im(cié) = 3 (54)

2 (N2, 2 2 K* — kg ’ Combining the first equation with Ec2) we havelc; |? =

Pr= (w47 (r = ro)” + ( 2 C> » @ra) le2|?> = 1/2. Using this result and combining the last two
equations, we get, = ic;.

The planar curve can be parametrized by the complex co-

It is straightforward to check that the combination of their Ordinatez = x + iy and its CC. From Eq8), we have that
derivatives reproduce the real and imaginary parts of the confh® components of the tangent vector ate= 2Re(¢11))
plex EL Eq. 46). The second equation determines the torsiorfNdy’ = 2Im(¢113), $02" = 24115, or in full
as a function of the curvature, which substituted in the first

j=7(k— ko). (47b)

r_ .92 . . 2
equation results in a quadrature for the curvature, 2 = —2iey (dn(gs, m) — iv/msn(gs,m))” . (55)
_ k2 2 2 Since the constant2ic? is just a global scale factor, we can
"2 K™ — Kp J 2 - 1 .
(&')" + 5 —¢) * o) =/, (48)  setitto one, such that = i/2. Integrating we get
— RO
whose solutions are given in terms of Jacobi elliptic func- 5= 1 (2E(am(gs,m), m) — ¢s)
tions [25, 26]. Having determined the curvature and the tor- q

sion one has to solve the Eq®) to determine the spinor .

basis. For instance, let us consider planar curves of null spon- + Zgﬁcn(qs’ m)+ 2.
taneous curvature.e. with - = 0 (or j = 0) andky = 0.

For f2 > (2, the solution corresponds to a wavelike Elastica,WhereE(u, m) andam(u, m) are the incomplete elliptic in-

(56)

whose curvature is given by [23, 25, 26] tegral of the second kind and the Jacobi amplitude with argu-
mentu and parametem [27]; z, is a constant of integration.
k=2ymqen(gs,m), 0<m<1, (49)  The cartesian coordinates of the curve are given by the real

and imaginary parts of.
wherecn(u, m) is the cosine Jacobi elliptic function of argu- ginanyp

mentu and parametet [27]. The scaled constant force and ) ] .
the integration constant are given in terms of the wavenumbe®.  Discussion and conclusions

q and the parameten by f? = ¢*> and( = ¢*(2m — 1). o _ _
Since the torsion vanishes, the spinorial structure E)s. ( W& have presented a variational framework in which the

simplify to spinor basis corresponding to the complexification to the FS
;. K+ ok frame is used for the examination of the equilibria of curves,
U =—gve, Y=g, G0 : : .
us offering an alternative to the usual framework employing
along with their CC expressions. The solutions of these equahe FS frame or its complexification.
tions for the curvature given in E49) are We have shown that in order to obtain the EL equations
correctly for energies depending on the curvature and torsion,
1 = —crv/msn(gs,m) + ¢z dn(gs,m) , (51a)  jt suffices to implement the spinorial structure equations in
¥y = 1 dn(gs, m) + coy/msn(gs, m) , (51b) the variational principle, very similar to the variational prin-

ciple using the generalized Weierstrass-Enneper representa-
wheresn(u, m) anddn(u, m) are the sine and delta Jacobi tion of surfaces [11]. Their introduction allows for their in-
elliptic functions with argument, and parametem, related dependent variation, so there is no need to calculate how the
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SPINOR REPRESENTATION OF CURVES AND COMPLEXIFIED FORCES ON FILAMENTS 7

curvature and torsion vary under a change of the spinors. Wehere we have defined
also identified the force and torque spinors from the change of
the boundary energy under Euclidean motions. One benefitt = —i\, +7A; + kX, 1=\, —iTA; +ix),. (A.3)
of working with these complex vectors is that their compo-
nents are the CC one of the other. To illustrate this spinoriaHowever, the combinatiofm (1]}151 + &252) =X =0,
framework we determined the spinors corresponding to thémplies the incorrect result that, is constant. Hence, the
wavelike solutions of the planar Euler Elastica. Here we speimplementation of the definition of the curvature and torsion
cialized our results to wavelike planar curves, but this framethough Egs./A.1) does not suffice for the enforcement of
work could also be applied to analyze closed planar curvetheir relation with the spinor basis.
with constraints such as fixed total area [28, 29], or to the
study three dimensional curves [25, 26].

Thre are several directions in which this spinorial frame-B. Determination of the Lagrange multipliers
work could be generalized. It could be extended to acco-
modate more general energies, for instance depending on tide spinor: can be written as the outer product of the spinor
material curvatures as in the case of Kirchhoff rods [24, 30]pasis and the Lagrange multipligrand its charge conjugate
or to include an explicit dependence on the spinor basis, as #sY = (1/2i) (¢/\T + if\f), or explicitly
would be for paramagnetic filaments [31-33]. Furthermore,
this spinorial framework could be employed to study not only 1/ Tep o -
the statics, but also the dynamics of filaments. In this work > = 5, (O“W + oyl + Bt — By ) - (BD)
we considered spinors parametrized only by arc-length, but
for the study of their temporal evolution they could also beln order to be associated to a real vector, this spinor should
parametrized by time. In such case, besides the spatial struge Hermitian,>> = 7. Calculating the latter spinor we get
ture equations, additional equations, with time derivatives rexf = —(1/(2i)) ()\M + 5\@), or
placing arc length derivatives, will govern the kinematics of
the filaments [10, 30]. It would also be interesting to extend 1 R T c o
this framework to higher dimensions, for instance, for ener- xh= 2% (‘O”W —ayy’ + Bydt = Byy ) : (B.2)
gies of curves representing the worldlines of particles in a
four dimensional ambient space, which would be described hus, this requirement imposes the conditton= —a or
in terms of a tetrad constructed out of a 4-spinor and its adRe(e) = r1 = 0. Furthermore, from Eq.26k), we have
joint spinor [8]. thatA = —FT. This Lagrange multiplier did not play a rel-
evant role in the determination of the tangential component
of the force, because we obtained it from the reparametrizar-
ion invariance of the energy. On account of this fact, it might
seem that we could have omitted the implementation of the
normalization of the spinor basis, but in such case we would
If instead of implementing the spinorial structure equationhave obtained from Eqs2g) the wrong result that the tan-
we implement the definition of the curvature and torsion, aggential component must vanish.
in the vectorial framework [14], in the form

A (2Re(yh1hg — Poty) — ) Acknowledgements

A, (20m (e 3b, Yy — 1) Al
_ N ( (v + ?/}2%) ") A1) \We have benefited from conversations with B@aréa-Lara
we obtain the following EL equations and Jemal Guven. D.A.S. was partially supported by UADY
e1=(E+F> + A) 1 + o + ¢ aha =0, (A.2a) under Project PFCE-2019-12. P.V.M. acknowledges support
5 _ _ by CONACYT under grant @edra CONACYT No. 439-
e2=((—F +A)vo —mh1 + 01 =0,  (A2b) 2018

Appendix
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