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Recently, fractional calculus has considerable attention from researchers since many problems in natural sciences and engineering are mo
elled with differential equations having fractional order. The nonlinear coupled time-fractional Boussinesqg-Burger (B-B) equation, the
nonlinear time-fractional approximate long water wave (ALW) equation, and the nonl(igeat )-dimensional space-time fractional gen-
eralized Nizhnik-Novikov-Veselov (GNNV) equation are used to express the structure of shallow water waves (SWWSs) with different dis-
tributions. The analytical solutions of these equations play a substantial role in explaining the properties of complex phenomena in applied
sciences. In the current work, we utilize the exponential rational function (ERF) method with the definition of fractional derivative in the
conformable sense to achieve new exact traveling wave solutions of these fractional systems. The correctness, validity, and graphics o
the new traveling wave solutions are achieved with the aitflathematica . Results demonstrate the effectiveness and strength of this
technique to solve the system of fractional differential equations (FDESs).
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1. Introduction perspective on derivatives in this class of equations has been
introduced to arrive at more realistic phenomena. Thus,

The Study of waves is of great importance in exp|aining manyjiﬁerential equations are started to be eXpreSSGd with frac-
complex phenomena as tsunami, earthquake, and preventiﬁgnm derivatives instead of integer derivatives. FDEs are
damages caused by these natural events. Researching atiglely used in applied mathematics, ocean and coastal en-
evaluating the effects of global warming can be given as afineering, mathematical physics, fluid dynamics, metrology,
example for this case. Short-range seismic earthquakes froffasma physics, acoustic gravity waves, and other complex
Mw 6.9 on 8.8 magnitudes in Japan in 2011 are caused bgreas [6-8]. It is very important to acquire the solutions
acoustic wave movements and tsunamis in the ocean alorf these equations used in these fields created by real-world
the coastal zone [1]. When the data of this situation are exProblems. Among the powerful and effective methods used
amined, many multidisciplinary fields of study related to theto achieve analytical solutions, the modified simple equation
subject have been developed and researches are carried Hthod [9], the generalized Kudryashov method [10], the im-
on how these destructive powers can be transformed into aProved F-expansion method [11], the new extended direct al-
ternative energy sources at present. The marine environmeg@igbraic method [12], the=’/G)-expansion method [13], the
has many wave classifications. SWWs have a wide range d¢fRF method [14], the first integral method [15], the mod-
research within these classes. Shallow water is the region thited trial equation method [16], the generalized exponen-
occurs when the |ength of the wave entering the local Watei’ial rational function method [17], the generalized bifurcation
depth is higher than the depth in the region. The orbital momethod [18], the modified extended tanh-function method
tion of the water entering this region is disrupted and they[19], the sub-equation method [20], and so on. However,
cannot return to the same position again. When waves entéfese methods need some specific definitions to be applied
shallow water areas, they begin to be impressed by the oced® equations containing fractional order derivatives. Many
bottom, and over time ocean erosion is growing as the Shaﬂefinitions of fractional derivatives are used in the literature.
lowness of the environment increases. SWWs refer to flowRiemann-Liouville, Gianwald-Letnikov, Caputo, Jumarie’s

at the free surface of a body of water in these regions undéﬂOdified Riemann-Liouville definitions are W|d3|y used frac-
the influence of gravity or flow under a horizontal pressuretional derivative definitions [7, 21-24]. The linearity prop-
surface in a fluid. SWW equations have a form of partial dif-€rty is the common feature of all fractional derivative def-
ferential equa’[ions that are used to express Comp]ex evenﬂg_itions in the literature. In addition, definitions have pros
SWW equations identify the motion of the wavelengths thatand cons compared to each other. The well-known Riemann-
are short relative to the size of the waves propagating ovelr.iOUVi”e and Caputo derivative definitions are identified with
the water bodies. Also, these equations are used to illustraféactional integrals. Thus, these definitions have some nonlo-
the flow of vertically well-mixed water bodies with a hori- cal features including historical memory and forthcoming de-
zontal length scale much bigger than the fluid depth [2-5]Pendence [25]. However, these definitions have some disad-
Many models of physica| phenomena in the world are basedantages such as that they do not provide the derivative of the
on nonlinear partial differential equations. Over time, a newduotient of two functions, the derivative of the product of two
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functions, the Leibniz rule, Rolle’s theorem, the chain rule,generalized fractional subequation method [50]. As far as we
and mean value theorem of a classical derivative [26]. Thesknow, the exact wave solutions we obtained are different from
mismatches have caused many problems in real implementarevious solutions of these models. The application of the
tions. Thus, Khalil et al. introduced a new definition of frac- method is based on that definition of the conformable deriva-
tional derivatives to overcome these difficulties, and this newtive, traveling wave transformation, and the general form of
definition is named conformable fractional derivative (CFD) exact solutions which are expressed in series sum with un-
[27]. Moreover, Abdeljawad made some very important conknown coefficients and exponential function. The correct-
tributions to the definition of conformable fractional deriva- ness, validity, and graphics of the solutions are obtained. The
tive such as right and left conformable fractional derivatives behaviour of the waves and types of solutions show that the
chain rule for fractional order, Laplace transformp@wall's ~ ERF method is a suitable, effective, and innovative technique
inequality, exponential function, Taylor power series expanfor finding analytical solutions of fractional equations. The
sion, and so on [28]. Besides, geometrical and physicabutline of this paper is arranged as follows: In Sec. 2, we
meanings of the CFD have been explicated in [29, 30]. Thigjive the definition and some basic features of the CFD. In
interesting local definition is an extension of the known limit Sec. 3, we describe the major steps of the ERF method. In
definition of the derivative of a function. Although the lo- Sec. 4, the ERF method is implemented in the systems. In
cal fractional derivatives do not have the memory conditionSec. 5, we draw graphs of solutions and give some physical
of the nonlocal fractional derivatives, they have gained sig-explanations. In Sec. 6, we give some conclusions.

nificant interest recently because they preserve some of the

effic.ient proper.ties of the classical derivative [31]._Tq sum-5  outline of the CED

marize the main advantages of the proposed definition, the

CFD is natural and, unlike other definitions, provides semi-The main definition and some characteristics of the CFD are

group properties and some important theorems [32, 33]. lbresented in [27,28].

is more understandable and applicable than nonlocal definpefinition 1. Given a function; : (0, 00) — R, the CFD of

tions in modeli_ng many compl_ex pr(_)blems. Itis a very useful; order0 < o < 1 is given as:

tool for extending transformations like Laplace, Sumudu and

solving some singular differential equations [25]. Since it has Dq(t) = lim q(t +pt'=*) — q(t)

a simple and applicable form, it provides great convenience ' p—0 ]

in reaching numerlca! and analytical solutlon_s of equatlonshc ¢ is a-conformable differentiable in some intervl, n),

Also, new mathematical tools are needed since real-world
. . n > 0 and

problems are getting more complex day by day. This use- I (“)(t)

ful definition is used to create and extend new definitions of por 4 ’

local derivatives. For instance, Atangana et al. presentegyists then define

a modified version of the conformable derivative which is

called beta-derivative [34]. The main objective of this arti- ¢ (0) = lim ¢ (¢).

cle is to introduce the implementation of the ERF method for

obtaining new analytical wave solutions. We study the exact

solutions of the nonlinear coupled time-fractional B-B equa-T"eorem 1. Supposen € (0,1], ¢ = ¢(t) andh = h(t) are

tion [35], the nonlinear time-fractional ALW equation [36], @-differentiable functions for at > 0. Then,

and the nonlineaf2 + 1)-dimensional space-time fractional

, foreveryt > 0. (1)

GNNYV equation [37], which are frequently used in fluid dy- D (mq(t) + kh(t)) = mDi’q + kD', ¥m, k € R, (2)
namics and the propagation of SWWs [38, 39]. There are D (") = nt""*, Vn € R, (3)
many inspiring studies in the literature in which these pro-

posed models are constructed with different definitions of Di(a(®)h(t)) = hDiq +¢Di'h, (4)
f_ractional derivatives_. The gnalytical golutions of B-B_equa- o (a®)\ _ hDgq—qDgh

tion have been obtained with the residual power series [40] t w =T 5z (5)
and the first integral methods [41]. Al-Shawba et al. [42]

have also attained several wave solutions of the B-B equa- If ¢ is differentiablethen Dyq(t) = t'~*¢/(t). (6)

tion. Then, Fan et al. [43] have used t& /G)-expansion , )
method to get the traveling wave solutions. In [44—47] vari- T.he chain rule for the CFD proposed in Ref. [28] as fol-
ous effective analytical methods have been performed to thigws: ) i
ALW equation and in these studies, various wave solutiond N€0rem 2. Letq = q(t) be aa-conformable differentiable
have been achieved. Besides, wave solutions of the fractiond'd @ssumé: = h(t) is a differentiable function defined in
GNNV equation has been investigated with various analyt!® range of. Then, the chain rule is given by
ical methods such as the extended Jacobi’s elliptic function a l—ap (pa—1p/ o

D h)(t) =t h(t h'(t)D t))i— . 7
expansion method [37], the improved fractio&@*G/G) £(goh)(t) (®) O a(t)i=ny- (D
method [48], the(G’/G)-expansion method [49], and the  Here, we give a short proof of Theorem 2.
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ON NEW ANALYTICAL SOLUTIONS OF FRACTIONAL SYSTEMS IN SHALLOW WATER DYNAMICS 3

Proof. To prove Theorem 2, first we show E)(
Let u = t*~ 'k in Definition 1. Then, Step 3. We evaluate the value d¥ in Eq. (13) by using the
homogeneous balancing principle in E@2).
11—« v
gt +pt' =) —q(t) _ lim alt + k) —qt) Step 4. We replace Eq/43) and all its necessary derivatives

Dyq(t) = lim

#=0 H k—0 ktet into Eq. (L2). Then, we get a polynomial ef* and collecting
_ e i q(t + k) —q(t) e (1) ®) all po_s§ible powers af*c (i =0,1,2, ) and. equalize all the
P L - q\t)- coefficients of this polynomial to zero. This process ensures

to the achievement of the solution cases. As a result of all

Thus, we have obtained the relation between conformablg,e major steps of the method, we get exact solutions of the
and ordinary derivatives. Then, using Ef) é&nd the chain proposed nonlinear equation.

rule for the ordinary derivative we can easily observe
D (goh)(t) =t'"(goh)'(t) = '~ (t)¢ (h(t)) 4. Applications

=170 (t) D q(h(t)h(t)* . (90 Inthis section, the ERF method is performed to the system of
. nonlinear fractional SWW equations.
This completes the proof.

_ ) _ 4.1. The nonlinear coupled time-fractional B-B equa-
3. The exponential rational function method tion

This efficient method was first introduced by [51] and it hasThis equation is widely used in the research of fluids flow in a
been used to attain solutions of many integer or fractional ordynamic system and in the diffusion of SWWs. The equation
der nonlinear models in the literature [14,52,53]. Moreover,s defined as follows [35]:
we express the major steps of the ERF method [14, 53].
. . . . 1
Suppose that nonlinear conformable partial differential D&y — —vg + 2uu, =0,
equation as follows: 2

o 1
R(u, ug, uy, ug,Diu, Dyu, Dyju, D?u, Div — g Uece +2(uw), =0, (14)
D23u, D2, ...) = 0, (10)  wheret > 0, a € (0,1], u(z,t) represent the horizontal ve-

. . . o locity field andv(z, t) state the altitude of the water surface
whereR is a polynomial ofu(z, y, ¢) and its derivatives. above a horizontal level at the bottom. After, using the wave
Step 1. We implement the conformable type wave transfor-transformation
mation, e

o U(]},t) ZU(E),U(l‘,t) :U(e)a‘g:x_piv (15)
«

u(z,y.t) = u(e), e=k—+1+£p° (1)
«Q (8% (6%

and integrating w.r.t, we have the relation = 2 (u? — pu)

and here using the chain rule of the CFD, we convert/EQ). ( and so, Eq.14) is reduced to the following ODE:

into the following ordinary differential equation (ODE):
1 1"

H(u, o L) =0, (12) — §u + 4u® + 2/)2“ — 6pu2 =0. (16)
where the superscripts denote the derivation accordiag to In the above and the sequel, we consider the integration con-
Step 2. Assume that the general solution form of E@2  stantis zero. Also, we geY = 1 from the balancing rule in
can be written in terms of finite series in the following form: Eq. (16). Thus, Eq./13) becomes

w(e) = ag+ —2 (17)

N a
: (1+e)

u(e) =) =7 (13)
= (Lt e) - . . o
Substituting Eq./17) and its possible derivatives into E4.6)

wherea; (an # 0) are constants. and following the steps outlined for the proposed method, we
|  getan algebraic system as follows:

¥ : 24apar? — 12pai? + 8ay® + 24ag’ay — 24pagar + 4p?a; + 8ag® + 4pag — 12pay? = 0, (18)
e ay + 24apa1® — 12pay® + 48ap?ay + 8pa1 — 48pagay + 24a0® + 12p%ag — 36pay® = 0, (29)
e® 1 —ay + 24ao’ay + 4p*a; + 24a0® + 12p%ag — 36pag? — 24paga; = 0, (20)

e3¢ : 8ap® + 4p*ag — 12pag? = 0. (21)
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4 G. BAKICIERLER AND E. MISIRLI

We acquire two cases fag, a1, andp in the following form:
Case l.ap =0, a;=£(1/2), p = £(1/2).
Applying these coefficients into EdlT), we attain the exact wave solutions:

1 1 el
_ -~ |1- h | &2« 22
uy ($,t) ) (1 —|—COSh [$— %] —|—sinh I:-T_ %}) 4 ( tan l 2 ]) ’ ( )

vy (z,t) = —%sech2 E (x - ;:)} ) (23)

wherea; = 1/2 andp = 1/2, and

us (2,1) = — 1 oM | =) (24)
2(1+cosh[w+§—a]+sinh[x+§—a}) 4 2
1 1 t*

vg (x,t) = ~3 sech? [2 <x + 20{)} , (25)

wherea; = —1/2 andp = —1/2.
Case 2.a9 = p, a1 = F(1/2), p = £(1/2).
Inserting these values into EA.4), we achieve the exact wave solutions:

1 1 1 - L
3(z,t) = = — = — |1+ tanh | —22]| |, 26
us (2, 1) 2 2(1+cosh[z — L]+ sinh[z — £3]) 4<+an[ 2 1) (26)
1
at = - a ) 27
va (2,1) 4 (14 cosh [z — £=]) @7)
wherea; = —1/2 andp = 1/2, and
1 1 1 v+
)= —= - [ —1—tanh |22 |}, 28
w0 = 1+ cosh [o + ] + simh [¢ + I2]) 4< o l 2 D (28)
1
1}4(13,t):— (29)

4(1—|—cosh [:v—ﬁ—t—a])’

2a

wherea; = 1/2andp = —1/2.

4.2. The nonlinear time-fractional ALW equation

This equation expresses a special form of the nonlinear Whitham-Broer-Kaup (WBK) equation and it identifies the diffusion
of SWWs with different distribution relation [54]. The ALW equation is in the following form [36]:

1 1
Diu + uuy + vy + §um =0, Div + (uv), — ivm =0, (30)

wherea € (0, 1], t describes the time > 0 andx represents the position of the wave. Applying the wave transformation in
Eqg. (15) and integrating once w.rg, we obtain the relation = pu — (1/2)u? — (1/2)u’ and so Eq.130) is reduced to the
following ODE:

1 " 1

3
L + 5”3 + p?u — §pu2 =0. (31)

Furthermore, we hav®& = 1 from the balancing principle in E¢31). Thus, Eq./13) turns into

a1

(1+e°)

u(e) = ap + (32)

Rev. Mex. Fis68050701



ON NEW ANALYTICAL SOLUTIONS OF FRACTIONAL SYSTEMS IN SHALLOW WATER DYNAMICS 5

We insert Eq.82) and its necessary derivatives into Eg1)(and pursuing the steps stated for the method by then we gain a
system of equations in following form:

e : 6agar? — 6par® + 2a1> + 6ag>ar + 4p?ay — 12pagay + 2a0> + 4p*ag — 6pag? =0, (33)
e 1 ay + 6agay? — 6pa12 +12a0%a; + 8p2a1 — 24pagay + 6ao> + 12p2a0 — 18,0a02 =0, (34)
€% 1 —ay + 6ap%ay + 4p?ar — 12paga; + 6ag® + 12p%ag — 18pag? = 0, (35)

€3 2 2a0% + 4p*ag — 6pag® = 0. (36)

On solving the algebraic system of equations, we obtain two caseg,for, andp as follows:
Casel.ap=0,a1 =1,p=1/2.
Substituting these coefficients into E§2J, we procure the exact wave solutions:

1 1 il
uy (z,t) 1+cosh[$*§%}+smh[$*§%] 2( o [ 2 ]>) >
1 1 “
vy (z,t) = 1 sech? [2 <9€ - ;a)] : )

Case 2.a0 =2p, a1 =1, p=-1/2.
Replacing these values into E82J, we get the exact wave solutions:

1 1 x4+
t)=-—1 o 77 =5 | ~1—tanh 5 ’ %
U2 (1'7 ) + 1 + cosh [.’L‘ + é—a] + sinh [x + éia] 2 < o [ 2 ]) ( )

1
N 2(1+cosh[x+%])'

vy (,t) (40)

4.3. The nonlinear(2 + 1)-dimensional space-time fractional GNNV equation
The GNNV equation is an isotropic Lax integrable extension of the well-recognized KdV equation and KdV-type equations are

frequently used in fields such as SWWs, ionic acoustic waves in plasma, long internal waves in oceans, and so on [37,48, 55]
The GNNV equation is stated as [37]:

Dfu+ AD3u+ BD}u+ GDYu + FDju — 3ADg (uv) — 3BDY (uw) = 0,
Diu = Djv, Dyju = Djw, (41)

wherea € (0,1] and A, B, G, F are given arbitrary constants. Alseepresents the time; andy are the two scaled space
coordinates. Here, using the wave transformation as in the following form

o

uwy ) =u@), @y =ve),  wEph=we), =kl 4,0 (42)
and integrating w.r.¢, we get the reduced form of E@1) as follows:
(AK® + BPYU + (Gk + Fl + p)u — 3Ak(w) — 3Bl(uw) =0,  ku=1lv,  lu=kuw. (43)
We arrange Eq/43) and obtain the following ODE:
EI(AK? + B3 + kU(Gk + FlL + p)u — 3(Ak3 + BI®)u? = 0. (44)

Moreover, we gefV = 2 from the balancing rule in Eq44). Thereby, Eq.13) returns to

a1 + a9
(I+e)  (1+e)”

u(e) =ap+ (45)

Rev. Mex. Fis68050701
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Inserting Eq./45) and its required derivatives into E@l4) and applying the steps outlined for the ERF method, we have a
system of equations in the following form:

eV : (ao + a1 + az)(pkl + GE*1 + FkI? — 3(Ak® + Bl*)ag — 3(Ak® + BI*)a; — 3Ak®as — 3Bl%ay) = (46)
e 1 —12ag?(Ak® + BI®) — 6a12(Ak® 4 BI®) + 2klay(p + Gk + Fl — Ak® — BI?)
+a1kl(3p + 3Gk + 3F1 — Ak® — BI®) — 6a,a2(AK® + BI?)
+4klag(p + Gk + FI) — 6ag(AE® + BI*)(3a; + 2a2) = 0, (47)
% . —18ap?(Ak® + BI®) + 3klay (p + Gk + Fl) — 3a1%(Ak® + BI?)
+klag(p + Gk + Fl+ 4Ak® + 4BI®) + 6klao(p + Gk + Fl) — 6ao(Ak® + BI®)(3a; + ag) =0, (48)
3¢ . —12a0%(Ak® + BI®) + klay (p + Gk + Fl + AK® + BI?) + 4klag(p + Gk + Fl) — 6aga; (Ak® + BI*) =0, (49)
4 agkl(p + Gk + Fl) — 3a0*(AK® + BI®) = 0. (50)
We obtain the two cases fap, a1, az, andp as the following:
Case lag = 0, a;=—2kl, as=2kl, p = —~Gk — Fl — Ak® — BI>.
Inserting these values into E@5), we get the exact wave solutions:
1 5|1 [ ¢ y 3 PN
uy (x,y,t) = —=klsech® | = ( k=— + 1% + (-Gk — Fl — Ak® — BI®)— ) | , (51)
2 2 a « «
k‘2
) 7t = - o o PRTR] 52
o) = O R 1 & (—Gk — Fl— AR — BF) & (52)
l2
t)=— . —. 53
(98 = R 1 4 (—Gk — Fl— A — B (53)
Case 2.ap = kl/3, a1 = —2kl, ay = 2kl, p = —Gk — Fl + Ak® + BI®.
Substituting these coefficients into E45J, we procure the exact wave solutions:
Bl (—2 -+ cosh [RE + 12 4 (~Gk — FL+ AR + Bi) & |)
t — 54
w2 () = g i cosh [ + 1 & (=G — Fl+ AR + BF)E]) %)
2 (—2 + cosh [k; I 4 (G — FL+ AR + BZS)gD
(%) (xv Y, t) = o < ta ) (55)
3 (1+ cosh [kE- + 1% + (—Gk — Fl+ Ak®) 4+ BI?)£])
2 (=24 cosh [KE5 4+ 14 + (—Gl — FL+ Ak + BI%) )
w2 (37, Y, t) = o Yo 3 3\ £ (56)
3(1+ cosh [k%- + 1% 4 (=Gk — Fl + Ak® 4+ BI3) %)

As a result, we have acquired some new analytical solutions of proposed fractional systems. Also, wave solutions can be
extended by using hyperbolic function properties.

5. Graphical illustration and explanation |

ical behaviours. Generally, researches of such types of exact
One of the most observable phenomenon in nature is watavave solutions provide a reason and additional clarification
waves. The study of water waves and their various applicafor wave strategies. The solitary waves are specific forms of
tions is central to applied fields such as fluid dynamics andraveling waves and they protect their permanent structure,
ocean engineering. Also, in these areas the behaviours efen after impact with other solitary waves. Furthermore,
waves such as breaking of water waves on beaches, ocetire dynamical behaviour of solitary wave types propose the
waves caused by storms, flood waves in rivers, ship waves aexistence of an inclusive theory. Thus, in this section, we de-
water, movements of free oscillations of water in closed areatermine wave forms and illustrate graphs of the attained ex-
like harbours and lakes are studied [56]. Examining the nonact wave solutions of the proposed equations. We achieve
linear models of these waves in various conditions and predifferent solution forms such as singular, combo-singular,
senting their graphs are very important to explain their physdark (topological), and bright (non-topological) soliton. The

Rev. Mex. Fis68050701



ON NEW ANALYTICAL SOLUTIONS OF FRACTIONAL SYSTEMS IN SHALLOW WATER DYNAMICS 7

dark solitary waves are more stable and more resistant to Figure 1a) shows the dark solution for Eq. (23) «, t)
impact than other wave forms. It is well known that dark o = 0.6, p = 0.5 and EQq.24) us(z, t) for « = 0.6, p =-0.5.
solutions describe solitary waves with density lower thanFigure 1b) demonstrates the graph for the above values and
the background, bright solutions whose maximum density i$ = 0.3. Figure 1c) remarks the contour surfacesdfr, ¢)
greater than the background, and singular solutions, whichndus(z,t). Figure 2a) indicates the dark solution EB6Y

are solitary waves with discontinuous derivatives [57]. More-usz(z,t) for o = 0.8, p = 0.5 and Eq.28) u4(x,t) for a =
over, Eq. 22) u;(x,t), EQ. 24) us(x,t), Eq. 26) us(z,t), 0.8,p = —0.5. Figure 2b) expresses solutions fixed at point
Eq. 28) uy(z,t), EQ. 37) ui(x,t), and Eq.B9) ua(x,t) are ¢t = 0.3 with the cases in a). Figure 2c) specifies the contour
dark solutions. Eqla3) v (z,t), Eq. 25) va(z,t), Eq. 38) surfaces ofus(z,t) andugs(z,t). Figure 3a) gives the dark
vi(z,t), and Eq.B1) u;(x,y,t) solutions have bright wave solution Eq. [B7) u;(x,t) for « = 0.4 andp = 0.5. Fig-
forms. Eq.R7) vs(x,t), EQ. 29) v4(x,t), EQ. 40) va(x,t),  ure 3b) shows this solution far= 0.2 and the same cases
Eq. 62) vi(z,y,t), and Eq.B3) wy(x, y,t) are singular soli- in 3D. Figure 3c) shows the contour graphwaf(z, t). Fig-

ton solutions. Eq.534) us(z,y,t), EQ. 65) va(z,y,t), and  ure 4a) points the dark solution EB9) us(x, t) for « = 0.3

Eq. 56) wa(z,y,t) are combo-singular solutions. The be- andp = —0.5. Figure 4b) isus(z, t) fixed at pointt = 0.2
haviors of these waves can be clearly observed in graphs seith the same values in a). Figure 4c) indicates the contour
that they have various shapes in regard t@nd other proper graph ofus(z,t). Figure 5a) introduces the bright solution
coefficients. The graphs of the solitary waves solutionsEq. 51) uq(x,y,t) fora =0.6,p=—-1,k=1,1 = —2,and

are sketched in three types as 3D, 2D, and contour graphg.= 0. Figure 5b) shows graph of wave solution for the same
Graphs are plotted on several interval§ < z,t < 8, states in 3D and = 0.1. Figure 5¢) demonstrates the contour
—8 <z <8andl < z,t < 8, respectively. Further, all con- graph ofu; (z, y, t). Figure 6a) manifests the combo-singular
tour graphs are drawn using the same values as 3D-graphsolution Eq. 64) us(x,y,t) fora« = 0.6, p = —1.3, k = 1,
Positive and negative directional wave solutions are included = —2, andy = 0. Figure 6b) inferaus(x,y,t) fort = 0.1

in the same graphs (Fig. 1 and Fig. 2) so that the oppositand the same cases in a). Figure 6c¢) gives the contour graph
waves can be clearly observed. of ua(z,y, t).

5.1. Graphs of the B-B equation

\(\;. — wy(x. )

uz(x, t)
02 \

uy(x,t)

c)

FIGURE 1. a) 3D-graphs. b) 2D-graphs. c) Contour graphs. Graphs of2}ju (x, t) and Eq. 24) uz(z, t).
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— ua(x,2) 04t
ugy(x, t)

-2

-04f

uz(x, t)

FIGURE 2. a) 3D-graphs. b) 2D-graphs. c) Contour graphs. Graphs ofZ8jju (x, t) and Eq. 28) u4(x, t).

5.2. Graphs of the ALW equation

— wy(x,1)

(LN
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FIGURE 4. a) 3D-graph. b) 2D-graph. c) Contour graph. Graphs of BE). ¢2(x, ).
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5.3. Graphs of the GNNV equation
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FIGURE 5. a) 3D-graph. b) 2D-graph. c) Contour graph. Graphs of &t). 41 (x, y, t).
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FIGURE 6. a) 3D-graph. b) 2D-graph. c) Contour graph. Graphs of &d). 42 (x, y, t).

6. Conclusion wire hanging freely from two points not on the same vertical

] _line. Further, the hyperbolic-tangent appears in the calcu-
The ERF method has been performed to the nonlinear tim@ation of magnetic moment and speed of specific relativity,
fractional coupled B-B, ALW, and space-time fractional ang the hyperbolic-secant shows up the profile of a laminar
GNNV equations to obtain new exact wave solutions. Also,jet [58]. Besides, the general solution function of the ERF
fractional derivatives in the equations have been handled in gyethod is expressed by an exponential function which pro-
conformable sense due to their lucidity and applicability. Thejges a great advantage for finding new exact solutions of
correctness of these results has been examined by using tgauaﬁons in complex phenomena. This technique is effec-
Mathematica software. The graphics of the solutions havetjye, direct, and innovative for solving systems of differential
been constructed under suitable cases and parameters. T&§ations with fractional order. We hope that our results con-
obtained results include hyperbolic functions which expressipute to future studies for the behaviour of SWWs used in
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