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Recently, fractional calculus has considerable attention from researchers since many problems in natural sciences and engineering are mod-
elled with differential equations having fractional order. The nonlinear coupled time-fractional Boussinesq-Burger (B-B) equation, the
nonlinear time-fractional approximate long water wave (ALW) equation, and the nonlinear(2 + 1)-dimensional space-time fractional gen-
eralized Nizhnik-Novikov-Veselov (GNNV) equation are used to express the structure of shallow water waves (SWWs) with different dis-
tributions. The analytical solutions of these equations play a substantial role in explaining the properties of complex phenomena in applied
sciences. In the current work, we utilize the exponential rational function (ERF) method with the definition of fractional derivative in the
conformable sense to achieve new exact traveling wave solutions of these fractional systems. The correctness, validity, and graphics of
the new traveling wave solutions are achieved with the aid ofMathematica . Results demonstrate the effectiveness and strength of this
technique to solve the system of fractional differential equations (FDEs).
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1. Introduction

The study of waves is of great importance in explaining many
complex phenomena as tsunami, earthquake, and preventing
damages caused by these natural events. Researching and
evaluating the effects of global warming can be given as an
example for this case. Short-range seismic earthquakes from
Mw 6.9 on 8.8 magnitudes in Japan in 2011 are caused by
acoustic wave movements and tsunamis in the ocean along
the coastal zone [1]. When the data of this situation are ex-
amined, many multidisciplinary fields of study related to the
subject have been developed and researches are carried out
on how these destructive powers can be transformed into al-
ternative energy sources at present. The marine environment
has many wave classifications. SWWs have a wide range of
research within these classes. Shallow water is the region that
occurs when the length of the wave entering the local water
depth is higher than the depth in the region. The orbital mo-
tion of the water entering this region is disrupted and they
cannot return to the same position again. When waves enter
shallow water areas, they begin to be impressed by the ocean
bottom, and over time ocean erosion is growing as the shal-
lowness of the environment increases. SWWs refer to flow
at the free surface of a body of water in these regions under
the influence of gravity or flow under a horizontal pressure
surface in a fluid. SWW equations have a form of partial dif-
ferential equations that are used to express complex events.
SWW equations identify the motion of the wavelengths that
are short relative to the size of the waves propagating over
the water bodies. Also, these equations are used to illustrate
the flow of vertically well-mixed water bodies with a hori-
zontal length scale much bigger than the fluid depth [2–5].
Many models of physical phenomena in the world are based
on nonlinear partial differential equations. Over time, a new

perspective on derivatives in this class of equations has been
introduced to arrive at more realistic phenomena. Thus,
differential equations are started to be expressed with frac-
tional derivatives instead of integer derivatives. FDEs are
widely used in applied mathematics, ocean and coastal en-
gineering, mathematical physics, fluid dynamics, metrology,
plasma physics, acoustic gravity waves, and other complex
areas [6–8]. It is very important to acquire the solutions
of these equations used in these fields created by real-world
problems. Among the powerful and effective methods used
to achieve analytical solutions, the modified simple equation
method [9], the generalized Kudryashov method [10], the im-
proved F-expansion method [11], the new extended direct al-
gebraic method [12], the(G′/G)-expansion method [13], the
ERF method [14], the first integral method [15], the mod-
ified trial equation method [16], the generalized exponen-
tial rational function method [17], the generalized bifurcation
method [18], the modified extended tanh-function method
[19], the sub-equation method [20], and so on. However,
these methods need some specific definitions to be applied
to equations containing fractional order derivatives. Many
definitions of fractional derivatives are used in the literature.
Riemann-Liouville, Gr̈unwald-Letnikov, Caputo, Jumarie’s
modified Riemann-Liouville definitions are widely used frac-
tional derivative definitions [7, 21–24]. The linearity prop-
erty is the common feature of all fractional derivative def-
initions in the literature. In addition, definitions have pros
and cons compared to each other. The well-known Riemann-
Liouville and Caputo derivative definitions are identified with
fractional integrals. Thus, these definitions have some nonlo-
cal features including historical memory and forthcoming de-
pendence [25]. However, these definitions have some disad-
vantages such as that they do not provide the derivative of the
quotient of two functions, the derivative of the product of two
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functions, the Leibniz rule, Rolle’s theorem, the chain rule,
and mean value theorem of a classical derivative [26]. These
mismatches have caused many problems in real implementa-
tions. Thus, Khalil et al. introduced a new definition of frac-
tional derivatives to overcome these difficulties, and this new
definition is named conformable fractional derivative (CFD)
[27]. Moreover, Abdeljawad made some very important con-
tributions to the definition of conformable fractional deriva-
tive such as right and left conformable fractional derivatives,
chain rule for fractional order, Laplace transform, Grönwall’s
inequality, exponential function, Taylor power series expan-
sion, and so on [28]. Besides, geometrical and physical
meanings of the CFD have been explicated in [29, 30]. This
interesting local definition is an extension of the known limit
definition of the derivative of a function. Although the lo-
cal fractional derivatives do not have the memory condition
of the nonlocal fractional derivatives, they have gained sig-
nificant interest recently because they preserve some of the
efficient properties of the classical derivative [31]. To sum-
marize the main advantages of the proposed definition, the
CFD is natural and, unlike other definitions, provides semi-
group properties and some important theorems [32, 33]. It
is more understandable and applicable than nonlocal defini-
tions in modeling many complex problems. It is a very useful
tool for extending transformations like Laplace, Sumudu and
solving some singular differential equations [25]. Since it has
a simple and applicable form, it provides great convenience
in reaching numerical and analytical solutions of equations.
Also, new mathematical tools are needed since real-world
problems are getting more complex day by day. This use-
ful definition is used to create and extend new definitions of
local derivatives. For instance, Atangana et al. presented
a modified version of the conformable derivative which is
called beta-derivative [34]. The main objective of this arti-
cle is to introduce the implementation of the ERF method for
obtaining new analytical wave solutions. We study the exact
solutions of the nonlinear coupled time-fractional B-B equa-
tion [35], the nonlinear time-fractional ALW equation [36],
and the nonlinear(2 + 1)-dimensional space-time fractional
GNNV equation [37], which are frequently used in fluid dy-
namics and the propagation of SWWs [38, 39]. There are
many inspiring studies in the literature in which these pro-
posed models are constructed with different definitions of
fractional derivatives. The analytical solutions of B-B equa-
tion have been obtained with the residual power series [40]
and the first integral methods [41]. Al-Shawba et al. [42]
have also attained several wave solutions of the B-B equa-
tion. Then, Fan et al. [43] have used the(G′/G)-expansion
method to get the traveling wave solutions. In [44–47] vari-
ous effective analytical methods have been performed to the
ALW equation and in these studies, various wave solutions
have been achieved. Besides, wave solutions of the fractional
GNNV equation has been investigated with various analyt-
ical methods such as the extended Jacobi’s elliptic function
expansion method [37], the improved fractional(DαG/G)
method [48], the(G′/G)-expansion method [49], and the

generalized fractional subequation method [50]. As far as we
know, the exact wave solutions we obtained are different from
previous solutions of these models. The application of the
method is based on that definition of the conformable deriva-
tive, traveling wave transformation, and the general form of
exact solutions which are expressed in series sum with un-
known coefficients and exponential function. The correct-
ness, validity, and graphics of the solutions are obtained. The
behaviour of the waves and types of solutions show that the
ERF method is a suitable, effective, and innovative technique
for finding analytical solutions of fractional equations. The
outline of this paper is arranged as follows: In Sec. 2, we
give the definition and some basic features of the CFD. In
Sec. 3, we describe the major steps of the ERF method. In
Sec. 4, the ERF method is implemented in the systems. In
Sec. 5, we draw graphs of solutions and give some physical
explanations. In Sec. 6, we give some conclusions.

2. Outline of the CFD

The main definition and some characteristics of the CFD are
presented in [27,28].
Definition 1. Given a functionq : (0,∞) → R, the CFD of
q order0 < α ≤ 1 is given as:

Dα
t q(t) = lim

µ→0

q(t + µt1−α)− q(t)
µ

, for every t > 0. (1)

If q is α-conformable differentiable in some interval(0, n),
n > 0 and

lim
t→0+

q(α)(t),

exists then define

q(α)(0) = lim
t→0+

q(α)(t).

Theorem 1. Supposeα ∈ (0, 1], q = q(t) andh = h(t) are
α-differentiable functions for allt > 0. Then,

Dα
t (mq(t) + kh(t)) = mDα

t q + kDα
t h, ∀m, k ∈ R, (2)

Dα
t (tη) = ηtη−α, ∀η ∈ R, (3)

Dα
t (q(t)h(t)) = hDα

t q + qDα
t h, (4)

Dα
t

(
q(t)
h(t)

)
=

hDα
t q − qDα

t h

h2
, (5)

If q is differentiable,then Dα
t q(t) = t1−αq′(t). (6)

The chain rule for the CFD proposed in Ref. [28] as fol-
lows:
Theorem 2. Let q = q(t) be aα-conformable differentiable
and assumeh = h(t) is a differentiable function defined in
the range ofq. Then, the chain rule is given by

Dα
t (q ◦ h)(t) = t1−αh(t)α−1h′(t)Dα

t (q(t))t=h(t). (7)

Here, we give a short proof of Theorem 2.
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Proof. To prove Theorem 2, first we show Eq. (6).
Let µ = tα−1k in Definition 1. Then,

Dα
t q(t) = lim

µ→0

q(t + µt1−α)− q(t)
µ

= lim
k→0

q(t + k)− q(t)
ktα−1

= t1−α lim
k→0

q(t + k)− q(t)
k

= t1−αq′(t). (8)

Thus, we have obtained the relation between conformable
and ordinary derivatives. Then, using Eq. (6) and the chain
rule for the ordinary derivative we can easily observe

Dα
t (q ◦ h)(t) = t1−α(q ◦ h)′(t) = t1−αh′(t)q′(h(t))

= t1−αh′(t)Dα
t q(h(t))h(t)α−1. (9)

This completes the proof.

3. The exponential rational function method

This efficient method was first introduced by [51] and it has
been used to attain solutions of many integer or fractional or-
der nonlinear models in the literature [14, 52, 53]. Moreover,
we express the major steps of the ERF method [14,53].

Suppose that nonlinear conformable partial differential
equation as follows:

R(u, ux, uy, ut,D
α
t u,Dα

x u,Dα
y u, D2α

tt u,

D2α
xxu,D2α

yy u, ...) = 0, (10)

whereR is a polynomial ofu(x, y, t) and its derivatives.
Step 1. We implement the conformable type wave transfor-
mation,

u(x, y, t) = u(ε), ε = k
xα

α
+ l

yα

α
± ρ

tα

α
, (11)

and here using the chain rule of the CFD, we convert Eq. (10)
into the following ordinary differential equation (ODE):

H(u, u′, u′′, u′′′, ...) = 0, (12)

where the superscripts denote the derivation according toε.
Step 2. Assume that the general solution form of Eq. (12)
can be written in terms of finite series in the following form:

u (ε) =
N∑

j=0

aj

(1 + eε)j
, (13)

whereaj (aN 6= 0) are constants.

Step 3. We evaluate the value ofN in Eq. (13) by using the
homogeneous balancing principle in Eq. (12).
Step 4.We replace Eq. (13) and all its necessary derivatives
into Eq. (12). Then, we get a polynomial ofeiε and collecting
all possible powers ofeiε (i = 0, 1, 2, ...) and equalize all the
coefficients of this polynomial to zero. This process ensures
to the achievement of the solution cases. As a result of all
the major steps of the method, we get exact solutions of the
proposed nonlinear equation.

4. Applications

In this section, the ERF method is performed to the system of
nonlinear fractional SWW equations.

4.1. The nonlinear coupled time-fractional B-B equa-
tion

This equation is widely used in the research of fluids flow in a
dynamic system and in the diffusion of SWWs. The equation
is defined as follows [35]:

Dα
t u− 1

2
vx + 2uux = 0,

Dα
t v − 1

2
uxxx + 2(uv)x = 0, (14)

wheret > 0, α ∈ (0, 1], u(x, t) represent the horizontal ve-
locity field andv(x, t) state the altitude of the water surface
above a horizontal level at the bottom. After, using the wave
transformation

u(x, t) = u(ε), v(x, t) = v(ε), ε = x− ρ
tα

α
, (15)

and integrating w.r.tε, we have the relationv = 2
(
u2 − ρu

)
and so, Eq. (14) is reduced to the following ODE:

− 1
2
u
′′

+ 4u3 + 2ρ2u− 6ρu2 = 0. (16)

In the above and the sequel, we consider the integration con-
stant is zero. Also, we getN = 1 from the balancing rule in
Eq. (16). Thus, Eq. (13) becomes

u (ε) = a0 +
a1

(1 + eε)
. (17)

Substituting Eq. (17) and its possible derivatives into Eq. (16)
and following the steps outlined for the proposed method, we
get an algebraic system as follows:

e0 : 24a0a1
2 − 12ρa1

2 + 8a1
3 + 24a0

2a1 − 24ρa0a1 + 4ρ2a1 + 8a0
3 + 4ρ2a0 − 12ρa0

2 = 0, (18)

eε : a1 + 24a0a1
2 − 12ρa1

2 + 48a0
2a1 + 8ρ2a1 − 48ρa0a1 + 24a0

3 + 12ρ2a0 − 36ρa0
2 = 0, (19)

e2ε : −a1 + 24a0
2a1 + 4ρ2a1 + 24a0

3 + 12ρ2a0 − 36ρa0
2 − 24ρa0a1 = 0, (20)

e3ε : 8a0
3 + 4ρ2a0 − 12ρa0

2 = 0. (21)
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We acquire two cases fora0, a1, andρ in the following form:
Case 1.a0 = 0, a1=±(1/2), ρ = ±(1/2).

Applying these coefficients into Eq. (17), we attain the exact wave solutions:

u1 (x, t) =
1

2
(
1 + cosh

[
x− tα

2α

]
+ sinh

[
x− tα

2α

]) =
1
4

(
1− tanh

[
x− tα

2α

2

])
, (22)

v1 (x, t) = −1
8

sech2

[
1
2

(
x− tα

2α

)]
, (23)

wherea1 = 1/2 andρ = 1/2, and

u2 (x, t) = − 1
2

(
1 + cosh

[
x + tα

2α

]
+ sinh

[
x + tα

2α

]) =
1
4

(
−1 + tanh

[
x + tα

2α

2

])
, (24)

v2 (x, t) = −1
8

sech2

[
1
2

(
x +

tα

2α

)]
, (25)

wherea1 = −1/2 andρ = −1/2.
Case 2.a0 = ρ, a1 = ∓(1/2), ρ = ±(1/2).

Inserting these values into Eq. (17), we achieve the exact wave solutions:

u3 (x, t) =
1
2
− 1

2
(
1 + cosh [x− tα

2α ] + sinh [x− tα

2α ]
) =

1
4

(
1 + tanh

[
x− tα

2α

2

])
, (26)

v3 (x, t) = − 1
4

(
1 + cosh

[
x− tα

2α

]) , (27)

wherea1 = −1/2 andρ = 1/2, and

u4 (x, t) = −1
2

+
1

2
(
1 + cosh

[
x + tα

2α

]
+ sinh

[
x + tα

2α

]) =
1
4

(
−1− tanh

[
x + tα

2α

2

])
, (28)

v4 (x, t) = − 1
4

(
1 + cosh

[
x + tα

2α

]) , (29)

wherea1 = 1/2 andρ = −1/2.

4.2. The nonlinear time-fractional ALW equation

This equation expresses a special form of the nonlinear Whitham-Broer-Kaup (WBK) equation and it identifies the diffusion
of SWWs with different distribution relation [54]. The ALW equation is in the following form [36]:

Dα
t u + uux + vx +

1
2
uxx = 0, Dα

t v + (uv)x − 1
2
vxx = 0, (30)

whereα ∈ (0, 1], t describes the timet > 0 andx represents the position of the wave. Applying the wave transformation in
Eq. (15) and integrating once w.r.tε, we obtain the relationv = ρu − (1/2)u2 − (1/2)u′ and so Eq. (30) is reduced to the
following ODE:

− 1
4
u
′′

+
1
2
u3 + ρ2u− 3

2
ρu2 = 0. (31)

Furthermore, we haveN = 1 from the balancing principle in Eq. (31). Thus, Eq. (13) turns into

u(ε) = a0 +
a1

(1 + eε)
. (32)
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We insert Eq. (32) and its necessary derivatives into Eq. (31) and pursuing the steps stated for the method by then we gain a
system of equations in following form:

e0 : 6a0a1
2 − 6ρa1

2 + 2a1
3 + 6a0

2a1 + 4ρ2a1 − 12ρa0a1 + 2a0
3 + 4ρ2a0 − 6ρa0

2 = 0, (33)

eε : a1 + 6a0a1
2 − 6ρa1

2 + 12a0
2a1 + 8ρ2a1 − 24ρa0a1 + 6a0

3 + 12ρ2a0 − 18ρa0
2 = 0, (34)

e2ε : −a1 + 6a0
2a1 + 4ρ2a1 − 12ρa0a1 + 6a0

3 + 12ρ2a0 − 18ρa0
2 = 0, (35)

e3ε : 2a0
3 + 4ρ2a0 − 6ρa0

2 = 0. (36)

On solving the algebraic system of equations, we obtain two cases fora0, a1, andρ as follows:
Case 1.a0 = 0, a1 = 1, ρ = 1/2.

Substituting these coefficients into Eq. (32), we procure the exact wave solutions:

u1 (x, t) =
1

1 + cosh
[
x− tα

2α

]
+ sinh [x− tα

2α ]
=

1
2

(
1− tanh

[
x− tα

2α

2

])
, (37)

v1 (x, t) =
1
4

sech2

[
1
2

(
x− tα

2α

)]
. (38)

Case 2.a0 = 2ρ, a1 = 1, ρ = −1/2.
Replacing these values into Eq. (32), we get the exact wave solutions:

u2 (x, t) = −1 +
1

1 + cosh [x + tα

2α ] + sinh [x + tα

2α ]
=

1
2

(
−1− tanh

[
x + tα

2α

2

])
, (39)

v2 (x, t) =
1

2
(
1 + cosh

[
x + tα

2α

]) . (40)

4.3. The nonlinear(2 + 1)-dimensional space-time fractional GNNV equation

The GNNV equation is an isotropic Lax integrable extension of the well-recognized KdV equation and KdV-type equations are
frequently used in fields such as SWWs, ionic acoustic waves in plasma, long internal waves in oceans, and so on [37,48,55].
The GNNV equation is stated as [37]:

Dα
t u + AD3α

x u + BD3α
y u + GDα

x u + FDα
y u− 3ADα

x (uv)− 3BDα
y (uw) = 0,

Dα
x u = Dα

y v, Dα
y u = Dα

x w, (41)

whereα ∈ (0, 1] and A, B, G, F are given arbitrary constants. Also,t represents the time,x andy are the two scaled space
coordinates. Here, using the wave transformation as in the following form

u(x, y, t) = u(ε), v(x, y, t) = v(ε), w(x, y, t) = w(ε), ε = k
xα

α
+ l

yα

α
+ ρ

tα

α
, (42)

and integrating w.r.tε, we get the reduced form of Eq. (41) as follows:

(Ak3 + Bl3)u
′′

+ (Gk + Fl + ρ)u− 3Ak(uv)− 3Bl(uw) = 0, ku = lv, lu = kw. (43)

We arrange Eq. (43) and obtain the following ODE:

kl(Ak3 + Bl3)u
′′

+ kl(Gk + Fl + ρ)u− 3(Ak3 + Bl3)u2 = 0. (44)

Moreover, we getN = 2 from the balancing rule in Eq. (44). Thereby, Eq. (13) returns to

u (ε) = a0 +
a1

(1 + eε)
+

a2

(1 + eε)2
. (45)
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Inserting Eq. (45) and its required derivatives into Eq. (44) and applying the steps outlined for the ERF method, we have a
system of equations in the following form:

e0 : (a0 + a1 + a2)(ρkl + Gk2l + Fkl2 − 3(Ak3 + Bl3)a0 − 3(Ak3 + Bl3)a1 − 3Ak3a2 − 3Bl3a2) = 0, (46)

eε : −12a0
2(Ak3 + Bl3)− 6a1

2(Ak3 + Bl3) + 2kla2(ρ + Gk + Fl −Ak3 −Bl3)

+a1kl(3ρ + 3Gk + 3Fl −Ak3 −Bl3)− 6a1a2(Ak3 + Bl3)

+4kla0(ρ + Gk + Fl)− 6a0(Ak3 + Bl3)(3a1 + 2a2) = 0, (47)

e2ε : −18a0
2(Ak3 + Bl3) + 3kla1(ρ + Gk + Fl)− 3a1

2(Ak3 + Bl3)

+kla2(ρ + Gk + Fl + 4Ak3 + 4Bl3) + 6kla0(ρ + Gk + Fl)− 6a0(Ak3 + Bl3)(3a1 + a2) = 0, (48)

e3ε : −12a0
2(Ak3 + Bl3) + kla1(ρ + Gk + Fl + Ak3 + Bl3) + 4kla0(ρ + Gk + Fl)− 6a0a1(Ak3 + Bl3) = 0, (49)

e4ε : a0kl(ρ + Gk + Fl)− 3a0
2(Ak3 + Bl3) = 0. (50)

We obtain the two cases fora0, a1, a2, andρ as the following:
Case 1.a0 = 0, a1=−2kl, a2=2kl, ρ = −Gk − Fl −Ak3 −Bl3.

Inserting these values into Eq. (45), we get the exact wave solutions:

u1 (x, y, t) = −1
2
kl sech2

[
1
2

(
k

xα

α
+ l

yα

α
+ (−Gk − Fl −Ak3 −Bl3)

tα

α

)]
, (51)

v1 (x, y, t) = − k2

1 + cosh
[
k xα

α + l yα

α + (−Gk − Fl −Ak3 −Bl3) tα

α

] , (52)

w1 (x, y, t) = − l2

1 + cosh[k xα

α + l yα

α + (−Gk − Fl −Ak3 −Bl3) tα

α ]
. (53)

Case 2.a0 = kl/3, a1 = −2kl, a2 = 2kl, ρ = −Gk − Fl + Ak3 + Bl3.
Substituting these coefficients into Eq. (45), we procure the exact wave solutions:

u2 (x, y, t) =
kl

(
−2 + cosh

[
k xα

α + l yα

α + (−Gk − Fl + Ak3 + Bl3) tα

α

])

3
(
1 + cosh

[
k xα

α + l yα

α + (−Gk − Fl + Ak3 + Bl3) tα

α

]) , (54)

v2 (x, y, t) =
k2

(
−2 + cosh

[
k xα

α + l yα

α + (−Gk − Fl + Ak3 + Bl3) tα

α

])

3
(
1 + cosh

[
k xα

α + l yα

α + (−Gk − Fl + Ak3) + Bl3) tα

α

]) , (55)

w2 (x, y, t) =
l2

(
−2 + cosh

[
k xα

α + l yα

α + (−Gk − Fl + Ak3 + Bl3) tα

α

])

3
(
1 + cosh

[
k xα

α + l yα

α + (−Gk − Fl + Ak3 + Bl3) tα

α

]) . (56)

As a result, we have acquired some new analytical solutions of proposed fractional systems. Also, wave solutions can be
extended by using hyperbolic function properties.

5. Graphical illustration and explanation

One of the most observable phenomenon in nature is water
waves. The study of water waves and their various applica-
tions is central to applied fields such as fluid dynamics and
ocean engineering. Also, in these areas the behaviours of
waves such as breaking of water waves on beaches, ocean
waves caused by storms, flood waves in rivers, ship waves on
water, movements of free oscillations of water in closed areas
like harbours and lakes are studied [56]. Examining the non-
linear models of these waves in various conditions and pre-
senting their graphs are very important to explain their phys-

ical behaviours. Generally, researches of such types of exact
wave solutions provide a reason and additional clarification
for wave strategies. The solitary waves are specific forms of
traveling waves and they protect their permanent structure,
even after impact with other solitary waves. Furthermore,
the dynamical behaviour of solitary wave types propose the
existence of an inclusive theory. Thus, in this section, we de-
termine wave forms and illustrate graphs of the attained ex-
act wave solutions of the proposed equations. We achieve
different solution forms such as singular, combo-singular,
dark (topological), and bright (non-topological) soliton. The
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dark solitary waves are more stable and more resistant to
impact than other wave forms. It is well known that dark
solutions describe solitary waves with density lower than
the background, bright solutions whose maximum density is
greater than the background, and singular solutions, which
are solitary waves with discontinuous derivatives [57]. More-
over, Eq. (22) u1(x, t), Eq. (24) u2(x, t), Eq. (26) u3(x, t),
Eq. (28) u4(x, t), Eq. (37) u1(x, t), and Eq. (39) u2(x, t) are
dark solutions. Eq. (23) v1(x, t), Eq. (25) v2(x, t), Eq. (38)
v1(x, t), and Eq. (51) u1(x, y, t) solutions have bright wave
forms. Eq. (27) v3(x, t), Eq. (29) v4(x, t), Eq. (40) v2(x, t),
Eq. (52) v1(x, y, t), and Eq. (53) w1(x, y, t) are singular soli-
ton solutions. Eq. (54) u2(x, y, t), Eq. (55) v2(x, y, t), and
Eq. (56) w2(x, y, t) are combo-singular solutions. The be-
haviors of these waves can be clearly observed in graphs so
that they have various shapes in regard toα and other proper
coefficients. The graphs of the solitary waves solutions
are sketched in three types as 3D, 2D, and contour graphs.
Graphs are plotted on several intervals−8 ≤ x, t ≤ 8,
−8 ≤ x ≤ 8 and0 ≤ x, t ≤ 8, respectively. Further, all con-
tour graphs are drawn using the same values as 3D-graphs.
Positive and negative directional wave solutions are included
in the same graphs (Fig. 1 and Fig. 2) so that the opposite
waves can be clearly observed.

Figure 1a) shows the dark solution for Eq. (22)u1(x, t)
α = 0.6,ρ = 0.5 and Eq. (24) u2(x, t) for α = 0.6,ρ = -0.5.
Figure 1b) demonstrates the graph for the above values and
t = 0.3. Figure 1c) remarks the contour surfaces ofu1(x, t)
andu2(x, t). Figure 2a) indicates the dark solution Eq. (26)
u3(x, t) for α = 0.8, ρ = 0.5 and Eq. (28) u4(x, t) for α =
0.8,ρ = −0.5. Figure 2b) expresses solutions fixed at point
t = 0.3 with the cases in a). Figure 2c) specifies the contour
surfaces ofu3(x, t) andu4(x, t). Figure 3a) gives the dark
solution Eq. (37) u1(x, t) for α = 0.4 andρ = 0.5. Fig-
ure 3b) shows this solution fort = 0.2 and the same cases
in 3D. Figure 3c) shows the contour graph ofu1(x, t). Fig-
ure 4a) points the dark solution Eq. (39) u2(x, t) for α = 0.3
andρ = −0.5. Figure 4b) isu2(x, t) fixed at pointt = 0.2
with the same values in a). Figure 4c) indicates the contour
graph ofu2(x, t). Figure 5a) introduces the bright solution
Eq. (51) u1(x, y, t) for α = 0.6, ρ = −1, k = 1, l = −2, and
y = 0. Figure 5b) shows graph of wave solution for the same
states in 3D andt = 0.1. Figure 5c) demonstrates the contour
graph ofu1(x, y, t). Figure 6a) manifests the combo-singular
solution Eq. (54) u2(x, y, t) for α = 0.6, ρ = −1.3, k = 1,
l = −2, andy = 0. Figure 6b) infersu2(x, y, t) for t = 0.1
and the same cases in a). Figure 6c) gives the contour graph
of u2(x, y, t).

5.1. Graphs of the B-B equation

FIGURE 1. a) 3D-graphs. b) 2D-graphs. c) Contour graphs. Graphs of Eq. (22) u1(x, t) and Eq. (24) u2(x, t).
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FIGURE 2. a) 3D-graphs. b) 2D-graphs. c) Contour graphs. Graphs of Eq. (26) u3(x, t) and Eq. (28) u4(x, t).

5.2. Graphs of the ALW equation

FIGURE 3. a) 3D-graph. b) 2D-graph. c) Contour graph. Graphs of Eq. (37) u1(x, t).

FIGURE 4. a) 3D-graph. b) 2D-graph. c) Contour graph. Graphs of Eq. (39) u2(x, t).
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5.3. Graphs of the GNNV equation

FIGURE 5. a) 3D-graph. b) 2D-graph. c) Contour graph. Graphs of Eq. (51) u1(x, y, t).

FIGURE 6. a) 3D-graph. b) 2D-graph. c) Contour graph. Graphs of Eq. (54) u2(x, y, t).

6. Conclusion

The ERF method has been performed to the nonlinear time-
fractional coupled B-B, ALW, and space-time fractional
GNNV equations to obtain new exact wave solutions. Also,
fractional derivatives in the equations have been handled in a
conformable sense due to their lucidity and applicability. The
correctness of these results has been examined by using the
Mathematica software. The graphics of the solutions have
been constructed under suitable cases and parameters. The
obtained results include hyperbolic functions which express
various physical states in applied sciences. The hyperbolic-
sine emerges in the gravitational potential of a cylinder and
in calculating the Roche limit, while the hyperbolic-cosine
refers to the shape of a curve formed by a chain, rope, or

wire hanging freely from two points not on the same vertical
line. Further, the hyperbolic-tangent appears in the calcu-
lation of magnetic moment and speed of specific relativity,
and the hyperbolic-secant shows up the profile of a laminar
jet [58]. Besides, the general solution function of the ERF
method is expressed by an exponential function which pro-
vides a great advantage for finding new exact solutions of
equations in complex phenomena. This technique is effec-
tive, direct, and innovative for solving systems of differential
equations with fractional order. We hope that our results con-
tribute to future studies for the behaviour of SWWs used in
the fields such as mathematical physics, applied mathemat-
ics, ocean engineering, civil engineering, port, and coastal
construction.
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