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Soliton solutions for Fokas-Lenells equation by (G’/G)-expansion method
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In this paper we investigate the Fokas-Lenells equation via the (G’/G)-expansion method. To convert this nonlinear model into ODEs, we
utilize an intelligible wave transformation. The solutions show that considered method fit well for Fokas-Lenells equation with complex
structure. With the view of the results, new improvements can happen for applications of the model.
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1. Introduction

One of the main nonlinear problem is the Fokas-Lenells (FL)
equation

iqt + a1qxx + a2qxt + |q|2(bq + iσqx)

= i(αqx + γ[|q|2nq)x + η[|q|2n]xq). (1)

Wherea1 anda2 are coefficients of group velocity dis-
persion, this model is the famous one which constructed as
applications for current-fed string interacting with an exter-
nal magnetic field. The perturbation termsη, γ, α, and on
the right-hand side of Eq. (1) represent nonlinear disper-
sion, self-steepening effect, and, self-steepening effect, and
inter-modal dispersion, respectively. There have been nu-
merous approaches put forward by several authors to handle
the approximate and exact solutions these nonlinear problems
which are G’/G-expansion method, direct algebraic method,
Sine-cosine method, tanh method, F-expansion method, and
so on [1-15]. To construct the analytical solutions of these
equations for realized the dynamics structure is the mainly
suitable way [16-18]. The exact solution in explicit form of
these models assist the confirmation of numerical researchers
and also help in investigate the stability. The purpose of this
work is to apply the G’/G-expansion method to solve the
Fokas-Lenells (FL) equation . Such a study has not been con-
sidered before to our knowledge. This paper is outlined as
follows: Section 2 gives a brief review of (G’/G)-expansion
method. Section 3 contains the discussions. Finally, conclu-
sion is given in Sec. 4. This paper is organized as follows: In

Sec. 2, we describe the (G’/G)-expansion method while the
application of the method has been presented in Sec. 3. The
conclusions are drawn in Sec. 4.

2. Brief of the methodology

In this section, we briefly explain the application of (G’/G)-
expansion to determine an exact solution for the partial dif-
ferential equation. For given NLEEs of the form

P(u, ux, ut, uxx, uxt, utt, . . .) = 0. (2)

Consider the wave transformation,u(x, t) = U(ξ), ξ =
x− vt, Eq. (2) can be reduced to the following ODE:

P (U,U ′,−vU ′, U ′′,−vU ′′, v2U ′′, . . .) = 0, (3)

WhereU = U(ξ), and its total derivatives. the exact so-
lution for the nonlinear ordinary differential equation can be
written in the following:

u(ξ) =
m∑

n=1

αn

(
G’(ξ)
G(ξ)

)n

α0, αm 6= 0, (4)

where G(ξ) satisfies a second order linear ordinary differen-
tial equation:

+
d2G(ξ)

dξ2
+ λ

dG(ξ)
dξ

+ µG(ξ) = 0. (5)

And αn, n = 0, 1, 2, . . . , m, are constants to be deter-
mined later.

Using the solutions of Eq. (5), we obtain
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G′(ξ)
G(ξ)

=





√
λ2−4µ

2




C1 sinh
[√

λ2−4µ

2 ξ

]
+ C2 cosh

[√
λ2−4µ

2 ξ

]

C1 cosh
[√

λ2−4µ

2 ξ

]
+ C2 sinh

[√
λ2−4µ

2 ξ

]


− λ

2 , λ2 − 4µ > 0 ,

√
4µ−λ2

2



−C1 sinh

[√
4µ−λ2

2 ξ

]
+ C2 cosh

[√
4µ−λ2

2 ξ

]

C1 cosh
[√

4µ−λ2

2 ξ

]
+ C2 sinh

[√
4µ−λ2

2 ξ

]


− λ

2 , λ2 − 4µ < 0 ,

(6)

and from (4) and (5), we have

U ′ = −
m∑

n=1

nαn

([
G′

G

]n+1

+ λ

[
G′

G

]n

+ µ

[
G′

G

]n−1
)

,

U ′′ =
m∑

n=1

nαn

(
[n + 1]

[
G′

G

]n+2

+ [2n + 1]λ
[

G′

G

]n+1

+ n[λ2 + 2µ]
[

G′

G

]n

+ [2n− 1]λµ

[
G′

G

]n−1

+ [n− 1]µ2µ2

[
G′

G

]n−2
)

,

Therefore, here the prime denotes the derivative with respective toξ.

3. Discussions

Let us use the transformation

q(x, t) = u(ξ)eiφ(ξ)−Ωt, (7)

whereu(ξ) andφ(ξ) are real functions of the traveling coordinateξ = x − vt. Here,v is the group velocity whileΩ is the
frequency of the wave oscillation.

Substituting the transformation (7) into Eq. (1), Thus we can easily get,

−(α + v + a2Ω)u′ + 2(a1 − a2v)u′φ′ + (a1 − a2v)uφ′′ + σu2u′ − ([2n + 1]γ + 2nη)u2nu′ = 0, (8)

(α + v + a2Ω)uφ′ + Ωu + u′′ − (a1 − a2v)uφ2′ + bu3 − σu3φ′ + γu2n+1φ′ = 0. (9)

Equation (9) can be integrated after multiplying on u to induce

φ′ =
α + v + a2Ω
2(a1 − a2v)

− σu2

4(a1 − a2v)
+

([2n + 1]γ + 2nη)
(a1 − a2v)(2n + 2)

, (10)

where the integration constant is taken to be zero. We setn = 1. Therefore, Eq. (9) reduces to

φ′ =
α + v + a2Ω
2(a1 − a2v)

+
(3γ + 2η − σ)u2

4(a1 − a2v)
. (11)

Thus we can easily obtain,

δω(x, t) = −α + v + a2Ω
2(a1 − a2v)

− (3γ + 2η − σ)u2

4(a1 − a2v)
. (12)

Now, substituting Eq. (12) into Eq. (8) leads to

u′′ +
s2

4
u +

s4

2
u3 +

s6

16
u5 = 0 (13)
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where

s2 =
(α + v + a2Ω)2 + 4Ω(a1 − a2v)

(a1 − a2v)2
, (14)

s4 =
(γ − σ)(α + v + a2Ω) + 2b(a1 − a2v)

(a1 − a2v)2
, (15)

s6 =
(3γ + 2µ− σ)(γ − 2η − 3σ)

(a1 − a2v)2
. (16)

According to Step 1, we put5m = m + 2, hencem = 1. Therefore, we assume that the solution of Eq. (13) can be
expressed by a polynomial in (G′/G) as follows:

u = α1

(
G′

G

)
+ α0, α1 6= 0. (17)

Substituting Eq. (14) into Eq. (13) and collecting all terms with the same order of (G′/G) together , the left-hand side
of Eq. (13) is conserved into a polynomial in (G′/G). Equating each coefficient of this polynomial to zero yields a set of
simultaneous algebraic equations forλ, µ, ω, α0, α1, andα2. Solving the system of algebraic equations with the aid of
Maple 16, we obtain the following three general results.
Case 1.

The first set of obtained results is

v = ∓2
3
√

s2 − 1
2
λ2, µ = ±2

3
√

s2, α0 = 0, α1 = 3
√

s2. (18)

Whereλ is an arbitrary constant. Therefore, substituting the above case in Eq. (17), we get solution of Eq. (1) forλ2−4µ >
0,

q1(x, t) = 3
√

s2

√
λ2 − 4µ

2

×




C1 sinh
{√

λ2−4µ

2

(
x− [∓ 2

3

√
s2 − 1

2λ2
]
t
)}− C2 cosh

{√
λ2−4µ

2

(
x− [∓ 2

3

√
s2 − 1

2λ2
]
t
)}

C1 cosh
{√

λ2−4µ

2

(
x− [∓ 2

3

√
s2 − 1

2λ2
]
t
)}

+ C2 sinh
{√

λ2−4µ

2

(
x− [∓ 2

3

√
s2 − 1

2λ2
]
t
)}


−

λ

2

× ei(φ[x−{∓(2/3)
√

s2−(1/2)λ2}t]−Ωt).

And for λ2 − 4µ < 0

q2(x, t) = 3
√

s2

√
4µ− λ2

2

×



−C1 sin

{√
4µ−λ2

2

(
x− [∓ 2

3

√
s2 − 1

2λ2
]
t
)}

+ C2 cos
{√

4µ−λ2

2

(
x− [∓ 2

3

√
s2 − 1

2λ2
]
t
)}

C1 cos
{√

4µ−λ2

2

(
x− [∓ 2

3

√
s2 − 1

2λ2
]
t
)}

+ C2 sin
{√

4µ−λ2

2

(
x− [∓ 2

3

√
s2 − 1

2λ2
]
t
)}


−

λ

2

× ei(φ[x−{∓(2/3)
√

s2−(1/2)λ2}t]−Ωt).

The second set of obtained results is

v = ∓2
3
√

s4 − 1
2
λ2, µ = ±√s4, α0 =

2
3
√

s6, α1 = 3
√

s4,

we get solution of Eq. (1) forλ2 − 4µ > 0
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FIGURE 1. Graphical behavior forq1.

FIGURE 2. Graphical behavior forq2.

FIGURE 3. Graphical behavior forq3.

q1(x, t) = 3
√

s4

√
λ2 − 4µ

2

×




C1 sinh
{√

λ2−4µ

2

(
x− [∓ 2

3

√
s4 − 1

2λ2
]
t
)}

+ C2 cosh
{√

λ2−4µ

2

(
x− [∓ 2

3

√
s4 − 1

2λ2
]
t
)}

C1 cosh
{√

λ2−4µ

2

(
x− [∓ 2

3

√
s4 − 1

2λ2
]
t
)}

+ C2 sinh
{√

λ2−4µ

2

(
x− [∓ 2

3

√
s4 − 1

2λ2
]
t
)}


−

λ

2

× ei(φ[x−{∓(2/3)
√

s4−(1/2)λ2}t]−Ωt) +
2
3
√

s6 ,

And for 4µ− λ2 < 0
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q2(x, t) = 3
√

s2

√
4µ− λ2

2

×



−C1 sin

{√
4µ−λ2

2

(
x− [∓ 2

3

√
s4 − 1

2λ2
]
t
)}

+ C2 cos
{√

4µ−λ2

2

(
x− [∓ 2

3

√
s4 − 1

2λ2
]
t
)}

C1 cos
{√

4µ−λ2

2

(
x− [∓ 2

3

√
s4 − 1

2λ2
]
t
)}

+ C2 sin
{√

4µ−λ2

2

(
x− [∓ 2

3

√
s4 − 1

2λ2
]
t
)}


−

λ

2

× ei(φ[x−{∓(2/3)
√

s4−(1/2)λ2}t]−Ωt) +
2
3
√

s6 ,

4. Conclusions

In this paper, we investigated the Fokas-Lenells equation via
the G’/G- Expansion method. Using some wave transforma-
tions, the PDE system is turned into an ODE system. The
solutions of the ODE system are assumed in the forms of the
G’/G- Expansion method. In the same vein and parallel the

FL has been applied to achieve other new visions to the soli-
ton solutions of this model Figs. 1-3. The solutions will be
considered for the new application areas of the generalized
form of modified NSE. Consequently a positive forward fu-
ture studies have been introduced for the given model. We
also conclude that the effectively, powerful of the suggested
method.
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