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Effect of fractional analysis on magnetic curves
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In this present paper, the effect of fractional analysis on magnetic curves is researched. A magnetic field is defined by the property that its
divergence is zero in three dimensional Riemannian manifold. We investigate the trajectories of the magnetic fields called as t-magnetic,
n-magnetic and b-magnetic curves according to fractional derivative and integral. As it is known, there are not many studies on a geometric
interpretation of fractional calculus. When examining the effect of fractional analysis on a magnetic curve, the conformable fractional
derivative that best fits the algebraic structure of differential geometry derivative is used. This effect is examined with the help of examples
consistent with the theory and visualized for different values of the conformable fractional derivative. The difference of this study from
others is the use of conformable fractional derivatives and integrals in calculations. Fractional calculus has applications in many fields such
as physics, engineering, mathematical biology, fluid mechanics, signal processing, etc. Fractional derivatives and integrals have become a
extremely important and new mathematical method in solving various problems in many sciences.
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1. Introduction order derivative, they have many studies on this subject. Be-
cause, the classical derivative is beneficial to model the phys-

Magnetic curves have many applications in physics and difical systems locally but the fractional order derivative is bene-
ferential geometry and p|ay an important role in these ar.ﬁCiaI to model phySicaI Systems gIOba”y Fractional anaIySiS
eas. When a charged particle enters a magnetic field, tHgave many applications in many branches of science in recent
Frenet vectors of this particle are affected by this magneti¢ears. The study of this subject by many mathematicians is
field and with this effect a force which is called the Lorenz €d to the emergence of many different definitions of frac-
force occurs. Thus, the particle starts to follow a trajectory intional derivatives and integrals. Riemann-Liouville, Caputo,
this magnetic field thanks to Lorenz force. This trajectory isCauchy, and conformable fractional derivatives and integrals
called a magnetic curve. The motion of a particle entering thére just a few of these definitions. Different fractional deriva-
magnetic field with the effect of the Lorenz force is explainedtive and integral definitions naturally brought with them dif-
as; if the tangent vector field T is parallel to the magneticferent properties. For example, the derivative of zero is not
field, the Lorentz force will be zero, so the particle movesconstant for many types of fractional derivatives, except for
parallel to the magnetic field. If the tangent vector field T isthe conformable fractional derivative and Caputo fractional

perpendicular to the magnetic field, the Lorentz force is maxderivative. Moreover, except for the conformable fractional
imum and the particle moves in a circle in the magnetic field derivative, other fractional derivatives do not have features
If the tangent vector field T is at a constant angle with theSuch as the derivative of the product, the derivative of the quo-
magnetic field, the particle follows a helical trajectory undertient, or the chain rule, as in the classical sense [21]. In ad-
the influence of the Lorentz force, [1] These curves have atdition, the conformable fractional derivative is the local frac-
tracted the attention of many authors in different disciplinestional derivative, unlike the Riemann-Liouville and Caputo
For this reason, many studies have been carried out by coftactional derivative. Conformable fractional derivative has
sidering these curves in different ways [2—-9]. many critical aspects, as it is equivalent to a simple change

On the other hand, fractional analysis means derivativé)f variables for differentiable functions [22]. However, the

and integral accounts that are not integers. The phrase fragﬁect of conformable fractional derivatives and integrals on

tional derivative first appears in a letter sent by Leibniz toS°M€ Physical phenomena is worth investigating. It will be

L'Hospital in 1695, [10]. In this letter, Leibniz is asked interesting that fractional derivatives do not have a geomet-

L'Hospital a question, "Can integer order derivatives be ex./IC interpretation as in the classical sense. However, there
tended to fractional order derivatives?” Afterwards, this sup2ré many mat.hemat|.0|ans investigating the effect of fractional
ject, which attracted the attention of many mathematicians(,:alCUIus on differential geometry [23-25].

took part in many studies [11-16]. Today, the subject of frac-  In this study, the effects of conformable fractional deriva-
tional analysis become very popular and study by many retives and integrals on magnetic curves are investigated. In
searchers in different fields [17-20]. Since it is believed toaddition, a geometric inference is tried to be obtained with
be the better modelling the physical systems with fractionathe help of examples. Moreover, we are visualize their im-
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ages for different fractional values using the Mathematice2.2. Basic definitions and theorems of conformable frac-
program. The difference of this study from others is the use tional calculus

of conformable fractional derivatives and integrals in calcu-

lations. Fractional derivatives and integrals are more precitn this part, some basic definitions and theorems of con-
sion than ordinary derivatives and integrals because they giiormable fractionally derivative and integral are given.

more accurate results. So, fractional calculus has applicatiori3efinition 4. Let us give a functiorf : [0, c0) —R. Then the

in many different fields such as physics, engineering, matheconformable fractional derivative fof of order« is defined
matical biology, etc. This article is a complicated study thatby

includes differential geometry, physics and fractional analy- . f(s+est=) = f(s)

sis fields. So, we hope that it will contribute to those working Da(f)(s) = ;1_{% -
in these fields.

forall s > 0,0 < a < 1. If f is a-differentiable in
L i some(0,a), a > 0 andlim,_ o+ f(*)(s) exist, then define

2. Preliminaries F@(0) = limy o+ £ (s), [29].
Theorem 2. Let f : [0,00) — R be a function. If a func-

2.1. Basic definitions and theorems of differential geom- . ; ) . :
tion f is a-differentiable atsy > 0,0 < « < 1, then fis

etr :
y continuous asg, [29].
In section definitions and theorems, the curveR#will be Accordingly, it is easily visible that the conformable frac-
introduced in a nutshell. tional derivative provides all the properties given in the theo-

Definition 1. Let the curver(s) be given in n-dimensional rem below.
Euclidean space witlif, «) coordinate neighborhood. The Theorem 3. Let f,g : [0,00) — R be «-differentiable at

arc length of the curve froma to b, is calculated as eachs > 0,0 < a < 1. Then
5= / 2/ (s)||dt, s €1, (1) Dalaf+bg)(s) = aDa(f)(s) +bDa(g)(s), forall a,
beR.
b

which is the length between the point&:) and z(b) of the (2) Da(s?) = psP—, forall p € R.
curve. The parameteris said to be arc-length. ' ’

Theorem 1. Let2 = x(s) be a regular unit speed curve (3) Da()) = 0, for all constant functiong(s) = .
in the Euclidearn3—space whereg measures its arc length. ’
Also, letT' = z’ be its unit tangent vectorV. = T" /||T”’|| be _
its principal normal vector and3 = T' x N be its/t|)|ino‘r‘mal (4) Da(f9)(s) = (5)Dal9)(s) + 9(s) Da(f)(s)-
vector. The triple{T', N, B} be the Frenet frame of the curve (5) Du(L)(s) = L8)Dal0)(s) —9(s)Da()(5)

«@ g -

z. Then the Frenet formula of the curve is given by 9%(s) :
T'(s) 0 K(s) 0 T(s) (6) If f is a differentiable function, them,(f)(s) =
N'(s) | = —«(s) 0 7(s) N(s) |, (O slmadf) ag).
B/(s) 0 —7(s) 0 B(s) ds
wherer(s) = ||d?z/ds?| andr(s) = (N /ds, B) are cur- Theorem 4. Let f, g : [0, oo)_ — R be a—differentiable at
vature and torsion of; respectiveh{ZG]_ so0>0,0<ax< 1. If (f o g) is a—differentiable and for all

Definition 2. Letz : I C R — E® be a unit speed curve in s With s # 0 and f(s) # 0, the equation

Euclidean3-spaceE3. If any U fixed direction with the unit

tangent vector of the curvemakes a fixed angle, the curve Do (f 0 9)(s) = f(s)* ' Daf(s)Dalg)(f(5)),

is called the general helix [27]. The most well-known char-

acterization of the helix curve is/x = constant (Lancret is provided[30].

theorem)[26]. Definition 5. Let f : [a,00) — R be a function. The expres-

Definition 3. Let = : I C R — E3 be a unit speed curve in sion

Euclidean3-spaceE3. If any U fixed direction with the prin- i

cipal unit normal vector of the curve makes a fixed angle, I3f(s) =Iff(s* 71 f) = /

the curvez is called the slant helix. 1zumiya and Takeuchi p

obtain a necessary and sufficient condition for a curve to be . .
. . . e : is called a conformable fractional integral, whete > 0,

slant helix: a curve is an oblique propeller if its geodetic cur-

fl(il dx

T

o X : 30].

vature and the principal normal satisfy the expression [

princip ) :‘y P Theorem 5. Let f : [a,00) — R be a function. Then for all
s (Z) (2) s> 0the following equation exist§30]
(k2 +72)%2 \k

is constant functiofi28]. Dolgf(s) = [f(s).
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EFFECT OF FRACTIONAL ANALYSIS ON MAGNETIC CURVES 3

2.3. Basic definitions and theorems of magnetic field and _(dr (1 s
curves Vi(r)= (dk(s’k)) k=0 = <H9(VTV+R(V7 T)T, B)

S

In this subsection, some basic definitions and theorems of ~ +#(V2V, B)+79(V2V,T)+g(R(V,T)N, B), (11)
magnetic field and magnetic curve are introduced.

Let M be a(n > 2)-dimensional oriented Riemannian WhereR is the curvature tensor of/?, [31].
manifold. The Lorenz force of a magnetic fieldon M is  Proposition 2. Let V(s) be the restriction taz(s) of a
defined to be a skew symmetric operatagiven by Killing vector field, sayv” of M3, then,[31]

9(¢(X),Y) = F(X,Y), ®3) V() =V(k)=V(r)=0.

for all X,Y € x(M), wherex (M) is the space of vector o X _ _
fields. The magnetic trajectories &f are curves: on )/ Definition 6. Letz : I C R — M~ be a curve in 3D oriented

which satisfy the Lorenz equation Riemannian spacg\/3, g) and F be a magnetic field on/.
We call the curver is a T-magnetic curve if the tangent vec-
Vera' = p(z'). (4)  tor field of the curve satisfy the Lorentz force equation, that
. , . is, [31
The mixed product of the vector fields, Y, Z € x(M) is 31]
defined by VT =¢(T) =V xT.
9(X xY,Z) =dvy(X,Y, 2). (5) Definition7. Letx : I ¢ R— M? beacurvein 3D oriented

. i Riemannian spacg\/3, g) and F be a magnetic field on/.
Let V" be a Killing vector field on\/ andF, = v,dvy be the  \yg 5| the curver is a N-magnetic curve if the normal vec-

corresponding Killing magnetic field, whetes denoted the -y, fie|q of the curve satisfy the Lorentz force equation, that
inner product. Then, the Lorentz force of thg is is, [32]

H(X)=V x X. (6) Vo N =¢(N)=V x N.

Consequently, the Lorentz force equation may be written aspefinition 8. Letz : I R — M3 be a curve in 3D oriented
) . 3 L
Vor =V x . @) Riemannian spac@M ,9) andF.be a ma_gnetlc_ﬁeld on/.
We call the curve is a B-magnetic curve if the binormal vec-
A unit speed curve: is a magnetic trajectory of a magnetic tor field of the curve satisfy the Lorentz force equation, that
field V if and only if VV can be written along as is, [32]

V =w(s)T(s) + k(s)B(s), (8) VB =¢(B)=V x B.

where the functio(s) associated with each magnetic curve . _—
. : . . 2.4. Basic definitions and theorems of conformable frac-
will be called its quasislope measured with respect to the tional curves

magnetic fieldl”, [31].

Proposition 1. Letz : I ¢ R — M? be a curve in a 3D ori-
ented Riemannian Manifold\/3, g) and V' be a vector field
along the curver. One can take a variation af in the direc-
tion of V, say,amagd’ : I x (—e,¢) — M? which satisfies
I'(s,0) = z(s), (dT'/ds)(s,k) = V(s). In this setting, we
have the following funtions:

In this part of the preliminaries section, we present brief in-

formation about conformable curves using conformable frac-

tional derivative.

Definition 9. Letz = z(s) be a curve. Ifr : (0,00) —R3is

a—differentiable curve, then is called a conformable curve

in R3, [33].

(1) The speed funtion(s, k) = ||(dl'/ds)(s, k)| , Definition 10. Letz : (0,00) — R3 be a conformable curve

(2) The curvature functior(s, k) of (s), in R3. Velocity vector of: is determined by

(3) The torsion functiorr (s, k) of z(s). The variations of Da(z)(s) (12)
those functions at = 0 are slma 7

forall s € (0, 0), [33].

dv Definition 11. Letx : (0,00) — R3 be a conformable curve
V(v) = (dlc(s’ k)) lk=0=g(V:V, T, (9 in R3. Then the velocity function of z is defined by

dr D,
Vi) = (G510} lecam g(V3VL) ofs) = 1D=@E,

= 26g(VeV, T) + g(R(V,T),N),  (10)  forall s € (0, 00), [33].
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4 AYKUT HAS AND BEYHAN YILMAZ

Definition 12. Letx : (0,00) — R3 be a conformable curve Definition 15. Letz : I C R — M?3 be a conformable curve

in R3. The arc length function of z is defined by in 3D oriented Riemannian spa¢é/3, g) and F' be a mag-
0 netic field onM. If the vector area of the tangent curve of
5(s0) = I, || Da()(s0)]l , x with respect to the conformable frame satisfies the Lorenz

force equation, the curve is called fractional t-magnetic

forall sy € (0,00). If = 1forall sy € (0, 00), it's said X
50 € (0,00). 1T v(s) s0 € (0,00) curve, that is

thatz has unit speed33].
Conclusion 1.Letz : (0,00) — R?* be a conformable curve Dt(s)
in R3. The concepts velocity vector, velocity function and arc
length function obtained according to conformable fractional
derivative are equivalent to the standard concepts. Proposition 3. Letz : I C R — M?* be a unit speed frac-
Definition 13. Letz be a conformable curve. B, (z)(s) #  tional t-magnetic curve in 3D oriented Riemannian space
0 for all s € (0,00), z is called a conformable regular (M?,g) and F be a magnetic field od/ with the con-
curve,[33]. formable frame elements, n, b, k., 7, }. Then, we have the
Definition 14. Letx = x(s) be a regular unit speed con- Lorenz force according to conformable frame as

formable curve in3D Riemannian manifold where mea-

=¢(t)=V xt.

sl

sures its arc length. Also, let= D, (z)(s)s*~! be its unit (1) 0 Fa(s) 0 t(s)
tangent vectorn = D, (t)(s)/|| Do (t)(s)| be its principal ¢(n) | = | —rals) 0 Qs | [nls)], (16)
normal vector ancb = ¢ x n be its binormal vector. The ¢(b) 0 —i(s) 0 b(s

triple {¢,n, b} be the conformable Frenet frame of the curv'eWherte is a certain function.

z(s). Then the conformable Frenet formula of the curve ISoroof. Letz : I ¢ R — M3 be a unit speed fractional

given by t-magnetic curve in 3D oriented Riemannian spatg’, g)
D, (t)(s) andF' be a magnetic field on/ with the conformable frame
Du(n)(s) elements{t, n, b, ko, 7o }. Sinceg(t) € Sp{t,n, b}, we get
Do (b)(s)

¢(t) = >\1t + Hmin + Ulb
0 Ka(s) 0 t(s)
= | —kKals) 0 Ta($) n(s) |, (13) andthus
0 —Ta(s) 0 b(s)
wherers,(s) = [IDa(6)(5)] andra () = (Da(n)(s).b(s)) M=o =0
are curvature and torsion of, respectively. = g(o(t),n) (Kan,n) = Ka,

Conclusion 2. Letz = z(s) be a regular unit speed con-
formable curve where measures its arc length. The follow-
ing relation exists between the curvature and torsion at-
cording to Frenet frame and the conformable curvature and
torsion ofz according to conformable Frenet frame as B(t) = kan.

=g
=0.
From the above equations, we can write

o l—«
Fa =8 K (4)  similarly, we can easily calculate that

To = 82 7T. (15)

o(n) = —kat + Q1b,
Conclusion 3. Letx = z(s) be a regular unit speed con-
formable curve where measures its arc length. As can be ¢(b) = —{n.
seen from Eq(13), whenz is a unit speed curve, the con- This completes the prool
formable derivative has no effect on the Frenet frame, so th?—’roposition 4. Letz be a unit speed fractional t-magnetic
F.rene.t elements do not undergo any change. However, Corﬁfajectory of a magnetic field if and only if V' can be writ-
sidering Eqs(14) and(15)), the curvature and torsion of the x ten along the curve as

curve has changed under the conformable fractional deriva-

tive. V = Qqt + Kab. (17)

3. Main results Proof. Letx be a unit speed fractional t-magnetic trajectory
of a magnetic field”. Using Proposition 3 and equatidfi),

3.1. Fractional t-magnetic curves we can easily see that

In this subsection, we define the fractional t-magnetic curve V = Qit + Kb

with a conformable fractional derivative focus. We are also

obtained some characterizations of this curve. This completes the prooll

Rev. Mex. Fis68041401



EFFECT OF FRACTIONAL ANALYSIS ON MAGNETIC CURVES 5

Theorem 6. Letx be a unit speed fractional t-magnetic trajectory aride a Killing vector field on a simply connected space
form (M3, g) . Then the following equations exist

1 /
0 =c, c € R, </€i {291 — Ta:|> =0,

and

1 !/
— (QlﬁaTa — ka2 4 (1 — a) st72) 4 220 C/ia>:| + Kakih, =0
(0%

whereC is the curvature of the Riemanian spatg’.
Proof. Let V' be a magnetic field in a Riemanian 3D manifold. If theth conformable fractional derivative of EQLT) is
taken with respect to s and conformable frame formulas are applied, we have

DV = Da(S1t) + Da(kab),
D,V = s'7Qt + (W ke — KkaTa)n + s %KL D. (18)

It can be easily seen that¥(v) = 0 of Proposition 1, the case i§D,V,t) = 0. So, if this equation is used in the above
equation,
D,V = (1 Kka — KaTa)n + slfaf@;b,

is obtained. If the conformable derivative of the above equation with respeds taken once again from the—th order and
conformable frame formulas are applied, we have

D2V = (s Qika + s k), — s KL Ta — 8" Y KaTh) 1
+ (ko — KaTa) (—kat + Tab) + (1 — ) 81729, b+ 272K b — s17 %/ . (19)
If the above equation is adjusted, we get

1

DXV = (K27a — K2) t+ (8" ko + 8" QuK), — 28" %Kl — 81 %KaTh) 10

/
+ (QKaTa — KaTp + (1 — @) 8" 727K, + s°72*K1) b (20)
Then, if V(v) = 0in Proposition 1 and Eq49), (10) and(11) are considered in E¢18), following equation is obtained
s17Q) =0, (21)
where it is clear that'~= # 0. So, as can be clearly seen
QO =c,ceR.
Thus, the first part of the theorem is proved. TI{€8) and(20) are considered witl’ (x) = 0 in Proposition 1, we obtain
s kg + 8T KL, — 280K T — 8 T %Kot + g(R(V, t)t,n) = 0.

In particular, if M3 has constant curvature C, then

g(R(V,t)t,n) = Cg(v,n) =0,
and so,

— / — ! — / — /
1T kg + 81T KL, — 280K Ty — 8 T %R T, = 0,

and
(Q1ka) — 26T — KaTl, = 0. (22)

(2 fer]) -

Rev. Mex. Fis68041401
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Thus, the second part of the theorem is proved. Simil@i®) and (20) are considered witfy' () = 0 in Proposition 1, we
obtain

1 !/
st (H [QlliaTa—/{aTg—F {1-a} 51720“/1; + 52720‘/-@:; + g{R(V, ), b}}) +317°‘11a/-1; + g(R[V,tn,b) = 0. (24)
Hence, if M3 has constant curvature C, thefR[V,t]t,b) = Cg(V,b) = Ck, andg(R[V,t]n,b) = 0. So, we have the
following equations

1 /
si« (/{ [QikaTa — KaTh + {1 — a} s' 2%k, + 7260 + Clia]) + 8 %kl =0
(03

and /
1
( [QmaTa _ HQTi +{1-a} S1—2a,€; + 32‘2%2 + C/@-a]> + Kakin, = 0.

Ra
So, the last part of the theorem is proved and the proof is complliked.
Corollary 1. Letx be a unit speed fractional t-magnetic curvesib oriended Riemanian manifold\/3, g). If the function
) is a zero andk,, IS non-zero constant function, then the cusves a helix or circle. Moreover, the axis of the helix is the
vector fieldV.
Proof. We assume that be a fractional t-magnetic curve D Riemann space witR; is a zero and,, is non-zero constant

function, then from Eq(23), we get
(42 |3 -] ) =0

2 /
(—mara) =0.
If necessary algebric operations are done, we obtain

and

Vi !
2K, To + KaT, =0,

and , , ,
TaKa — Taky  3KaTa
2 -2
HO( K:Ot

Finally, if the above equation is arranged, we get

Sincex,, is non-zero constant function, we get
.
<a> = constant
Ka
|

Remark 1. The conformable derivative for differentiable functions is equivalent to a simple change of variable. Precisely,
u = z%/a. It should be noted that a criticism of the conformable derivative is that, although conformable at the Hmit,

it is not conformablex — 0. From the point of view of the assertion about the equality of the conformable derivative to a
change of variables, one can say that the conformable derivative is not conformable as at the otherirbibecause® /«

is undefined atv = 0, [22].

3.2. Fractional n-magnetic curves

In this section, we redefine the n-magnetic curve with a conformable fractional derivative focus. We are also obtained some
characterizations of this curve.

Definition 16. Letz : I € R — M? be a conformable curve in 3D oriented Riemannian spadé€, g) and F' be a magnetic

field on M. If the vector area of the tangent curve with respect to the conformable frame satisfies the Lorenz force equation,
thex curve is called fractional n-magnetic curve, that is

D,n

Slfa

=¢(n) =V xn.

Rev. Mex. Fis68041401



EFFECT OF FRACTIONAL ANALYSIS ON MAGNETIC CURVES 7

Proposition 5. Letz : I ¢ R — M?3 be a unit speed fractional n-magnetic curve in 3D oriented Riemannian $pétey) and
F be a magnetic field on/ with the conformable frame elemedtsn, b, ., 7. }. Lorenz force eqations in the conformable
frame are written as

o(t) 0 Ka(8) 0 t(s)
o(n) | = —kals) 0 Ta($) n(s) |, (25)
o(b) —M(s) —Tals) O b(s)

wheref), is a certain function.
Proof. Letx : I € R — M? be a unit speed fractional n-magnetic curve in 3D oriented Riemannian gpéteg) and F be
a magnetic field o/ with the conformable frame elements n, b, k., 7o }. Sincep(t) € Sp{t,n, b}, we get

@(t) = Aot + pan + o2b
and thus

A2 = g(¢(t), 1) =0,
p2 = g(9(t),n) = —g(d(n),t) = Ka,
o3 = g(¢(t),b) = Q.
From the above equations, we can write
(t) = Kan + Q2d.

Similarly, we can easily calculate that

d)(n) = —Kat + Tab7
$(b) = —Qot + Tub.

This completes the prooll
Proposition 6. Letz be a unit speed fractional-magnetic trajectory of a magnetic field if and only if V' can be written
along the curver as

V =714t — Qon + Kub. (26)

Proof. Let = be a unit speed fractional n-magnetic trajectory of a magnetic ¥ieldsing Proposition 3 and Ed6)), we can
easily see that
V =14t — Qan + Kkb.

This completes the prooll
Theorem 7.Letx be a unit speed fractional n-magnetic trajectory dridbe a Killing vector field on a simply connected space
form (M3, g). Then the following equations exist

/

11—«
s %, + Qake =0,

(a —1)s'722Q) — s>729Q) — 517! 7 + Q72 = CNy,

1 /
( [—s' Q70 + 872K — s T 7.} + {1 —a} lea/ﬁ’a]> + Ko (Kl — 57 17080) =0
Ka

whereC is the curvature of the Riemanian spadé.
Proof. Let V' be a magnetic field in a Riemanian 3D manifold. If theth conformable fractional derivative of E(26)) is
taken with respect to s and conformable frame formulas are applied, we have

DoV = Dy (Tat) — Do (Q2n) + Dy (kab),
DoV = (8'7%7) + kaQo) t — s'7*Un + (' K), — Qa7a) b (27)

It can be easily seen thatlf(v) = 0 of Proposition 1, the case i§ DV, t) = 0. So, if this equation is used in the above
equation, we get
D,V = —s'7*Qhn + (Sl_a/ﬁi) — Qo74) b,

Rev. Mex. Fis68041401



8 AYKUT HAS AND BEYHAN YILMAZ

is obtained. If the conformable derivative of the above equation with respeds taken once again from tlee—th order and
conformable frame formulas are applied, we have

DIV = (—(1—a)s' 72*0n — s 2*Q)) n — s' Q) (—kat + Tab)

+ (1= ) 8" 72K, + 872060 — 8" QT — 8 0T, b— (s KL Ta — Qo) N

If the equation is arranged, we obtain
DXV = s'"Qhkat + ((a— 1) s' 7220 — s*722Q0 — 'K/, 70 + Qa72) 10
+ (=" QT + (1 — a) s 72K, 4+ 8272k — 1T, — 8T 7)) b (28)
Then, if V(v) = 0in Proposition 1 and Eq49), (10) and(11) are considered in E¢27), we have
177 4 ko = 0. (29)
Thus, the first part of the theorem is proved. Then EZ{E) and(28) are considered with' () = 0 in Proposition 1, we obtain
(a—1)s'722Q) — 27200 — s/ 1, + Q72 + g(R(V, t)t,n) = 0.

In particular, if M3 has constant curvature C, then

g(R(V,1)t,n) = Cg(V,n) = —Cy

and so,
(0 —1)s'722Q) — 272000 — s'7%/ 1, + Q72 = CNy. (30)

Thus, the second part of the theorem is proved. Similarly EX5§.and (28) are considered with'(7) = 0 in Proposition 1,
we obtain

1 !
sl—@ < [—slfaQ’QTa +{1-a} 5172'1%; + 52720‘,%2 —gl7@ {QgTa}' + g(R(V, t)t, b)]>

Ko
+ 5 %kgkl, + g(R(V,t)n,b) = 0. (31)

Hence, ifM? has constant curvature C, thef2(V, t)t,b) = Cg(V,b) = Ck, andg(R(V,t)n,b) = 0. So we obtain following

li
</<;1 [QokaTa — KaTh + {1 — a} s' 2%k, + s 726l + C’/{a]) + ko (Kl — s Qa7,) = 0.
(03

Thus, the last part of the theorem is proved and the proof is comiikted.
Corollary 2. Considering(2; is a non-zero constant function, we easily see that the fractional n-magnetic curve is a curve in
the Euclidean 3-space.
Corollary 3. Letx be a unit speed fractional n-magnetic curve in 3D oriented Riemann malﬁimm g) . If the functionQ,
is non-zero constant, then the curwés a slant helix. Moreover, the axis of the slant helix is the vector field
Proof. We assume that is a fractional n-magnetic curve in Euclidean 3-space with non-zero constant fufdgtitimen from
(29), (30) and(31)), we have ) )

QQZ—S Tfa :Sl_aﬁi-

K:Oé TOL
If the above equation is arranged, we get
k2 + 72 = constant

If necessary arregements are made, we obtain

/ / _ 2 2
Toka — KoTa = —$ (/-@a + Ta) ,

and
K2 7o\
Q _ « @
2= 2 2 :
KE, + 75 \ Ea

These complete the prodil
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EFFECT OF FRACTIONAL ANALYSIS ON MAGNETIC CURVES 9
3.3. Fractional b-Magnetic Curves

In this section, we define the b-magnetic curve with a conformable fractional derivative focus. We are also obtained some
characterizations of this curve.

Definition 17. Letz : I € R — M? be a conformable curve in 3D oriented Riemannian spadé€, g) and F' be a magnetic

field on M. If the vector area of the tangent curve with respect to the conformable frame satisfies the Lorenz force equation,
the x curve is called fractional b-magnetic curve, that is

Dab _ 45y = v x b,

slfa

Proposition 7. Letz : I € R — M? be a unit speed fractional b-magnetic curve in 3D oriented Riemannian gpdceg)
and F' be a magnetic field ofi/ with the conformable frame elemeris n, b, k., 7o }. SO, Lorenz force according to the
conformable frame is written as

B(t) 0 Qs3(s) 0 t(s)
o(n) | =1 —Qs(s) 0 7als) n(s) |, (32)
o(b) 0 —7a(s) 0 b(s)

where; is a certain function.
Proof. Letx : I € R — M? be a unit speed fractional b-magnetic curve in 3D oriented Riemannian &péteg) and F be
a magnetic field o/ with the conformable frame elements n, b, k., 7o }. Since¢(t) € Sp{t,n,b}, we get

@(t) = Mgt + pgn + o3db

and thus

From the above equations.,we can write

Similarly, we can easily calculate that
d)(n) = 793t + Taba
d(b) = —Ton.

This completes the prooll
Proposition 8. Let x be a unit speed fractional b-magnetic trajectory of a magnetic field and only if V can be written
along the curver as

V =14t + Qs3b. (33)

Proof. Let = be a unit speed fractional b-magnetic trajectory of a magnetic ¥ieldsing Proposition 3 and Ed6)), we can
easily see that
V = Tat -|— ng

This completes the prooll
Theorem 8. Letx be a unit speed fractional b-magnetic trajectory dridbe a Killing vector field on a simply connected space
form (M3, g). Then the following equations exist

1—a, 1 __
s %, =0,

/ /
KoTa — 27483 =0,

1 /
< [kaT2 — Qam2 + {1 — a} s'729Q% + s> 722Q4 + Cﬁa]> + 87k = 0.

(63
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10 AYKUT HAS AND BEYHAN YILMAZ

Proof. Let V' be a magnetic field in a Riemanian 3D manifold. If theth conformable fractional derivative of E(B3)) is
taken with respect to s and conformable frame formulas are applied, we have

D,V = "7t + (KaTa — Q3Ta) 1+ 877 *Q%0. (34)
It can be easily seen thatWf(v) = 0 of Proposition 1, the case ig D, V,t) = 0. So if this equation is used in the above on,
DoV = (KaTa — Q37a) n + s ~*Q4b,
is obtained. If the conformable derivative of the above equation with respeds taken once again from tlee—th order and
conformable frame formulas are applied, we have
DIV = (s' "kl Ta + 8" T KkaTh — 8" QST — 81037, ) 10
+ (FaTa — Q37a) (=Kot + Tab) + (1 — @) s'722Q5b + s> 722Q4b — s' Q.
If the equation is arranged, we get
D2V = (kaTaQs — k27a) t + (s' TR0 Ta — 28" 710 ) n+ (KaT2 — Q372 + (1 — a) s'727Q5 4+ s*72*Q%) b (35)
Then, if V(v) = 0in Proposition 1 and Eq49), (10) and(11) are considered in equatigf4), we have
st=rl =0. (36)

Thus, the first part of the theorem is proved. Then equai{®fisand(35) are considered with’(x) = 0 in Proposition 1, we
obtain
TR T — 28107, + g(R(V, t)t,n) = 0.

(e

In particular, if M3 has constant curvature C, thetR(V, t)t,n) = Cg(V,n) = 0 and so following equation
K Ta — 2574 = 0, (37)

is obtained. Thus, the second part of the theorem is proved. Similarly if the[Esand (35) are considered with'(7) = 0
in Proposition 1, we obtain

Ra

!/
sl—@ ( [kaTy = Qa7z + {1 — a} s 7200 + s*720Q4" + g{R(V, t)t, b}})
+ 817k + g(R[V, t]n,b) = 0.

Hence, ifM? has constant curvature C, thefR(V, t)t,b) = Cg(V,b) = Ck, andg(R(V,t)n,b) = 0. So, we have following

!
<1 [I{aTg — Q372 + {1 —a} s' 720, + 527200 + Clia]> + 57k = 0.
Thus, the last part of the theorem is proved and the proof is compilited.
Corollary 4. Letx be a fractional b-magnetic curve D oriented Riemanian manifolth/3, ). If the function{2; is a
constant function, then the curwds a general helix. Moreover, the axis of the general helix is the vectorifield
Proof. We assume that be a unit speed fractional b-magnetic curve in Euclidean 3-spacé)yitha constant function. Then
from the equatiorf37), we get

Ko Ta — 257, =0

and

Since(2; is a constant function, it can be say that is a constant function. In addition, considering the equaiit), the
following equation can be easily seen

Ta
— = constant
Ra

This completes the prooll
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EFFECT OF FRACTIONAL ANALYSIS ON MAGNETIC CURVES 11

Example 1.Let x be a fractional t-magnetic trajectory of a magnetic figldf the tangent vector field t is perpendicular to the
magnetic field, the Lorentz force is maximum and the moves by the particle for difieneaities are given in Figs. 1 and 2 in

the magnetic field.
x(s) = (—/sl_o‘ Sins,/sl_a coss,4sl_°‘> .

FIGURE 2. Fractional t-magnetic curve(s) for a = 0.5(Orange), a = 0.3(Purple) anda = 0.1(Green), respectively.

Rev. Mex. Fis68041401



12 AYKUT HAS AND BEYHAN YILMAZ
Example 2. Let z be a fractional t-magnetic trajectory of a magnetic figldr-rom Corollary 1, we can easily see tléat = 0

ands,, is a constant function. The figure of the t-magnetic curve for differergtlues are given in Figs. 3 and 4 in the magnetic
field.

o 3 11— - 4 11— 5 11—«
x(s)—( 49/5 sin s, 19 s cos s, m s .

FIGURE 4. Fractional t-magnetic curve(s) for o = 0.5(Orange), o = 0.3(Purple) anda = 0.1(Green), respectively.

Rev. Mex. Fis68041401



EFFECT OF FRACTIONAL ANALYSIS ON MAGNETIC CURVES 13

Example 3. Let « be a fractional n-magnetic trajectory of a magnetic fiéld-rom Corollary 3, we can easily see tl§at is
non-zero constant. The moves by the particle for differemalues are given in Figs. 5 and 6 in the magnetic field.

_ 9 11—« 25 11—« 9 1—a 25/ l1—a 15/ 11—«
x(s) = (16/8 cos 255 + 16/8 cos 9s, 16/8 sin 25s 6 s° " “sin9s, 3 s cos17s

FIGURE 6. Fractional n-magnetic curve(s) for « = 0.5(Orange), « = 0.3(Purple) anda = 0.1(Green), respectively.

4. Conclusion under the conformable derivative. On the other hand, cur-
vature and torsion concepts are one of the most important
In this article, starting from the effect on the curves the ef-factors in determining the characterization of the curve, as
fects of conformable fractional derivatives and integrals onpose who work on the theorem of curves, which is one of
magnetic curves are investigated. The Frenet frame has be@is sub-branches of differential geometry, know very well.
tried to be formed with the help of conformable derivative Therefore, the difference of this study from the others is that
of a unit speed conformable curve. However, as can be seqRe curvature and torsion of a curve are obtained depending
from Eq.(14), the Frenet frame of the unit speed curve is notyp, the fractional derivative. As can be seen from Conclusion
affected by the conformable derivative, that is, the elementg the curvatures of the conformable curve have changed un-
of the Frenet frame have not undergone any change under thr the conformable derivative. In this study, this change in
conformable derivative. By U.Gzlitok et al. are mentioned  {he curvature of the curve is examined and visualized with

in article [33], the physical properties (velocity, speed, arcrious examples to better understand the results.
length) of the unit speed conformable curve do not change

Rev. Mex. Fis68041401



14

—_

[\V]

ot

10.

11.

12.

13.

14.

15.

. T. Korpinar and R.C. Demirkol,

AYKUT HAS AND BEYHAN YILMAZ

. M. Barros, A. Romero, Magnetic vorticesePL, 77 16.
(2007) 1. https://doi.org/10.1209/0295-5075/
( (134002 |

. H. Ceyharet al., Electromagnetic curves and rotation of the po-
larization plane through alternative moving frantgyr. Phys. 17.

J. Plus 135 (2020) 867 Inttps://doi.org/10.1140/
epip/s13360-020-00881-2

T. Korpinar and R.C. Demirkol, Electromagnetic curves of g

the linearly polarized light wave along an optical fiber in a
3D semi-Riemannian manifold]l. Mod. Optik 66(8) (2019)
857. |https://doi.org/10.1080/09500340.2019.

1579930 .

19.

Electromagnetic curves of
the linearly polarized light wave along an optical fiber in a
3D Riemannian manifold with Bishop equatiods,Mod. Op-
tik, 200 (2020) 163334 https://doi.org/10.1080/
09500340.2019.15 /79930

T. Korpinar and R.C. Demirkol, Electromagnetic curves of the
polarized light wave along the optical fiber in De-Sitter 2-space
S12,Indian J. Phys. 95 (2021) 147 |https://doi.org/
10.100//s12648-019-016/4-6

T. Kdrpinar, Geometric magnetic phase for timelike spheri-
cal optical ferromagnetic modelnt. J. Geom. Methods Mod.
Phys, 18(2021) 215009%ttps://doi.org/10.1142/

S021988 /821500997 |

T. Korpinar, R.C. Demirkol, Z. Krpinar and V. Asil, New
magnetic flux flows with Heisenberg ferromagnetic spin of
optical quasi velocity magnetic flows with flux densifgev.
Mex. Fis, 67(2021) 378https://doi.org/10.31349/
RevMexFis.67.378

T. Korpinar, R.C. Demirkol, Z. irpinar and V. Asil, Frac-
tional solutions for the inextensible Heisenberg antiferromag-
netic flow and solitonic magnetic flux surfaces in the binor-
mal direction,Rev. Mex. Fis.67 (2021) 452https://doi.
0rg/10.31349/RevMexFIs.67.452

Z. Ozdemir,i. Gok, Y. Yayliand F.N. Ekmekci, Notes on mag-
netic curves in 3D semi-Riemannian manifoldsirkish Jour-
nal of Mathematics39(3) (2015) 412https://doi.org/
10.3906/mat-1408-31

25.

A. Loverro, Fractional Calculus: History, definitions and appli-
cations for the engineer, (USA, 2004)

R.L. Bagley and P.J. Torvik, A theoretical basis for the appli-
cation of fractional calculus to viscoelasticiti. Rheol, 27(3)
(1983) 201https://doi.org/10.1122/1.549724

K.B. Oldham and J. Spanier, The fractional calculus, (Aca-
demic Pres, New York, 1974)

M. Caputo, Linear models of dissipation whose Q is
almost frequency independent-l1iGeophys. J. R. Astr.
Soc, 13(5) (1967) 529https://doi.org/10.1111/,.
1365-246X.1967.tb02303.X

R. Hilfer, Applications of fractional calculus in physics,
(World Scientific, Singapore, 2000https://doi.org/
10.1142/3779

A. Kilbas, H. Srivastava and J. Trujillo, Theory and applica-
tions of fractional differential equations, (North-Holland, New
York, 2006).

20.

21.

22.

23.

24.

28.

29.

30.

31.

D. Baleanu and S.I. Vacaru, Constant curvature coefficients and
exact solutions in fractional gravity and geometric mechanics,
Cent. Eur. J. Phys.(5) (2011) 1267 https://doi.org/
10.24/8/s11534-011-0040-5

K.S. Miller and B. Ross, An introduction to the fractional cal-
culus and fractional differential equations, (Wiley, New York,
1993)

B. Yilmaz, A new type electromagnetic curves in optical fiber
and rotation of the polarization plane using fractional calculus,
Optik-International Journal for Light and Electro247(2021)
168026.

K.A. Lazopoulos and A.K. Lazopoulos, Fractional differential
geometry of curves and surfacd®ogr. Fract. Differ. Appl,
2(3) (2016) 169https://doi.org/10.18576/pfda/

020302 .

T. Yajima, S. Oiwa and K. Yamasaki, Geometry of curves
with fractional-order tangent vector and Frenet-Serret formu-
las, Fractional Calculus and Applied Analysi&1(6) (2018)
1493 |https://doi.org/10.1515/fca-2018-0078

D.R. Anderson and D.J. Ulness, Results for conformable dif-
ferential equations, Preprint (2016).

D.R. Anderson, E. Camrud and D.J. Ulness, On the nature of
the conformable derivative and its applications to physiosar-
nal of Fractional Calculus ans Applications0(2) (2019), 92.

T. Yajima and K. Yamasaki, Geometry of surfaces with
Caputo fractional derivatives and applications to incom-
pressible two-dimensional flows]. Phys. A: Math. Theaqr.
45(6) (2012) 065201. https://doi.org/10.1515/
fca-2018-00/8

M.E. Aydin, M. Bektas, A.OOgrenmis, A. Yokus, Differen-
tial geometry of curves in Euclidean 3-space with fractional or-
der,International Electronic Journal of Geometrd/4(1) (2021)
132.https://doi.org/10.36890/iejq.751009

M.E. Aydin, A. Mihai and A. Yokus, Applications of frac-
tional calculus in equiaffine geometry: Plane curves with frac-
tional order,Math Meth Appl Scj 44 (2021) 13659https:
/Idoi.org/10.1002/mma.764913669

26. D.J. Struik, Lectures on classical diferential geometry, (2nd

edn. Addison Wesley, Boston, 1988)

27. M. Barros, General helices and a theorem of Lanéteic, Am.

Math. Soc, 125(5) (1997) 1503.

S. lzumiya , N. Takeuchi, New special curves and developable
surfacesTurk J Math 28 (2004) 153.

R. Khalil, M.A. Horani, A. Yousef and M. Sababheh, A new
definition of fractional derivativeJournal of Computational
and Applied Mathematic264 (2014) 65.nttps://dol.
0rg/10.1016/j.cam.2014.01.002

T. Abdeljawad, On conformable fractional calculugurnal
of Computational and Applied Mathemati2g(9) (2015) 57.
https://doi.org/10.1016/].cam.2014.10.016

M. Barros, J.L. Cabrerizo, M. Feamdez and A. Romero, Mag-
netic vortex filament flowsJournal of Mathematical Physics
48(8) (2007) 082904 https://doi.org/10.1063/1.

2/6/535 .

Rev. Mex. Fis68041401


https://doi.org/10.1209/0295-5075/77/34002�
https://doi.org/10.1209/0295-5075/77/34002�
https://doi.org/10.1140/epjp/s13360-020-00881-z�
https://doi.org/10.1140/epjp/s13360-020-00881-z�
https://doi.org/10.1080/09500340.2019.1579930�
https://doi.org/10.1080/09500340.2019.1579930�
https://doi.org/10.1080/09500340.2019.1579930�
https://doi.org/10.1080/09500340.2019.1579930�
https://doi.org/10.1007/s12648-019-01674-6�
https://doi.org/10.1007/s12648-019-01674-6�
https://doi.org/10.1142/S0219887821500997�
https://doi.org/10.1142/S0219887821500997�
https://doi.org/10.31349/RevMexFis.67.378�
https://doi.org/10.31349/RevMexFis.67.378�
https://doi.org/10.31349/RevMexFis.67.452�
https://doi.org/10.31349/RevMexFis.67.452�
https://doi.org/10.3906/mat-1408-31�
https://doi.org/10.3906/mat-1408-31�
https://doi.org/10.1122/1.549724�
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x�
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x�
https://doi.org/10.1142/3779�
https://doi.org/10.1142/3779�
https://doi.org/10.2478/s11534-011-0040-5�
https://doi.org/10.2478/s11534-011-0040-5�
https://doi.org/10.18576/pfda/020302�
https://doi.org/10.18576/pfda/020302�
https://doi.org/10.1515/fca-2018-0078�
https://doi.org/10.1515/fca-2018-0078�
https://doi.org/10.1515/fca-2018-0078�
https://doi.org/10.36890/iejg.751009�
https://doi.org/10.1002/mma.764913669�
https://doi.org/10.1002/mma.764913669�
https://doi.org/10.1016/j.cam.2014.01.002�
https://doi.org/10.1016/j.cam.2014.01.002�
https://doi.org/10.1016/j.cam.2014.10.016�
https://doi.org/10.1063/1.2767535�
https://doi.org/10.1063/1.2767535�

EFFECT OF FRACTIONAL ANALYSIS ON MAGNETIC CURVES 15

32. Z.Bozkurt, I. Gok, Y. Yayli and F.N. Ekmekgi, A new approach 33. U. Gozutok, H.A. Coban and Y. Sagiroglu, Frenet frame with
for magnetic curves in 3D Riemannian manifoldsurnal of respect to conformable derivativigijomat, 33(6) (2019) 1541.
Mathematical Physigs55 (2014) 053501https://doi. https://doi.org/10.2298/FIL1906541G
0rg/10.3906/mat-1408-31

Rev. Mex. Fis68041401


https://doi.org/10.3906/mat-1408-31�
https://doi.org/10.3906/mat-1408-31�
https://doi.org/10.2298/FIL1906541G�

