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L. Córdova-Castillo, J. M. Olvera-Orozco and S. Cuevas
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A. Figueroa

CONACYT-Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos,
Av. Universidad 1001, Chamilpa, 62209, Cuernavaca, Morelos, México.
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Analytical solutions for a continuum model of a DC gas discharge were obtained by asymptotic approximations. The solutions are one-
dimensional and stationary. Three different cavity configurations of electrode pairs were considered, namely, parallel flat plates, concentric
cylinders and concentric spheres. The asymptotic approximations consider nonlinear effects that are present in the dynamics of the plasma
which are neglected in most of analytical solutions found in the literature. The obtained solutions determine the distribution of positively and
negatively charged particles, as well as the electric potential along the space domain. Analytical results agree quantitatively with results from
a spectral numerical solution developed for validation purposes. Such agreement was possible in a regime where the rate of charged particle
production was assumed to be very small. Finally the limits of this regime are reported.
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1. Introduction

Electric gas discharges are carried out in many applications
of industry and science. Glow discharge plasmas are consid-
ered cold even when they reach a mean temperature of ap-
proximately 11,600 K. Many weakly ionized laboratory plas-
mas are classified as low temperature plasmas [1,2]. Some of
the most well-known technological applications that use cold
plasmas are fluorescent luminaries (neon, mercury, etc.). An-
other application of plasma technology can be found in food
industry, where the sterilization processes of a wide variety of
vegetables are plasma-based at low temperatures [3]. Plasma
technology is also used to sterilize thermolabile equipment
and laboratory instruments that are sensitive to humidity [4].
However, some developments are so far limited by the poor
knowledge of some of the basic properties of plasma. The
inherent non-linear dynamics of plasma makes it difficult to
describe [5]. Currently, glow discharges in different types of
gases, subject to stationary electric and magnetic fields and
temperature conditions, are under theoretical and experimen-
tal investigation with the aim of determining the spatial dis-
tribution of all charged and uncharged particle involved.

There is no single way to approach plasma modelling. A
plasma is a system containing a very large amount of parti-
cles, usually of the order of Avogadro’s number, which makes
the description of individual particles hopeless. A com-

mon theoretical tool for plasma characterization is the macro-
scopic (fluid) approximation, which is the easiest option for
cold plasma modelling. Evidence suggests that most macro-
scopic mathematical models for cold plasmas can be derived
by considering all the involved species as fluids. This is a
reasonable assumption if we consider a pressure range within
0.5 to 5 Torr [6]. These approaches for plasmas are valid if,
for instance, the driving frequency of a radio-frequency (RF)
discharge and the discharge gap are much larger than the elec-
tron energy relaxation time (of the order of nano seconds) and
the mean free path (of the order of tens ofµm), respectively,
making the fluid model suitable to be used in this regime [7].

It is well known that all available computational methods
allow to consider diverse phenomena as, for instance, parti-
cle collisions and interactions, excitation, and recombination.
Additionally, the use of numerical tools enables a proper han-
dling of non-linearities, resulting in a more complete charac-
terization of plasma dynamics [1]. Nevertheless, the theoreti-
cal problem of predicting plasma physics is not only reduced
to the use of numerical tools, but can be addressed via ana-
lytical methods, whose capability to represent the physics of
cold plasmas is highly appreciated in literature. Analytical
solutions for cold plasma models have a reputation for being
too complicated, mainly due to cumbersome boundary con-
ditions and non-linearities which lead to oversimplifications
[8], that in most cases reduce the underlying problem to a
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set of diffusion equations [9]. However, there are advanta-
geous physical situations that can be genuinely described by
specific analytical solutions that cover most of the phenom-
ena associated with such special cases. The latter, motivates
the proposal to study basic but interesting cases of plasma
physics which could be analysed with analytical tools. In
our case, we use an analytical method that can be applied to
model a wide range of cold plasma problems, with its spe-
cific physical assumptions, while taking into account phe-
nomena such as recombination, attachment, and ionization.
The proposed solution approaches the non-linear mathemat-
ical nature of a glow discharge by asymptotic expansions,
which not only involve particle interactions but the advan-
tage of non-linear effects to study three different geometrical
configurations of electrodes: a pair of flat plates, a pair of
concentric cylinders, and a pair of concentric spheres. With
most of the cold plasma reactors developed in complex ge-
ometries, we consider the effect of cavity geometry in the
behaviour of cold plasmas. In fact, a simple pair of coaxial
cylindrical electrodes are directly applicable to the treatment
of superconductive cavities, supersonic nozzles and particle
accelerators, processes which imply the removal of chemical
impurities that lead to electric losses or unfavorable hydro-
dynamic turbulence [10]. In order to estimate the predictive
capabilities of the analytical method, we compare the analyt-
ical solutions with numerical calculations obtained through a
high-order spectral method based on Chebyshev polynomi-
als.

2. Physical model

The glow discharge in an inert monatomic gas is modelled
under electrostatic DC configuration for three different geo-
metrical cavities depicted in Fig. 1. The cavities are designed
in such a way that the bounding walls act as the driving and
ground electrodes, so that an electric potential can be applied
through the walls in order to ionize the gas bounded inside the
cavities. The electric connections in Fig. 1 are regularly used

in sputtering applications, where a negative voltage is ap-
plied to the cathode while the anode is grounded, commonly
referred as cathodic sputtering [11]. The chamber where a
discharge is performed often plays the role of the anode, as-
suming a zero potential in its surface. The first configura-
tion, (Fig. 1a), consists of two flat plate paralell electrodes,
the second configuration, (Fig. 1b), consists of two concen-
tric cylindrical electrodes, where the outer one is a hollow
cylinder and the inner one is a solid cylindrical rod. The third
configuration, (Fig. 1c), consists of two concentric spherical
electrodes, where the outer one is a hollow sphere and the in-
ner sphere is solid. Notice that in all three cases, the region
where the gas is ionized corresponds to the gap going froma
to b, which is the distance separating the electrodes.

Once a constant gas flow reaches a stationary distribution
inside the space between the electrodes, the powered elec-
trodes reach the breakdown potential to ionize the monatomic
gas. We assume that the ionization is obtained by collisions
of electrons with neutral gas atoms, reaching the removal of
only one electron in each collision. The creation of negative
ions is neglected since only positive ions and free electrons
are considered in the plasma dynamics. We do not consider
any applied or induced magnetic field, thus magnetohydrody-
namic effects are safely neglected. The recombination rate is
considered constant and its contribution to the overall process
is considered to be negligible. Furthermore, it is assumed
that positive ions generated from collisions exchange energy
through elastic collisions, and therefore are assumed to be at
the same temperature as neutral species. The ion mobility
and diffusivity coefficients are considered constant. Finally,
we consider that at the macroscopic scale, as well as, the elec-
tron’s and ion’s mean temperatures are constants, so bulk gas
convective motion is negligible. Our main aim is to charac-
terize the plasma, in terms of the electric potential, electric
field and spatial density distributions of positive and negative
charges for each analysed geometry. Taking into account all
these assumptions, the mathematical model is presented in
the next section.

FIGURE 1. Sketch for the three arrays of cavities in which the glow discharge was modelled. a) Parallel flat electrodes. b) Concentric
cylinders. c) Concentric spheres. For all the cases the non-powered anode was the grounded electrode.
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3. Mathematical model

The cold plasma is modelled with the fluid approximation
expressed in the following equations

∂ne

∂t
+∇ · ~Je = ki, (1)

∂ni

∂t
+∇ · ~Ji = ki, (2)

∇2ϕ =
e

ε
(ne − ni), (3)

where Eqs. (1) and (2) are balance equations for electrons
and ions densitiesne andni, whileJe andJi are the electron
and ion fluxes. Equation (3) is the Poisson’s equation for the
electric potential,ϕ, associated with the self-consistent elec-
tric field, resulting from the distributionsne andni [6]. Here
e is the electron’s charge andε is the electric permittivity of
the medium. The source termki considers the reaction rate
(i.e. ionization only due to collisions of electrons with neu-
tral gas atoms) occurring inside the chamber and is expressed
as

ki = ki0Nne exp (−Ei/kTe) , (4)

wherekio is known as the pre-exponential factor of the reac-
tion rate [12]. The Boltzmann constant, the electron temper-
ature in K, the neutral particle concentration in the plasma,
and the reaction activation energy are denoted byk, Te, N
andEi, respectively. The particle fluxes of electrons and ions
are given by

~Je = −De∇ne − µene
~E, (5)

~Ji = −Di∇ni + µini
~E, (6)

respectively, whereµi andµe are the mobilities of ions and
electrons, respectively, andDi andDe are the corresponding
diffusion coefficients. ~E is the total electric field which is
calculated from

~E = −∇ϕ. (7)

Equations (1)-(7) form a closed system which describes
the glow discharge of cold plasmas that satisfies the boundary
conditions described below.

3.1. General boundary conditions

We make use of a very well established set of general bound-
ary conditions but slightly modified in order to fit the restric-
tions of the analytical model. At the driving electrode (cath-
ode), the electric potential satisfies the Dirichlet condition

ϕ = −Vc, (8)

whereVc is the value of the applied electric potential at the
cathode. For the electron density at the cathode we set

(
−De∇ne − µene

~E
)
· n̂

= −γ
(−Di∇ni + µini

~E
) · n̂, (9)

which includes the secondary emission phenomenon by set-
ting the normal component of electron flux density to be pro-
portional to the counterpart of positively charged ion flux
modulated by an emission coefficientγ. We also assume that
the cathode absorbs ions perfectly in the sense that any ion
hitting the cathode surface captures a free electron emerging
from it and is reflected into the core of the plasma as a neutral
particle. Consequently, the ion density at the cathode satisfies

−Di∇ni · n̂ = 0. (10)

The boundary condition for the potential at the anode is
depicted by

ϕ = VA, (11)

whereVA is the value of the applied potential at the anode,
while the boundary condition for the electron density at the
grounded electrode (anode) is

ne = 0, (12)

which implies zero concentration of electron density due to
the assumption of infinitely fast recombination. Finally, since
the anode does not emit (or absorb) ions, the net inward flux
across its surface should vanish,i.e., ~Ji = 0, but for simplic-
ity we shall again consider this boundary as a perfect absorber
of ions, then ion density satisfies

−Di∇ni · n̂ = 0. (13)

Although conditions (8) - (13) would be the most appro-
priate, they will be modified properly due to specific limita-
tions of the analytical method. Such modification that allows
to faitfhfully compare our analytical and numerical solutions,
will be explained in the results section. Additionally, an at-
tempt to obtain a rough reproduction of computational results
of glow discharges reported in literature is carried out.

3.2. Dimensionless model

It is convenient to introduce the following dimensionless
variables

n∗e =
ne

n0
, n∗i =

ni

n0
, ϕ∗ =

ϕ

V0
,

t∗ =
t

τ
, ∇∗ = ∇L, ~E∗ =

~E

E0
, (14)

whereE0 = V0/L, the scaleV0 being a characteristic value
of potential related to the ionized gas (commonly the value of
breakout potential). In our case,V0 = Vc andL is a charac-
teristic length scale imposed by the specific geometry of the
cavity. n0 is a characteristic particle concentration scale, of-
ten considered as the neutral gas amount used in a discharge.
The set of Eqs. (1) - (7) can be combined and reduced to just
three equations by inserting the flux density Eqs. (5), (6) and
(7) into Eqs. (1) and (2) respectively. Doing so, and introduc-
ing the dimensionless variables, we obtain a dimensionless
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system of three transport equations for the densities of ions
and electrons, and for the electric potential. Dropping the
asterisk, the dimensionless system of equations for the cold
plasma takes the following form

ξ
∂ne

∂t
+ Pe∇ϕ · ∇ne = ∇2ne

+ Dane + ΓPe(ni − ne)ne, (15)

ξβ
∂ni

∂t
− Pi∇ϕ · ∇ni = ∇2ni

+ βDane − ΓPi(ni − ne)ni, (16)

∇2ϕ = Γ(ne − ni), (17)

where the dimensionless coefficients are defined as follows

Pe =
µeVo

De
, Pi =

µiVo

Di
, β =

De

Di
, B =

1
kB

T0,

ξ =
νL2

De
, Γ =

enoL
2

Voε
, Da = ki0

NL2e−BEi

De
,

wherePe and Pi are the Ṕeclet numbers for electrons and
ions, respectively,Γ a dimensionless value of the inverse
characteristic potential andDa is the Damkohler number that
expresses the rate of ionization versus the diffusion of parti-
cles. Finally,ξ denotes the ratio of a characteristic frequency
of the discharge and the diffusion of electrons. With the cor-
responding dimensionless notation, the set of boundary con-
ditions at the cathode takes the final form

ϕ = −1, (18)

(−∇ne+Pene∇ϕ) · n̂=−γ

β
(−∇ni−Pini∇ϕ) · n̂, (19)

−∇ni · n̂ = 0, (20)

and at the anode

ϕ = 0, (21)

ne = 0, (22)

−∇ni · n̂ = 0. (23)

4. Asymptotic solution

Assuming that the rate of ionizationki inside the plasma is
small, the Damkohler number can be considered as a small
parameter, allowing the one-dimensional cold plasma model
to be solved by asymptotic expansions for the three geome-
tries shown in Fig. 1. The method of solution is described
in this section with general assumptions. It is convenient to
stress here that we try to model DC ionization assuming that
the system remains in steady state and that the phenomenon
is one-dimensional. We look for asymptotic solutions forne,
ni andϕ expressed as perturbation expansions in the small

parameterDa, that is,

ne = Dan(1)
e + D2

an(2)
e + D3

an(3)
e +O(D4

a), (24)

ni = Dan
(1)
i + D2

an
(2)
i + D3

an
(3)
i +O(D4

a), (25)

ϕ = Daϕ(1) + D2
aϕ(2) + D3

aϕ(3) +O(D4
a), (26)

where the superindex denotes the order of each term in the
approximation. The symbolO(D4

a) represents all terms of
orderD4

a and higher that are neglected in Eqs. (24)-(26). We
now propose the final approximation by writing the term of
ionization as follows:

Dane = Da

(
1 + D1

an(1)
e

+ D2
an(2)

e + D3
an(3)

e +O(D4
a)

)
. (27)

By substitution of (24)-(27) into Eqs. (15)-(17) the solu-
tions forne, ni andϕ that satisfy boundary conditions (18)-
(23) can be obtained to the considered order. The explicit an-
alytic expression of the solutions forne, ni andϕ for the flat
parallel electrodes geometry are presented in the Appendix.
Lastly, we note the approximate contribution of each order
to the general solution. The first order terms proportional
to O (Da) contributes 99.967% of the solution. Terms of
O (

D2
a

)
contributes approximately 0.032%, while the contri-

bution ofO (
D3

a

)
is three orders of magnitude smaller. Even

though the second and third order contributions become nu-
merically insignificant to our analytical solution, there is jus-
tification to keep them. First of all, the first-order conditions
seemed to be incomplete in mathematical terms. Further-
more, adding theO (

D2
a

)
term, the solutions near the bound-

aries were qualitatively improved. TheO (
D3

a

)
term is com-

prised in our solution just for illustration purposes and due to
the ease of its calculation.

5. Numerical solution

A Chebyshev spectral collocation method (CSCM) was used
to obtain a numerical solution for the cold plasma model de-
fined by Eqs. (15)-(17). The details of CSCM can be found in
the specialized literature [13-16]. Let us consider the Cheby-
shev approximation ofne(x), ni(x), ϕ(x) defined in a one
dimensional rectilinear coordinate forx ∈ [−1, 1] as

ne(x) =
N∑

k=0

û
(e)
k T

(e)
k (x), (28)

ni(x) =
N∑

k=0

û
(i)
k T

(i)
k (x), (29)

ϕ(x) =
N∑

k=0

û
(ϕ)
k T

(ϕ)
k (x), (30)

where the upper index(e), (i) and(ϕ) stands for the Cheby-
shev polynomials and the coefficients for electron density, ion
density and electric potential, respectively. The order of ap-
proximation is denoted byN . The differential equations are

Rev. Mex. Fis.68051502



ASYMPTOTIC SOLUTIONS FOR A CONTINUUM MODEL OF A DC GAS DISCHARGE IN CAVITIES. . . 5

satisfied at certain points called the Gauss-Lobatto colloca-
tion points, represented as

x = cos

(
iπ

N

)
. (31)

In the case of the cylindrical, spherical and even with rec-
tilinear coordinates, we use a mapping of any arbitrary inter-
val r ∈ [R1, R2] to standard intervalx ∈ [−1, 1], which is
needed to fit the requirement of Chebyshev polynomials, that
is,

r =
(R2 −R1)x + R2 + R1

2
. (32)

Derivatives are thus treated as

∂

∂r
=

2
R2 −R1

∂

∂x
and

∂2

∂r2
=

(
2

R2 −R1

)2
∂

∂x2
. (33)

6. Results

6.1. Linear regime

In this section, we present the results obtained from the math-
ematical model in the linear regime, where the dimension-
less parametersPe, Pi, Γ, γ andβ take values less or equal
to unity. Results of the analytical procedure are compared
against results from the numerical method in Fig. 2. Since

FIGURE 2. Electron density, ion density, potential and electric field profiles. Linear regime. First row: Parallel flat plates. Second row:
Concentric cylinders. Third row: Concentric spheres. Continuous lines: Analytical model. Symbols: Numerical solutions.
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analytically is not possible to consider Neumann boundary
conditions on both boundaries, the boundary condition of ion
density at the cathode (20) was replaced by the expression
ni = nic = 0.6. Such value is actually the one obtained
in numerical calculations when we apply Neumann bound-
ary conditions (20) and (23). The dimensionless parameters
in this regime, used for the whole set of electrodes were:
Da = 3.3 × 10−4, Γ = 10−2, β = 10−2, γ = 10−2,
Pe = 10−2, Pi = 1 and the values for the potential were
ϕ = −1 andϕ = 0, at the cathode and the anode, respec-
tively. These parameters fulfill the requirement of a linear
regime. Finally, the parallel set of flat electrodes were posi-
tioned ata = 0 andb = 1. In turn, both the cylindrical and
spherical electrodes were positioned ata = 0.085 andb = 1.

Figure 2 shows an excellent comparison between the an-
alytical and numerical results for the three geometrical con-
figurations of electrodes. At this point we can show that our
numerical and analytical tools are mathematically consistent
with each other. Therefore, we can emphasize the distinct
distribution of particles and fields within each pair electrodes.
This is mainly due to the difference in surface area of each
pair of electrodes. Evidently, if the surface electric charge is
measured in an arbitrary position at the same distance from
the anode or the cathode in each system, different values will
be obtained. Therefore, it appears that the accumulation or
absence of charge in these surfaces is abruptly modified from
one geometry to the other. This is clearly illustrated in the
behavior of the electric field and the electric potential near
the anode, namely, in the Figs. 2b, 2d and 2f. Since all re-
sults were obtained with the same values of the transport co-
efficients, it can be stated that geometry takes a relevant role
(perhaps the most important) in the distribution of potential,
electric field, and of course particles. This is confirmed by
the agreement of both methods of solution. The availability
of the analytical solutions in the linear regime allows for the
validation of numerical models of cold plasmas.

6.2. Non-linear regime

In this section we present the comparison of asymptotic and
numerical results of the model formulated by Eqs. (15)-(17)
for a cold plasma in the non-linear regime, which inherently
implies large values ofPe ∼ 102 andPi ∼ 103 using com-
mon discharge conditions in Argon. These conditions imply
that drift process becomes relevant, and diffusion, although
not negligible, is not the only process involved. There is also
a relevant fact about the value ofβ ∼ 104 which implies that
electron diffusion is many orders of magnitude larger than ion
diffusion. Lastly, the parameterΓ indicates the magnitude of
the inverse potential. It is important to highlight that the re-
quirements that makes the analytical solution mathematically
valid are not fulfilled in this regime, but for the sake of com-
parison, they are also obtained to show their limitations. Fi-
nally, it turns out that the trends of the analytical solutions are
very similar to those obtained with numerical calculations.

In Fig. 3a), we observe that ion and electron distribu-

tions resemble bell-shaped curves. In addition, the peak of
ion and electron density are approximately 1.62 and 1.49, re-
spectively, for asymptotic results, while for numerical results,
these peaks were found at 1.38 and 1.35, respectively. We
can observe that in the non-linear regime, only a qualitative
agreement between the analytical and the numerical solutions
is obtained. These theoretical results present qualitative simi-
larities with solutions obtained in the literature with different
numerical methods [17-19]. Notice that the ion densities at
the powered electrode (r=1) present different boundary con-
ditions in the numerical solution with respect to the analytical
one. This is due to the fact that in the numerical solution we
used Neumann conditions (20) and (23), being easy to imple-
ment in both electrodes, whereas analytically this is not easily
accomplished, andni = 0 was imposed instead of (20) at the
cathode for the analytical solution.

It is important to remark that the parameters were dif-
ferent for the numerical and the analytical results. The pa-
rameters used in the numerical calculations wereDa =
5.5 × 10−5, Γ = 488.9, β = 104, γ = 0.046, Pe = 0.9,
Pi = 900. The parameters used in the analytical calculations
wereDa = 5.5 × 10−4, Γ = 200, β = 104, γ = 0.046,
Pe = 25, Pi = 0.15. The choice of the latter dimensionless
values in the analytical solutions is due to the fact that they
yield results qualitatively similar to the numerical ones. For
the other set of electrodes such values were obtained by trial
and error considering them as an estimate of those used in
the numerical solutions. Figure 3b) shows the potential and
electric field distributions for the flat plate electrodes config-
uration. The electric charge of the plasma is predominantly
positive in most of the gap between electrodes. The potential
satisfies the boundary conditions imposed, which areϕ = −1
at the cathode andϕ = 0 at the grounded electrode.

The stationary distributions of ions and electrons for the
case of cylindrical electrodes are shown in Fig. 3c) along
with the electric field and electric potential distributions in
Fig. 3d). The analytical solution shown in Fig. 3c) quali-
tatively reproduces many features of the numerical solution
except forni. The value of the parameters used in the numer-
ical calculations wereDa = 60 × 10−6, Γ = 1, β = 103,
γ = 0.022, Pe = 0.5, Pi = 40. In turn, the parameters
used in the analytical calculations wereDa = 60 × 10−6,
Γ = 0.01, β = 103, γ = 0.022, Pe = 0.5, Pi = 40. The
values of the parameters used for the numerical solution were
estimated from those used in the literature. Therefore, distri-
butions of particle density and electric fields are comparable
to results reported experimentally and numerically [20]. It is
worth noting that the behaviour of our system was disturbed
with a low level of drift of electrons, leaving diffusion to be-
come the most relevant transport mechanism. In the case of
ion transport, drift is the most important phenomenon in the
core of the plasma. Finally, in Fig. 3d) we can observe a sim-
ilar slow decay in the potential as well as in the electric field
along the space between electrodes, but much sharper in the
latter.

Rev. Mex. Fis.68051502
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FIGURE 3. Electron density, ion density, potential and electric field profiles. Non-linear regime. First row: Parallel flat plates. Second row:
Concentric cylinders. Third row: Concentric spheres. Continuous lines: Analytical model. Symbols: Numerical solutions.

Figure 3e) shows ion and electron distributions for the
concentric spheres case, where a predominantly positive
plasma can be observed near the inner electrode. The com-
plete set of boundary conditions are (19)-(23) with a mod-
ification for the ion density at the anode in Eq. (23), used
for both the analytical and the numerical solutions, namely,
Ji = JA at r = 0.006. Results and boundary conditions
presented here are an attempt to qualitatively reproduce re-
sults reported in a specific work [21]. Here,JA is a spe-
cific value of electric current which could be measured in
the anode, but we choosedJA = -10. However, for both
numerical and analytical solutions, the ion density takes a
positive value in the cathode atr = 1 as a result of an im-
posed Dirichlet condition, which implies the modification of
condition (20) into ni = 0.024. The parameters used in the

numerical model wereDa = 40 × 10−5, Γ = 1, β = 102,
γ = 0.01, Pe = 0.09, Pi = 10 and for the analytical so-
lutions, Da = 40 × 10−5, Γ = 0.1, β = 10, γ = 0.001,
Pe = 0.001, Pi = 96. In this specific set of electrodes we
observe a difference between the analytical and numerical re-
sults for the ion density. However, as seen in Fig. 3f), there
exists a case of the distribution of the electric field and poten-
tial where the profiles of the numerical and analytical solution
are very similar.

The results presented in Fig. 3e) indicate that the case
of two concentric spherical electrodes is mainly charac-
terized by a considerable increase of the concentration of
charged particles in the anode region, especially of the pos-
itive species. While the glow discharge in flat geometry
Fig. 3b) is characterized by a smooth behaviour of potential

Rev. Mex. Fis.68051502
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and electric field in most of the discharge gap, an abrupt drop
in potential in the glow discharge is observed in the spherical
and cylindrical geometries.

Experimental observations of the glow discharges be-
tween parallel electrodes [22] and cylindrical electrodes (hol-
low cathode) [23] show the generation of luminous and dark
regions within the plasma. In order to contrast the experi-
mental observations with our results, the yellow dotted verti-
cal lines in Fig. 3 delimit the bright and dark regions within
the plasma. In the parallel electrodes configuration, first row
in Fig. 3), the electric field magnitude is low betweenr = 0.4
andr = 0.6, which denotes a dark region (or Faraday dark
space). Outside the latter region, the electric field magnitude
is increased, which promotes two bright regions denoted as
anode and cathode glow. For the cylindrical electrodes, sec-
ond row in Fig. 3, we can only identify two regions, the an-
ode glow close to the inner electrode due to the increase in
particle density and electric field magnitude, and the dark
one which covers most of the system. A similar distribu-
tion of the bright and the dark regions can be appreciated
for the concentric spheres case, third row in Fig. 3, however
in this case the anode glow is shorter than the previous case
(concentric cylinders) due to the abrupt decay of the electric
field in the r-direction. We must note that, the physics of
a DC glow discharge is more complex than our theoretical
approach which only reproduces some qualitative aspects of
real glow discharges because of the strongly restrictive as-
sumptions. However, these asymptotic solutions represent a
simple useful tool to understand some basic aspects of DC
glow discharges.

7. Concluding Remarks

Analytical and numerical solutions for a non-linear mathe-
matical model of a cold plasma were found for different elec-
trode configurations. A glow discharge was achieved by ion-

ization of an inert gas with an applied electric field between
the gap of three different configurations of electrode pairs.
Analyzed configurations correspond to parallel plate, concen-
tric cylindrical and concentric spherical electrodes. With the
aim of determining electron and ion densities as well as po-
tential an electric field distributions, asymptotic expansions
were implemented to solve the plasma model analytically
with power series in terms of the Damkohler number, that
were truncated up to third order to make the problem man-
ageable.

Regarding the comparison with the available numerical
results, the analytical solutions are strongly limited by bound-
ary conditions and the asymptotic approximation. Never-
theless, we developed a numerical tool based on a spectral
method to solve the complete set of equations of the cold
plasma model. By maintaining the dimensionless parameters
within a given range, it was possible to exactly match the nu-
merical and the analytical results in the three electrode con-
figurations. Thus, the theoretical scope of the present work is
limited by the values with which the dimensionless parame-
ters can achieve coinciding numerical and analytical results.

We found that our analytical and numerical results agree
qualitatively in the non-linear regime as compared with re-
sults found in literature. Nonetheless, given to the scarcity of
exact solutions in the literature our asymptotic solution in the
linear regime is useful for the validation of numerical models
for cold plasma with the specific assumptions mentioned in
this work.

Appendix A.

Asymptotic solutions up to second order for the flat parallel
electrodes geometry for electron, ion and potential

n(1)
e (x) =

(a− x)(a + x− 2)
2

, (A.1)

n(2)
e (x) = − 1

144(a− 1)β
a− x

(
a− 1β2(Pex(−2x4 + 12x3 − 18x2 − 3x + 9) + 15γPi + a3(Pe(5x2 + 42x− 27)− 150γPi)

+ a5(2Pe − 15γPi) + a4(Pe(3− 13x) + 75γPi)− a(Pe(2x4 + 12x3 − 63x2 + 30x + 9) + 75γPi)

+ a2(Pe(10x3 − 45x2 − 18x + 33) + 150γPi))Γ + 6nicPiγ(24Vc + (a− 1)2(5− 10a + 5a2 − 12nic)Γ)

+ β(−48 + 72γPiVc + 12ΓPex
4 − 2ΓPex

5 + 15γΓPi − 66γΓnicPi + a5Γ(Pe(13x− 1)− 90γPi)

− 9Pex(Γ(4nic − 1) + 8Vc)− 6x3(3Γ(nic + 1)Pe + 1) + 3x2(Γ(20nic − 1)Pe + 8PeVc + 8) + a6(15γΓPi − 2ΓPe)

+ a4(ΓPe(6nic − 5(x2 + 11x− 6)) + 3γΓ(75− 22nic)Pi − 30) + a2(−6Pe(Γ(8nic − 7) + 8Vc)

+ 6x2(Γ(nic − 18)Pe + 1) + 6x(Γ(13nic + 2)Pe + 13) + 9γPi(Γ(25− 44nic) + 8Vc) + 2ΓPex
4 + 22ΓPex

3 − 264)

− 2a3(−3(Γ(nic − 10)Pe + 2γΓ(22nic − 25)Pi + 25) + 15x(Γ(nic − 2)Pe + 1) + 5ΓPex
3 − 25ΓPex

2)

+ a(192− 14ΓPex
4 + 2ΓPex

5 − 6Piγ(24Vc + Γ(15− 44nic)) + 9Pe(Γ(4nic − 1) + 8Vc)

− 6x2(11Γ(nic − 1)Pe + 5) + 3x(−Γ(4nic + 13)Pe + 8PeVc − 16) + 6x3(Pe(Γ + 3Γnic) + 1)))
)
, (A.2)

n
(1)
i (x) =

β(a− x)(a + x− 2)

2
+ nic, (A.3)
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n
(2)
i (x) = − 1

144(a− 1)
a− x

(− 6(a− 1)ΓnicPi(a + x− 2)(5a2 − 10a− 12nic − x2 + 2x + 4) + a− 1Pi(−15 + 13a5

+ 13a4(x− 6)− 9x + 3x2 + 18x3 − a3(−5x2 − 42x + 177) + a2(−10x3 + 45x2 + 18x− 183) + a(2x4 + 12x3 − 63x2

+ 30x + 84) + 2x5 + 12x4)β2Γ− β(−48 + 72PiVc + 15ΓPi + 13a6ΓPi − 84ΓnicPi + 13a5ΓPi(x− 7) + 12ΓPix
4

− 2ΓPix
5 − 9Pix(Γ(4nic − 1) + 8Vc)− 6x3(Γ(4nic + 3)Pi + 1) + 3x2(Γ(28nic − 1)Pi + 8PiVc + 8)− 5a4(ΓPi(12nic

+ x2 + 11x− 51) + 6)− 10a3(−6Γ(5nic − 6)Pi + x(6Γ(nic − 1)Pi + 3) + ΓPix
3 − 5ΓPix

2 − 15) + a(192− 72PiVc

− 99ΓPi + 372ΓnicPi + 3x(−Γ(20nic + 13)Pi + 8PiVc − 16) + 6x3(Pi(Γ + 4Γnic) + 1)− 6x2(Γ(16nic − 11)Pi + 5)

+ 2ΓPix
5 − 14ΓPix

4) + a2(22ΓPix
3 + 3(Γ(89− 176nic)Pi + 8PiVc − 88)

+ 6x2(2Γ(nic − 9)Pi + 1) + 6x(2Pi(Γ + 13Γnic) + 13) + 2ΓPix
4))

)
, (A.4)

ϕ(1)(x) =
(a− x)

(
(a− 1)Γ(x− 1)

(
5a2(β − 1)−a(β − 1)(x + 9)+12nic − (β − 1)((x− 3)x− 3)

)
+24Vc

)

24(a− 1)
, (A.5)

ϕ(2)(x) = − 1

20160(a− 1)β
a− xx− 1Γ

(
a−1Pi(385 + 716a6+385x + 35x2 − 70x3 − 49x4 + 35x5 − 5x6 − 2a5(97x + 2051) + a4(−194x2

+ 1358x + 9576) + 4a3(4x3 + 182x2 − 861x− 2905) + a2(51x4 − 252x3 − 714x2 + 3920x + 7735)− a(5x5 + 77x4 − 406x3 − 70x2

+ 1995x + 2695))β3Γ− 140nicPi(−1 + 2a− x)γ(a− 1)2Γ(5a2 − 10a− 12nic + 5) + 24Vc + β2(−35Γx5(Pe − Pi) + 5Γx6(Pe−Pi)

+ 2a6(2Pe(39x− 67) + Pi(2409 + (97− 175γ)x− 2275γ))Γ + 4a7Γ(4Pe + (175γ − 179)Pi)− 7x2(−8ΓnicPi + 5ΓPe − 5ΓPi

+ 96PiVc − 20) + 14x3(34ΓnicPi + 5ΓPe − 5ΓPi + 12PiVc + 10) + 7x4(−Γ(16nic + 7)Pi + 7ΓPe − 4) + 2a5(ΓPi(6300γ + 1694nic

+ 97x2 + 1050γx− 776x− 6839) + ΓPe(−97x2 − 274x + 539) + 854) + 7x(144PiVc + ΓPi(−50γ − 272nic + 55)− 5(ΓPe + 28))

− 7(ΓPi(50γ + 272nic − 55) + 5(ΓPe + 28)− 144PiVc) + a2(−128Γx4(Pe − Pi) + 5Γx5(Pi − Pe) + 14x3(Γ(2nic − 47)Pi + 47ΓPe

+ 2) + 28x2(28Γ(3nic − 1)Pi + 28ΓPe + 39)− 14(5ΓPi(135γ + 380nic − 149) + 70ΓPe − 312PiVc + 970) + 7x(−5ΓPi(150γ+276nic

− 169)− 95ΓPe + 24PiVc − 660)) + 2a4(461Γx2(Pe − Pi) + 8Γx3(Pe − Pi) + 7x(ΓPi(−375γ − 58nic + 343) + 32ΓPe − 28)

− 7(ΓPi(1375γ + 1152nic − 1514) + 139ΓPe + 582)) + a(40Γx5(Pe − Pi) + 5Γx6(Pi − Pe) + 28x4(Γ(4nic − 1)Pi + ΓPe + 1)

− 28x3(6 + 17ΓPe + (−17 + 18nic)PiΓ)− 28x(ΓPi(−75γ − 268nic + 85)− 10(ΓPe + 13) + 24PiVc) + 56(ΓPi(50γ + 204nic − 55)

+ 5(ΓPe + 21)− 72PiVc) + 7x2(24PiVc + Γ(5− 228nic)Pi − 5(ΓPe + 24))) + a3(−268Γx3(Pe − Pi) + 51Γx4(Pe − Pi)

− 14x2(Γ(58nic − 103)Pi + 103ΓPe + 28) + 28x(ΓPi(250γ + 174nic − 263) + 13ΓPe + 84) + 7(−216PiVc + 5ΓPi(500γ + 852nic

− 553) + 5(53ΓPe + 432))))− β(−35ΓPex5 + 5ΓPex6 + 4a7Γ(4Pe + 175γPi) + 2a6Γ(2Pe(39x− 67)− 175γPi(x + 13))

− 14x3(10 + 12PeVc + Γ(24nic − 5)Pe − 10ΓnicPi) + 7x4(Γ(12nic + 7)Pe−4ΓnicPi + 4) + 7(10ΓPi(−5γ + 36ni2c + 2(11γ−7)nic)

+ Γ(12nic − 5)Pe + 96PeVc − 240γPiVc + 140) + 7x(10ΓPi(−5γ + 36ni2c + 2(11γ − 7)nic) + Γ(12nic − 5)Pe + 96PeVc

− 240γPiVc + 140) + 7x2(−20(6Γni2cPi − ΓnicPi + 1) + Γ(12nic − 5)Pe + 96PeVc)− 2a5(14((110γ − 61)ΓnicPi − 75γΓPi(x + 6)

+ 61) + ΓPe(97x2 + 274x− 539)) + 2a4(461ΓPex2 + 8ΓPex3 − 7x(−28 + 2Γ(15nic − 16)Pe + 2(14− 55γ)ΓnicPi + 375γΓPi)

+ 7(Γ(30nic − 139)Pe + 6(165γ − 97)ΓnicPi − 1375γΓPi + 582)) + a3(−268ΓPex3 + 51ΓPex4+14x2(Γ(30nic − 103)Pe − 28ΓnicPi

+ 28) + 28x(Γ(30nic + 13)Pe + 4(21− 55γ)ΓnicPi + 250γΓPi − 84)− 7(20ΓPi(−125γ + 30ni2c + 4(44γ − 27)nic) + 5Γ(36nic

− 53)Pe + 264PeVc − 480γPiVc + 2160))− a(−40ΓPex5 + 5ΓPex6 − 28x3(Γ(12nic − 17)Pe − 6ΓnicPi + 6) + 28x4(Γ(3nic − 1)Pe

− ΓnicPi + 1) + 56(105 + 48PeVc − 120γPiVc + Γ(9nic − 5)Pe + 5ΓPi(−10γ + 36ni2c + 3(11γ − 7)nic)) + 28x(5ΓPi(−15γ + 24ni2c

+ (44γ − 26)nic) + 2Γ(9nic − 5)Pe + 96PeVc − 120γPiVc + 130) + 7x2(24PeVc + Γ(5− 108nic)Pe − 120(Γni2cPi − ΓnicPi + 1)))

+ a2(−128ΓPex4 − 5ΓPex5 − 28x2(Γ(45nic − 28)Pe − 39ΓnicPi + 39) + 14x3(2ΓnicPi + 47ΓPe − 2) + 14(5ΓPi(−135γ + 168ni2c

+ 2(154γ − 97)nic) + 10Γ(9nic − 7)Pe + 288PeVc − 600γPiVc + 970) + 7x(Pe(216Vc − 95Γ) + 30(22− 8γPiVc + Pi(4ni2c

− 25γ + 22(2γ − 1)nic)Γ))))
)
. (A.6)
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