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1. Introduction mon theoretical tool for plasma characterization is the macro-
scopic (fluid) approximation, which is the easiest option for
Electric gas discharges are carried out in many applicationsold plasma modelling. Evidence suggests that most macro-
of industry and science. Glow discharge plasmas are consigcopic mathematical models for cold plasmas can be derived
ered cold even when they reach a mean temperature of apy considering all the involved species as fluids. This is a
proximately 11,600 K. Many weakly ionized laboratory plas- reasonable assumption if we consider a pressure range within
mas are classified as low temperature plasmas [1,2]. Some 0f5 to 5 Torr [6]. These approaches for plasmas are valid if,
the most well-known technological applications that use coldor instance, the driving frequency of a radio-frequency (RF)
plasmas are fluorescent luminaries (neon, mercury, etc.). Ardischarge and the discharge gap are much larger than the elec-
other application of plasma technology can be found in foodron energy relaxation time (of the order of nano seconds) and
industry, where the sterilization processes of a wide variety othe mean free path (of the order of tensumfi), respectively,
vegetables are plasma-based at low temperatures [3]. Plasmeaking the fluid model suitable to be used in this regime [7].
technology is also used to sterilize thermolabile equipment |t is well known that all available computational methods
and laboratory instruments that are sensitive to humidity [4]allow to consider diverse phenomena as, for instance, parti-
However, some developments are so far limited by the poogle collisions and interactions, excitation, and recombination.
knowledge of some of the basic properties of plasma. Thedditionally, the use of numerical tools enables a proper han-
inherent non-linear dynamics of plasma makes it difficult todling of non-linearities, resulting in a more complete charac-
describe [5]. Currently, glow discharges in different types ofterization of plasma dynamics [1]. Nevertheless, the theoreti-
gases, subject to stationary electric and magnetic fields anghl problem of predicting plasma physics is not only reduced
temperature conditions, are under theoretical and experimefie the use of numerical tools, but can be addressed via ana-
tal investigation with the aim of determining the spatial dis-lytical methods, whose capability to represent the physics of
tribution of all charged and uncharged particle involved.  cold plasmas is highly appreciated in literature. Analytical
There is no single way to approach plasma modelling. Asolutions for cold plasma models have a reputation for being
plasma is a system containing a very large amount of partitoo complicated, mainly due to cumbersome boundary con-
cles, usually of the order of Avogadro’s number, which makeditions and non-linearities which lead to oversimplifications
the description of individual particles hopeless. A com-[8], that in most cases reduce the underlying problem to a
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set of diffusion equations [9]. However, there are advantain sputtering applications, where a negative voltage is ap-
geous physical situations that can be genuinely described kplied to the cathode while the anode is grounded, commonly
specific analytical solutions that cover most of the phenomreferred as cathodic sputtering [11]. The chamber where a
ena associated with such special cases. The latter, motivatdscharge is performed often plays the role of the anode, as-
the proposal to study basic but interesting cases of plasmsuming a zero potential in its surface. The first configura-
physics which could be analysed with analytical tools. Intion, (Fig. 1a), consists of two flat plate paralell electrodes,
our case, we use an analytical method that can be applied the second configuration, (Fig. 1b), consists of two concen-
model a wide range of cold plasma problems, with its spetric cylindrical electrodes, where the outer one is a hollow
cific physical assumptions, while taking into account phe-cylinder and the inner one is a solid cylindrical rod. The third
nomena such as recombination, attachment, and ionizatiomonfiguration, (Fig. 1c), consists of two concentric spherical
The proposed solution approaches the non-linear mathemagiectrodes, where the outer one is a hollow sphere and the in-
ical nature of a glow discharge by asymptotic expansionsner sphere is solid. Notice that in all three cases, the region
which not only involve particle interactions but the advan-where the gas is ionized corresponds to the gap going from
tage of non-linear effects to study three different geometricato b, which is the distance separating the electrodes.
configurations of electrodes: a pair of flat plates, a pair of Once a constant gas flow reaches a stationary distribution
concentric cylinders, and a pair of concentric spheres. Witlinside the space between the electrodes, the powered elec-
most of the cold plasma reactors developed in complex getrodes reach the breakdown potential to ionize the monatomic
ometries, we consider the effect of cavity geometry in thegas. We assume that the ionization is obtained by collisions
behaviour of cold plasmas. In fact, a simple pair of coaxialof electrons with neutral gas atoms, reaching the removal of
cylindrical electrodes are directly applicable to the treatmenbnly one electron in each collision. The creation of negative
of superconductive cavities, supersonic nozzles and particliens is neglected since only positive ions and free electrons
accelerators, processes which imply the removal of chemicalre considered in the plasma dynamics. We do not consider
impurities that lead to electric losses or unfavorable hydroany applied or induced magnetic field, thus magnetohydrody-
dynamic turbulence [10]. In order to estimate the predictivenamic effects are safely neglected. The recombination rate is
capabilities of the analytical method, we compare the analyteonsidered constant and its contribution to the overall process
ical solutions with numerical calculations obtained through as considered to be negligible. Furthermore, it is assumed
high-order spectral method based on Chebyshev polynomthat positive ions generated from collisions exchange energy

als. through elastic collisions, and therefore are assumed to be at
the same temperature as neutral species. The ion mobility
2. Physical model and diffusivity coefficients are considered constant. Finally,

we consider that at the macroscopic scale, as well as, the elec-
The glow discharge in an inert monatomic gas is modelledron’s and ion’s mean temperatures are constants, so bulk gas
under electrostatic DC configuration for three different geo-convective motion is negligible. Our main aim is to charac-
metrical cavities depicted in Fig. 1. The cavities are designederize the plasma, in terms of the electric potential, electric
in such a way that the bounding walls act as the driving andield and spatial density distributions of positive and negative
ground electrodes, so that an electric potential can be appliegharges for each analysed geometry. Taking into account all
through the walls in order to ionize the gas bounded inside théhese assumptions, the mathematical model is presented in
cavities. The electric connections in Fig. 1 are regularly usedhe next section.

a b :
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a) = Power supply b) —  supply SUpply

FIGURE 1. Sketch for the three arrays of cavities in which the glow discharge was modelled. a) Parallel flat electrodes. b) Concentric
cylinders. ¢) Concentric spheres. For all the cases the non-powered anode was the grounded electrode.
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3. Mathematical model which includes the secondary emission phenomenon by set-

) ) ) ~ ting the normal component of electron flux density to be pro-
The cold plasma is modelled with the fluid approximation yortional to the counterpart of positively charged ion flux

expressed in the following equations modulated by an emission coefficientWe also assume that
on. . the cathode absorbs ions perfectly in the sense that any ion
5 T Vde =k, (1) nhitting the cathode surface captures a free electron emerging
o B from it and is reflected into the core of the plasma as a neutral
8tl +V-J =k, (2) particle. Consequently, the ion density at the cathode satisfies
VQQO — E(ne _ ni)7 (3) - DiVni -n=0. (10)

€

where Egs.T) and @) are balance equations for electrons The boundary condition for the potential at the anode is
and ions densities, andn;, while J, and.J; are the electron depicted by
and ion fluxes. Equatioi8] is the Poisson’s equation for the ¢ =Va, (11)

electric potentialy, associated with the self-consistent elec-\yhere 1/, is the value of the applied potential at the anode,

tric field, resulting from the distributions, andn; [6]. Here  ypile the boundary condition for the electron density at the
e is the electron’s charge ards the electric permittivity of  grounded electrode (anode) is

the medium. The source terky considers the reaction rate

(i.e. ionization only due to collisions of electrons with neu- ne =0, (12)

tral gas atoms) occurring inside the chamber and is expressed

as which implies zero concentration of electron density due to
ki = kioNneexp (—E;/kT.) , (4) theassumption of infinitely fast recombination. Finally, since

wherek;, is known as the pre-exponential factor of the reac-the ano_de does not emit (or a_t_)sorl:l) ions, the net _'”W"?“d flux
across its surface should vaniske,, J; = 0, but for simplic-

tion rate [12]. The Boltzmann constant, the electron temper.—t hall . ider this bound tact absorb
ature in K, the neutral particle concentration in the plasma', ¥iW§S t? g?arllndconnsi; er i I?i oundary as a perfect absorber
and the reaction activation energy are denotedby., N otions, then lon densily satishies

andFE;, respectively. The particle fluxes of electrons and ions

—D;Vn;-n=0. 13
are given by Vg =0 (13)
7o . = Although conditions @) - (13) would be the most appro-
Je = =DeVine = peneE, ©) priate, they will be modified properly due to specific limita-
J; = —D;Vn; + wini E, (6) tions of the analytical method. Such modification that allows

' . ' to faitthfully compare our analytical and numerical solutions,
respectively, wherg; and . are the mobilities of ions and will be explained in the results section. Additionally, an at-

electrons, respectively, add; and D, are the corresponding  tempt to obtain a rough reproduction of computational results
diffusion coefficients. £ is the total electric field which is  of glow discharges reported in literature is carried out.
calculated from

E=—Vo. (7)  3.2. Dimensionless model

Equationsf)-(7) form a closed system which describes It is convenient to introduce the following dimensionless

the glow discharge of cold plasmas that satisfies the bounda(y ;
o - ariables
conditions described below.
* Ne * n; % ©

it Ne = —, n; = —, Y =17
3.1. General boundary conditions ng ng Vo
We make use of a very well established set of general bound- = t V* = VI B — E (14)
ary conditions but slightly modified in order to fit the restric- T’ ’ Ey’

tions of the analytical model. At the driving electrode (cath-

ode), the electric potential satisfies the Dirichlet condition whereEo = Vo/L, the scalel, being a characteristic value

of potential related to the ionized gas (commonly the value of
©=—V,, (8) breakout potential). In our casg; = V. andL is a charac-
teristic length scale imposed by the specific geometry of the
whereV, is the value of the applied electric potential at the cavity. n, is a characteristic particle concentration scale, of-
cathode. For the electron density at the cathode we set  ten considered as the neutral gas amount used in a discharge.
. The set of Eqs!) - (7) can be combined and reduced to just
(—DeVne - ueneE) n three equations by inserting the flux density E&}. (6) and
. (7) into Egs. ) and @) respectively. Doing so, and introduc-
=—7( = DiVn; + pni E) - i, ) ing the dimensionless variables, we obtain a dimensionless
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system of three transport equations for the densities of ionparameteD,,, that is,

and electrons, and for the electric potential. Dropping the _ 1) 2 (2) (3) 4
asterisk, the dimensionless system of equations for the cold ne = Dang) + Dong? + Dan? + O(Dy), (24)

plasma takes the following form n; = Dangl) +D§n§2) +D3n (3 +O(DY, (25)
3(;% — V2, ¢ = DopM + D2 + D30 L O(DY),  (26)
. 3 3

where the superindex denotes the order of each term in the

+ Dane + I'Pe(n; — ne)ne, (15)  approximation. The symba(D?) represents all terms of
on; ) order D} and higher that are neglected in E@4)¢(26). We
&0 ot PNy - Vn; = Vin; now propose the final approximation by writing the term of
ionization as follows:
+ BDane — T'Pi(n; — ne)ni, (16)
) Dyn, = D, (1 + Dlp®
Vo =T (ne —n;), a7
. y . D2n® 1 Dn® + O(D? ) 27
where the dimensionless coefficients are defined as follows + Dane” + Dane™ + O(Dy) 27)
v v D 1 By substitution of/24)-(27) into Egs. [5)-(17) the solu-
p, = He °, P= Hi °, f==2, B=-—Tp, tions forn., n; andyp that satisfy boundary conditions (18)-
De D; D; ks (23) can be obtained to the considered order. The explicit an-
_vl? L enoL? D —k NL?e~BE: alytic expression of the solutions fag, n; andy for the flat
§= D.’ T Ve a = Mo D, ’ parallel electrodes geometry are presented in the Appendix.

Lastly, we note the approximate contribution of each order
where P, and P; are the Rclet numbers for electrons and to the general solution. The first order terms proportional

ions, respectively[' a dimensionless value of the inverse to © (D,) contributes 99.967 of the solution. Terms of
characteristic potential and, is the Damkohler number that ¢ (Dg) contributes approximately 0.032, while the contri-
expresses the rate of ionization versus the diffusion of partipytion of ©® (D?) is three orders of magnitude smaller. Even
cles. Finally£ denotes the ratio of a characteristic frequencythough the second and third order contributions become nu-
of the discharge and the diffusion of electrons. With the cormerically insignificant to our analytical solution, there is jus-

responding dimensionless notation, the set of boundary conjfication to keep them. First of all, the first-order conditions

ditions at the cathode takes the final form seemed to be incomplete in mathematical terms. Further-
more, adding th€ (D?) term, the solutions near the bound-
p=-1, (18)  aries were qualitatively improved. Ti@ (Df;) term is com-

prised in our solution just for illustration purposes and due to

(=Vnet+PenVe) - ”__B( Vni=PiniVe) -, (19)  the ease of its calculation.

—Vn,; -7 =0, (20) _ _
5. Numerical solution

d atth d .
andatine anode A Chebyshev spectral collocation method (CSCM) was used

—0 1) to obtain a numerical solution for the cold plasma model de-
’ fined by Egs.15)-(17). The details of CSCM can be found in
ne =0, (22)  the specialized literature [13-16]. Let us consider the Cheby-
o shev approximation of.(x), n;(z), p(x) defined in a one
—Vni i =0. (23) dimensional rectilinear coordinate forc [—1, 1] as
N
4. Asymptotic solution ne(z) = > a7 T (@), (28)
k=0
Assuming that the rate of ionization inside the plasma is N
small, the Damkohler number can be considered as a small ni(x) = Z A(l)T(”( )s (29)

parameter, allowing the one-dimensional cold plasma model

to be solved by asymptotic expansions for the three geome- N

tries shown in Fig. 1. The method of solution is described Z T(*” (30)

in this section with general assumptions. It is convenient to k=0

stress here that we try to model DC ionization assuming thawvhere the upper indefe), (i) and(y) stands for the Cheby-
the system remains in steady state and that the phenomenshev polynomials and the coefficients for electron density, ion
is one-dimensional. We look for asymptotic solutions#gr ~ density and electric potential, respectively. The order of ap-
n; andy expressed as perturbation expansions in the smapiroximation is denoted byv. The differential equations are

Rev. Mex. Fis68051502
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satisfied at certain points called the Gauss-Lobatto colloca- Derivatives are thus treated as
tion points, represented as

ﬁ — ig and
or B RQ — R1 ox
s 2 2
T = cos() . (31) o _ 2 9
N or? R2 - Rl Ox? ' (33)

In the case of the cylindrical, spherical and even with rec-6' Results

tilinear coordinates, we use a mapping of any arbitrary interg 1. Linear regime
val r € [Ry, Ro] to standard intervat € [—1, 1], which is
needed to fit the requirement of Chebyshev polynomials, thah this section, we present the results obtained from the math-

is, ematical model in the linear regime, where the dimension-
less parameterB,., P;, I', v and g take values less or equal
(Ry — R1)z + Ro + Ry to u_mty. Results of the analytlgal procedure_ are compared
r= 5 : (32)  against results from the numerical method in Fig. 2. Since
»l2 2.0 0.0
=1 — n, Analytical o — E Analytical
E n; Analytical @ 1.8 ¢ Analytical =
% 1.0 = n; Numerical = x « ENumerical {=0.2 '3
« = n, Numerical E 1.6 + + o Numerical g
9 0.8 B 3
5 © 1.4 ~04 5
2.0.6 2 E
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FIGURE 2. Electron density, ion density, potential and electric field profiles. Linear regime. First row: Parallel flat plates. Second row:
Concentric cylinders. Third row: Concentric spheres. Continuous lines: Analytical model. Symbols: Numerical solutions.
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analytically is not possible to consider Neumann boundaryions resemble bell-shaped curves. In addition, the peak of
conditions on both boundaries, the boundary condition of iorion and electron density are approximately 1.62 and 1.49, re-
density at the cathod®(@) was replaced by the expression spectively, for asymptotic results, while for numerical results,
n; = ni. = 0.6. Such value is actually the one obtained these peaks were found at 1.38 and 1.35, respectively. We
in numerical calculations when we apply Neumann boundcan observe that in the non-linear regime, only a qualitative
ary conditions/20) and R3). The dimensionless parameters agreement between the analytical and the numerical solutions
in this regime, used for the whole set of electrodes wereis obtained. These theoretical results present qualitative simi-
D, = 33x107% T = 1072, 8 = 1072, v = 1072, larities with solutions obtained in the literature with different
P, = 1072, P, = 1 and the values for the potential were numerical methods [17-19]. Notice that the ion densities at
¢ = —1 andy = 0, at the cathode and the anode, respecthe powered electrode£1) present different boundary con-
tively. These parameters fulfill the requirement of a linearditions in the numerical solution with respect to the analytical
regime. Finally, the parallel set of flat electrodes were posione. This is due to the fact that in the numerical solution we
tioned ate = 0 andb = 1. In turn, both the cylindrical and used Neumann condition2@) and 23), being easy to imple-
spherical electrodes were positioned.at 0.085 andb = 1. ment in both electrodes, whereas analytically this is not easily

Figure 2 shows an excellent comparison between the araccomplished, and; = 0 was imposed instead (20) at the
alytical and numerical results for the three geometrical coneathode for the analytical solution.
figurations of electrodes. At this point we can show that our
numerical and analytical tools are mathematically consistenller
w_|th_eagh other. _Therefore_, we cgn_empha&z_e the chIStInqlameters used in the numerical calculations wérg =
distribution of particles and fields within each pair electrodes 5 a4 —
This is mainly due to the difference in surface area of eacrﬁi)g'5 x 1077, ' = 488.9, § = 107, 7 = 0.046, P = 0.9,

. . . . " P; = 900. The parameters used in the analytical calculations
pair of electrodes. Evidently, if the surface electric charge i _ 4 Ve
measured in an arbitrary position at the same distance fro ere, =55 x 10, I' = 200, § = 107, 7 = 0.046,

. ; . = 25, P, = 0.15. The choice of the latter dimensionless

the anoc_je or the cathode n each system, different valugs W'\}alues in the analytical solutions is due to the fact that they
be obtained. Therefore, it appears that the accumulation

b foh i th P i abruotl dified f ield results qualitatively similar to the numerical ones. For
absence of charge In these surtaces 1 abruptly modimed Mo, o ihe set of electrodes such values were obtained by trial
one geometry to the other. This is clearly illustrated in the

behavior of the electric field and the electri tential n rand error considering them as an estimate of those used in
the a Od ot the elec. (ih eF' a b ezg ecd szposg a "eathe numerical solutions. Figure 3b) shows the potential and
€ anode, hamely, In the Fgs. 2D, anad 1. -SInce all Teg, o yric field distributions for the flat plate electrodes config-

sul_ts_ Were_obtamed with the same values of the transport “Qiration. The electric charge of the plasma is predominantly
efficients, it can be stated that geometry takes a relevant roIS

h th . tant) in the distributi f potential ositive in most of the gap between electrodes. The potential
o e x2S he by condions mposed,whire-

' o ... at the cathode and = 0 at the grounded electrode.

the agreement of both methods of solution. The availability nd 9

of the analytical solutions in the linear regime allows for the  The stationary distributions of ions and electrons for the

It is important to remark that the parameters were dif-
ent for the numerical and the analytical results. The pa-

validation of numerical models of cold plasmas. case of cylindrical electrodes are shown in Fig. 3c) along
with the electric field and electric potential distributions in
6.2. Non-linear regime Fig. 3d). The analytical solution shown in Fig. 3c) quali-

tatively reproduces many features of the numerical solution
In this section we present the comparison of asymptotic andxcept forn,;. The value of the parameters used in the numer-
numerical results of the model formulated by EdE){(17) ical calculations werdD, = 60 x 1076, T = 1, § = 103,
for a cold plasma in the non-linear regime, which inherentlyy = 0.022, P, = 0.5, P, = 40. In turn, the parameters
implies large values oP. ~ 10° and P, ~ 10° using com-  used in the analytical calculations weke, = 60 x 1075,
mon discharge conditions in Argon. These conditions implyI' = 0.01, 3 = 103, v = 0.022, P, = 0.5, P, = 40. The
that drift process becomes relevant, and diffusion, althouglalues of the parameters used for the numerical solution were
not negligible, is not the only process involved. There is alseestimated from those used in the literature. Therefore, distri-
a relevant fact about the value @f~ 10* which implies that  butions of particle density and electric fields are comparable
electron diffusion is many orders of magnitude larger than iorto results reported experimentally and numerically [20]. Itis
diffusion. Lastly, the parametérindicates the magnitude of worth noting that the behaviour of our system was disturbed
the inverse potential. It is important to highlight that the re-with a low level of drift of electrons, leaving diffusion to be-
guirements that makes the analytical solution mathematicallgome the most relevant transport mechanism. In the case of
valid are not fulfilled in this regime, but for the sake of com- ion transport, drift is the most important phenomenon in the
parison, they are also obtained to show their limitations. Ficore of the plasma. Finally, in Fig. 3d) we can observe a sim-
nally, it turns out that the trends of the analytical solutions arelar slow decay in the potential as well as in the electric field
very similar to those obtained with numerical calculations. along the space between electrodes, but much sharper in the

In Fig. 3a), we observe that ion and electron distribu-latter.
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FIGURE 3. Electron density, ion density, potential and electric field profiles. Non-linear regime. First row: Parallel flat plates. Second row:
Concentric cylinders. Third row: Concentric spheres. Continuous lines: Analytical model. Symbols: Numerical solutions.

Figure 3e) shows ion and electron distributions for thenumerical model werd, = 40 x 1075, T = 1, 8 = 102,
concentric spheres case, where a predominantly positive = 0.01, P. = 0.09, P, = 10 and for the analytical so-
plasma can be observed near the inner electrode. The corltions, D, = 40 x 1075, T = 0.1, # = 10, v = 0.001,
plete set of boundary conditions are (128X with a mod- P, = 0.001, P, = 96. In this specific set of electrodes we
ification for the ion density at the anode in EQ3), used observe a difference between the analytical and numerical re-
for both the analytical and the numerical solutions, namelysults for the ion density. However, as seen in Fig. 3f), there
Ji = Ja atr = 0.006. Results and boundary conditions exists a case of the distribution of the electric field and poten-
presented here are an attempt to qualitatively reproduce rétal where the profiles of the numerical and analytical solution
sults reported in a specific work [21]. Heré, is a spe- are very similar.
cific value of electric current which could be measured in  The results presented in Fig. 3e) indicate that the case
the anode, but we choosety = -10. However, for both of two concentric spherical electrodes is mainly charac-
numerical and analytical solutions, the ion density takes aerized by a considerable increase of the concentration of
positive value in the cathode at= 1 as a result of an im- charged particles in the anode region, especially of the pos-
posed Dirichlet condition, which implies the modification of itive species. While the glow discharge in flat geometry
condition R0) into n; = 0.024. The parameters used in the Fig. 3b) is characterized by a smooth behaviour of potential
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and electric field in most of the discharge gap, an abrupt drogzation of an inert gas with an applied electric field between
in potential in the glow discharge is observed in the sphericalhe gap of three different configurations of electrode pairs.
and cylindrical geometries. Analyzed configurations correspond to parallel plate, concen-

Experimental observations of the glow discharges betric cylindrical and concentric spherical electrodes. With the
tween parallel electrodes [22] and cylindrical electrodes (holaim of determining electron and ion densities as well as po-
low cathode) [23] show the generation of luminous and darkential an electric field distributions, asymptotic expansions
regions within the plasma. In order to contrast the experiwere implemented to solve the plasma model analytically
mental observations with our results, the yellow dotted vertiwith power series in terms of the Damkohler number, that
cal lines in Fig. 3 delimit the bright and dark regions within were truncated up to third order to make the problem man-
the plasma. In the parallel electrodes configuration, first rovageable.
in Fig. 3), the electric field magnitude is low betwees: 0.4 Regarding the comparison with the available numerical
andr = 0.6, which denotes a dark region (or Faraday darkresults, the analytical solutions are strongly limited by bound-
space). Outside the latter region, the electric field magnitudary conditions and the asymptotic approximation. Never-
is increased, which promotes two bright regions denoted agheless, we developed a numerical tool based on a spectral
anode and cathode glow. For the cylindrical electrodes, se¢nethod to solve the complete set of equations of the cold
ond row in Fig. 3, we can only identify two regions, the an- plasma model. By maintaining the dimensionless parameters
ode glow close to the inner electrode due to the increase iwithin a given range, it was possible to exactly match the nu-
particle density and electric field magnitude, and the darknerical and the analytical results in the three electrode con-
one which covers most of the system. A similar distribu-figurations. Thus, the theoretical scope of the present work is
tion of the bright and the dark regions can be appreciatedimited by the values with which the dimensionless parame-
for the concentric spheres case, third row in Fig. 3, howeveters can achieve coinciding numerical and analytical results.
in this case the anode glow is shorter than the previous case \we found that our analytical and numerical results agree
(concentric cylinders) due to the abrupt decay of the electrigajitatively in the non-linear regime as compared with re-
field in the r-direction. We must note that, the physics of syits found in literature. Nonetheless, given to the scarcity of
a DC glow discharge is more complex than our theoreticabyact solutions in the literature our asymptotic solution in the
approach which only reproduces some qualitative aspects Gfear regime is useful for the validation of numerical models
real glow discharges because of the strongly restrictive aspr cold plasma with the specific assumptions mentioned in
sumptions. However, these asymptotic solutions representis work.
simple useful tool to understand some basic aspects of DC
glow discharges.

Appendix A.
7. Concluding Remarks
Asymptotic solutions up to second order for the flat parallel

Analytical and numerical solutions for a non-linear mathe-electrodes geometry for electron, ion and potential
matical model of a cold plasma were found for different elec-
trode configurations. A glow discharge was achieved by ion- (a—2z)(a+x—2)

1
n?(z) = ~TdE D z(a — 16 (Pox(—22"* +122° —182° — 3z + 9) + 15vP; + a® (P (52 + 42z — 27) — 1507 P))

+a® (2P, — 157yP;) + a*(P.(3 — 13z) + T5vP;) — a(P.(2z* + 122° — 632> 4 30z + 9) + 757 P)

+ a®(P.(102® — 452% — 18z + 33) 4 1507 P;))T + 6ni. Piy(24Ve + (a — 1)*(5 — 10a 4 5a° — 12ni.)T)

+ B(—48 4+ T2YP;V. + 12T Pz — 2T P.a® 4 159T'P; — 667Tni. P; + a°T'(Pe(13z — 1) — 907 P;)

— 9P.z(T'(4ni. — 1) 4+ 8V,.) — 62° (3T (nic + 1) P. + 1) + 32*(I'(20ni, — 1)P. + 8P.V. + 8) 4+ a°(157T P, — 2I'P.)

+ a*(TP.(6nic — 5(z* + 11z — 6)) + 39T(75 — 22ni.) P — 30) + a*(—6P.(I'(8nic — 7) + 8V..)

+ 62%(D(nic — 18)P. 4 1) + 6x(I'(13nic 4 2) P + 13) + 9yP;((25 — 44ni.) + 8V.) + 2l Poax* 4 22T P.ax® — 264)
—2a*(=3(T'(nic — 10)Pe + 29T(22nic — 25)P; + 25) 4 152(T(nic — 2)Pe 4+ 1) + 50 Poa® — 250 Poa®)

+ a(192 — 14T P.z* 4 2T P.z® — 6Py (24V, + (15 — 44ni.)) + 9P.(T'(4ni. — 1) + 8V,.)

— 62 (11T (e — 1) Pe + 5) + 3a(—T(4nic + 13) Pe + 8PV, — 16) + 62° (Pe(T' + 3Tnic) + 1)))), (A.2)

Bla—z)(a+x—2)

1
n(x) = 5

+ nic, (A.3)
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n®(z) = _ma —2(—6(a—1)nicP(a+ = — 2)(5a® — 10a — 12ni. — 2° + 22 +4) + a — 1P;(—15 + 13’

+ 13a*(z — 6) — 9z + 3% + 182° — a®(—5a® — 422 4 177) + a®(—102® + 452° + 18z — 183) + a(2z" + 122° — 632°
+ 30z + 84) + 22° + 122%)3°T — B(—48 + T2P, V.. + 15I'P; + 13a°T'P; — 84Tni.P; + 13a°T Py (x — 7) + 12T P,a*

— 2T Pz’ — 9P,a(T(4nie — 1) + 8V,.) — 62° (T'(4nic + 3) P + 1) + 32°(0(28ni. — 1) P; + 8P, V.. + 8) — 5a™* (D' P;(12ni.
+ 2 + 11z — 51) + 6) — 10a°(—6T'(5ni. — 6)P; + (60 (ni. — 1)P; + 3) + T Piz® — 5T Piz® — 15) + a(192 — 72P,V.
— 99T P; 4 372T'ni. P; + 3x(—T'(20ni. + 13)P; 4+ 8PV, — 16) + 62°(Pi(T + 4'ni.) 4+ 1) — 62> (I'(16ni. — 11)P; + 5)
+ 2T Pyz® — 14T Pia™) + a® (22T Piz® + 3(I(89 — 176ni.) P; + 8PV, — 88)

+ 62 (20 (nic — 9)P; + 1) + 62(2P; (T + 13Tnic) + 13) + 2 Piat))), (A.4)
i (a—z) ((a =1L (z —1) (5a®(B — 1)—a(B — 1)(z + 9)+12ni. — (B — 1)((z — 3)z — 3)) +24V%)
' (z) = , (A.5)
24(a — 1)
@ (2) = S 1T (a—1P;(385 + 716a°+385x + 3522 — 702® — 49z* + 352° — 525 — 2a®(97x + 2051) + a*(—1942?

20160(a — 1)8
+ 1358z + 9576) + 4a® (42® + 18222 — 861z — 2905) + a?(51x? — 25223 — 71422 + 3920z + 7735) — a(5z® + 772* — 406z — 702>
+ 19952 + 2695))3°T — 140nicP;(—1 4 2a — 2)y(a — 1)2T'(5a2 — 10a — 12nic + 5) + 24V + 32(—35Ta°(Pe — P;) 4 5Tz (P.—P;)
+ 2a5(2P. (392 — 67) + P;(2409 + (97 — 1757y)x — 22759))T" + 4a"T(4Pe + (175y — 179) P;) — T2 (—8'nicP; + 5I'P. — 5I'P;
+ 96P; V. — 20) + 1423 (34T nio P; + 5T P, — 50 P; + 12P;V, + 10) + 7z*(~T(16ni. + 7)P; 4+ TTPe — 4) 4 2a® (T P; (6300 4 1694ni.
+ 9722 + 10507z — 7762 — 6839) + ['P.(—972% — 274z + 539) + 854) + 7x(144P; V., 4 T'Pi(—=50y — 272ni. 4 55) — 5(T'Pe + 28))
— 7(TP;(507 + 272nic — 55) + 5(T P + 28) — 144P;V.) + a?(—128Tz*(P. — P;) + 5T2%(P; — P.) 4 14x®(I'(2ni. — 47)P; 4 47T P
+2) 4 2822 (28T (3nic — 1)P; + 28T Pe + 39) — 14(5T P; (135 + 380ni. — 149) + 700 P. — 312P; V. + 970) 4 7a(—5T P; (15074276
—169) — 95T P, + 24P, V. — 660)) + 2a* (461722 (P, — P;) + 8Tz3(P. — P;) + Ta(TP;(—375y — 58nic + 343) + 32T P, — 28)
— 7(TP; (13757 + 1152ni. — 1514) + 139T P, 4 582)) 4 a(40Tz®(P. — P;) + 5T'z8(P; — P.) 4 28z*(I'(4nic — 1)P; + TP + 1)
— 2823(6 + 17T P. + (=17 + 18nic) PiT) — 28x(T P;(— 757y — 268nic + 85) — 10(T'Pe 4 13) 4 24P; V) 4 56(T P; (507 + 204ni. — 55)
+5(TPe + 21) — 72P;V.) + T2 (24P; Ve 4+ T'(5 — 228nic) P; — 5(T P + 24))) + a®(—268Tx3(P. — P;) + 51Tz (P. — P;)
— 1422 (D (58ni. — 103)P; + 103T P, + 28) + 28z(T'P; (250 4 174ni. — 263) + 13T P. + 84) + 7(—216P; V. + 5T P; (500~ + 852ni..
— 553) + 5(530 P, + 432)))) — B(—35L Pez® + 5T Pz’ 4+ 4a"T (4P, + 175vP;) + 2a°T(2P.(39z — 67) — 175y Pi(x + 13))
— 1422(10 4+ 12P.V, + ['(24nic — 5)Pe — 10TnicP;) 4 7a* (T (12nic 4 7) Pe—4Tnic P; + 4) 4+ 7(10T Py (=57 + 36ni2 + 2(11y—T7)nic)
+ (1206 — 5)P. + 96 P. Ve — 2407 P; Ve 4+ 140) + Tz(100P; (=5 + 36ni2 + 2(11y — T)nic) + T(12ni. — 5) P + 96 P. V.
— 240y P; Ve 4+ 140) + T2%(—20(6T'ni2 P; — TnicP; + 1) + T'(12ni. — 5)Pe + 96P.V.) — 2a°(14((110y — 61)T'ni. P; — 75y Pi(x + 6)
+61) + TP (9722 4 274z — 539)) + 2a*(461T Pea? + ST Pea® — 7a(—28 + 2I'(15nic — 16) Pe + 2(14 — 554)TnicP; + 3759T P;)
+ 7(I'(30ni. — 139) Pe 4+ 6(1657 — 97)I'nic P; — 137579 P; + 582)) 4 a®(—268T'Pez® + 51T Pea* +1422(I'(30ni. — 103) P, — 28Tni. P;
+ 28) 4 28z(I' (304 + 13) Pe 4 4(21 — 557)'nic Py + 25071 P; — 84) — 7(200 P;(—125+ 4 30n42 + 4(44y — 27)ni.) + 5I'(36ni.
— 53) P + 264P. V. — 4807 P; V.. + 2160)) — a(—40T Pez® + 5T Pea® — 2823 (I'(12nic — 17)Pe — 6T'nic P; + 6) + 28z*(D'(3ni. — 1) Pe
—TnicP; + 1) 4 56(105 + 48 Pe Ve — 1209 P; Ve 4 T'(9nic — 5) Pe 4 5T P; (=107 + 36ni2 4 3(11y — T)nic)) + 282 (5T Py (— 15y + 24ni2
+ (447 — 26)nic) + 2T (Iic — 5)Pe + 96 PV — 1207 P; Ve 4 130) + 722 (24P: Ve 4+ T'(5 — 108nic) P. — 120(Tni2 P; — Tnic P; 4 1)))
+ a?(—128T Pez — 5T Pox® — 282%(T(45nie — 28) Pe — 39T nic Py + 39) + 1423 (2T i P; 4+ 470 P, — 2) + 14(5T P;(—1357 + 168ni2
+2(154y — 97)nic) 4 10T (9nic — 7)Pe + 288 PV, — 6007 P; Ve + 970) + 7x(Pe(216V, — 95T) 4 30(22 — 8yP; V. + P;(4ni?

— 25y + 22(2y — 1)nic)T))))). (A.6)
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