
Other areas in Physics Revista Mexicana de Fı́sica69021401 1–9 MARCH-APRIL 2023

Extended Jacobi elliptic function solutions for general boussinesq systems
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Eskişehir Osmangazi University, Department of Mathematics-Computer, 26480, Eskişehir-Turkey.
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In this research paper, we have utilized the Jacobi elliptic function expansion method to obtain the exact solutions of (1+1)- dimensional
Boussinesq System (GBQS). The most important difference that distinguishes this method from other methods is the parameters included
in the auxiliary equationF ′(ξ) =

√
PF 4(ξ) + QF 2(ξ) + R. As far as the authors know, there is no other study in which such a variety

of solutions has been given. Depending onP , Q andR, nineteen the solitary wave and periodic wave solutions are obtained at their limit
conditions. In addition, 3D and contour plot graphics for the constructed waves are investigated with the computer package program by giving
special values to the parameters involved. The validity and reliability of the method is examined by its applications on a class of nonlinear
evolution equations of special interest in nonlinear mathematical physics. The results were acquired to verify that the recommended method
is applicable and reliable for the analytic treatment of a wide application of nonlinear phenomena.
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1. Introduction

We consider the following family of Boussinesq type systems
of water wave theory, model by Zhanget al. [1] and Chenet
al. [2]

ut + uux + vx = c1uxxt,

vt + [(1 + v)u, ]x = c2uxxx, (1)

wherev is the elevation of a water wave andu is the surface
velocity of water alongx-direction andc1 = −(1/2)(φ2 −
(1/3)), c2 = (1/2)(1− φ2) andφ is a depth of water (φ = 0
is at the bottom,φ = 1 is on the surface), which have the
relationc1 − c2 = 1/3. For the casec1 = 0, c2 = −1/3,
Eq. (1) is the classical Boussinesq (cB) system is not linearly
well posed in the Hadamard sense [3], it is important be-
cause it has an integrable Hamiltonian structure [4] and exact
solitary-wave solutions [5-7].

This Eq. (1) is also known as Nwogu’s Boussinesq (NB)
model is useful for coastal and civil engineering to perform
the nonlinear water wave model in a harbour and coastal de-
sign. Therefore many scientists studied mathematical prop-
erties, such as bifurcation and travelling wave solutions, lie
symmetry analysis, single and multiple solitary wave solu-
tions and painleve analysis [8-16].

In recent years, many methods have been developed for
the exact solutions of nonlinear evolution equations such as
the sub-equation method, the modified trial equation method,
the simplest equation method, the generalized Kudryashov
method, the symmetry analysis method and so on [17-22].
The main objective of this study is to investigate new travel-
ing wave solutions for NB model by the Jacobi elliptic func-
tion method. The effectiveness and efficiency of this method
are shown in literature with the various Jacobi elliptic func-
tion forms [23-27].

The outline of the present paper is as follows. In Sec. 2,
we have a brief description of the Jacobi elliptic function
method for solving partial differential equations. In Sec. 3,
we apply the Jacobi elliptic function method above men-
tioned equation. Finally, some conclusions are given the lat-
est section.

2. Jacobi’s elliptic function method

In this section, we would like to describe extended Jacobi
elliptic function method. Suppose a nonlinear partial differ-
ential equation (NPDE) with independent variablesx, t and
dependent variableu:

N(u, ut,ux, uxx, ...) = 0. (2)

Consider the following travelling wave transformation

u(x, t) = u(ξ), ξ = x− ct, (3)

wherec is an arbitrary constant to be determined later. By
substituting (3) into (2), we have an ordinary differential
equation (ODE):

N(u, u′, u′′, u′′′, ...) = 0. (4)

Let us consider the solutions in the form

u(ξ) =
n∑

i=0

aiF
i(ξ), (5)

whereF satisfies the Eq. (2) and n is a positive integer
which can be evaluated by balancing the highest order partial
derivative term and nonlinear term in Eqs. (2) or (4). F (ξ)
satisfies the following auxiliary equation:

F ′(ξ) =
√

PF 4(ξ) + QF 2(ξ) + R, (6)
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whereP , Q, andR are constants. The last equation hence
holds forF (ξ) :

F ′′ = 2PF 3 + QF,

F ′′′ = (6PF 2 + Q)F ′,

F ′′′ = 24P 2F 5 + 20PQF 3 + (12PR + Q2)F

... (7)

With the help of Maple, substituting (6) into (4) along
with Eq. (7) and collecting the coefficients of the same power
F i(F ′)j (j = 0, 1, i = 0, 1, 2, ...) and setting each of the
attained coefficients to be zero we have a set of over deter-
mined algebraic equations. And after we solve this by Maple,
we findP, Q, R andc. Substituting the attained results into
Eq. (6), gives the exponential and periodic solutions. It is
well-known that Eq. (6) has families of Jacobi elliptic func-
tion solutions as follows [28,29]:

In this Tablesnξ, cnξ, dnξ are respectively Jacobian el-
liptic sine function, Jacobian elliptic cosine function and the
Jacobian elliptic function and the other Jacobian functions
can be generated by these three kinds of functions, namely

nsξ = 1
snξ , ncξ = 1

cnξ , ndξ = 1
dnξ , scξ = cnξ

snξ ,

csξ = snξ
cnξ , dsξ = dnξ

snξ , sdξ = snξ
dnξ

Also these functions satisfying the following formulas:

sn2ξ + cn2ξ = 1, dn2ξ + m2sn2ξ = 1,

ns2ξ = 1 + cs2ξ, ns2ξ = m2 + m2ds2ξ,

sc2ξ + 1 = nc2ξ, m2sd2ξ + 1 = nd2ξ.

And addition derivative properties,

sn′ξ = cnξdnξ, cn′ξ = −snξdnξ,

dn′ξ = −m2snξcnξ.

The Jacobian-elliptic functions degenerate into hyperbolic
functions whenm → 1 as follows:

snξ → tanh ξ, {cnξ, dnξ} → sechξ,

{scξ, sdξ} → sinh ξ, {dsξ, csξ} → cschξ,

{ncξ, ndξ} → cosh ξ, nsξ → coth ξ,

{cdξ, dcξ} → 1. (8)

Case P Q R F (ξ)

1 m2 −(1 + m2) 1 snξ

2 −m2 2m2 − 1 1−m2 cnξ

3− 4 1 −(1 + m2) m2 nsξ

5 1 −(1 + m2) m2 dcξ

6 1−m2 2−m2 1 scξ

7− 8 1 2−m2 1−m2 csξ

9− 10
1

4

1− 2m2

2

1

4
nsξ ± csξ

11
(1−m2)

4

(1 + m2)

2

(1−m2)

4
ncξ ± scξ

12 P > 0 Q < 0
m2Q2

(1 + m2)2P

√
−m2Q

(1 + m2)P
sn

(√ −Q

1 + m2
ξ

)

13 P < 0 Q > 0
(1−m2)Q2

(m2 − 2)2P

√ −Q

(2−m2)P
dn

(√
Q

2−m2
ξ

)

14 1 m2 + 2 1− 2m2 + m4 dnξcnξ

snξ

15 − 4

m
6m−m2 − 1 −2m3 + m4 + m2 mcnξdnξ

msn2ξ+1

16
4

m
−6m−m2 − 1 2m3 + m4 + m2 mcnξdnξ

msn2ξ−1

17− 18
1

4

(1− 2m2)

2

1

4

snξ

1± cnξ

19
(1−m2)

4

(1 + m2)

2

(1−m2)

4

cnξ

1± snξ
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The Jacobian-elliptic functions degenerate into trigonometric
functions whenm → 0 as follows:

{snξ, sdξ} → sin ξ, {cnξ, cdξ} → cos ξ,

scξ → tan ξ, {nsξ, dsξ} → csc ξ,

{ncξ, dcξ} → sec ξ, csξ → cot ξ,

{dnξ, ndξ} → 1. (9)

3. Generalized Boussinesq System (GBQS)

Suppose that the travelling wave solutions for Eq. (11) are of
the forms as follows:

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = x− ct, (10)

wherec is a constant to be determined later andξ is an arbi-
trary constant.

ut + uux + vx = c1uxxt,

vt + [(1 + v) u]x = c2uxxx. (11)

By substituting (10) into (11), we have an ordinary differ-
ential equation (ODE):

−cu′ + uu′ + v′ + cc1u
′′′ = 0,

−cv′ + u′ + uv′ + vu′ − c2u
′′′ = 0. (12)

where prime denotes differentiation with respect toξ. Now,
balancing the nonlinear termsu′′′ andu′u, we getm = 2.
Balancing the nonlinear termsu′′′ anduv′, we getn = 2.
Hence, from (5), we might constitute

u(ξ) = a0 + a1F (ξ) + a2F (ξ)2,

v(ξ) = b0 + b1F (ξ) + b2F (ξ)2, (13)

in whicha0, a1, a2, b0,b1 andb2 are undetermined constants.
Substituting (13) and (6) into (12) and setting the coeffi-
cients of F i(ξ)F ′(ξ)j = 0, i = 0, 1, 2, 3, j = 0, 1
to zero yields the following set of algebraic equations for
a0, a1, a2, b0,b1,b2 andc:

2a2
2 + 24cc1a2P = 0,

3a1a2 + 6cc1a1P = 0,

−2ca2 + a2
1 + 2a0a2 + 2b2 + 8cc1a2Q = 0,

−ca1 + a0a1 + b1 + cc1a1Q = 0,

4b2a2 − 24c2a2P = 0,

3b2a1 + 3b1a2 − 6c2a1P = 0,

2a2 − 2cb2 + 2b2a0

+2b1a1 + 2b0a2 − 8c2a2Q = 0,

−cb1 − c2a1Q + a1 + b1a0 + b0a1 = 0. (14)

Solving the set of nonlinear algebraic equations by help of
Maple program, the following results are attained.

a0 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
,

a1 = 0, a2 = −12cc1P,

b0 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

,

b1 = 0, b2 = 6c2P, c = c. (15)

Substituting these results into (13), we have the following so-
lution of Eq. (16):

u(ξ) = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1PF (ξ)2,

v(ξ) =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2PF (ξ)2. (16)

With the means of table and from the above solution (16), one
might induce more general united Jacobian-elliptic function
solutions of Eq. (12). Hereby, we attain the following exact
solutions.

In the limit case whenm → 1,we get the solitary wave
solutions of Eq. (12). In the limit case whenm → 0, we
acquire the traveling wave solutions of Eq. (12).
Case 1.If we takeP : m2, Q : −(1+m2), thenF (ξ) = snξ,
thus

u1 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1Psn2ξ,

v1 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2Psn2ξ.

In the limit case whenm → 1, thenF (ξ) = tanh ξ, and
we attain one of the solitary wave solutions of Eq. (12) as

u1(x, t)=−1
2
−2c2c1−16c2c2

1−c2

cc1
−12cc1 tanh(x− ct)2,

v1(x, t)=
1
4
−4c2c2

1−16c2c
2c2

1+c2
2

c2c2
1

+6c2 tanh(x− ct)2.

Case 2. WhenP : −m2, Q : (2m2 − 1) are chosen, then
F (ξ) = cnξ, therefore

u2 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1Pcn2ξ,

v2 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2Pcn2ξ.

Consideringm → 1, thenF (ξ) = sec hξ, and one of the
solitary wave solutions of Eq. (12) has been obtained as

u2(x, t) = −1
2
−2c2c1 + 8c2c2

1 − c2

cc1
+ 12cc1 sech (x− ct)2,

v2(x, t) =
1
4
−4c2c2

1 + 8c2c
2c2

1 + c2
2

c2c2
1

− 6c2 sech (x− ct)2.
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FIGURE 1. The figures represent the single soliton solutionsu1(x, t) andv1(x, t) with respectively 3-dimensional plots and contour plots
whenc = c1 = c2 = 1 and(x, t) = [−5, 5]× [−2, 2].

FIGURE 2. The figures represent the shock wave soliton solutionsu3(x, t) andv3(x, t) with respectively 3-dimensional plots and contour
plots, whenc = c1 = c2 = 1 and(x, t) = [−5, 5]× [−2, 2].

Case 3.ChoosingP : 1, Q : −(1 + m2), it may be denoted
from tableF (ξ) = nsξ, hence

u3 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1Pns2ξ,

v3 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2Pns2ξ.

As m → 1, thenF (ξ) = coth ξ, and one of the solitary
wave solutions of Eq. (12) can be stated as

u3(x, t)=− 1
2
−2c2c1−16c2c2

1−c2

cc1
− 12cc1 coth(x− ct)2,

v3(x, t)=
1
4
−16c2c

2c2
1 − 4c2c2

1 + c2
2

c2c2
1

+6c2 coth(x− ct)2.

Case 4. SupposingP : 1, Q : −(1 + m2) from table this
choices correspond toF (ξ) = nsξ, hence

u3 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1Pns2ξ,

v3 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2Pns2ξ.

For m → 0 from (9), F (ξ) = csc ξ, and we acquire one
of the periodic solutions of Eq. (12) as

u4(x, t) = −1
2
−2c2c1 − 8c2c2

1 − c2

cc1
− 12cc1 csc(x− ct)2,

v4(x, t) =
1
4
−4c2c2

1 − 8c2c
2c2

1 + c2
2

c2c2
1

+ 6c2 csc(x− ct)2.

FIGURE 3. The figures represent the periodic wave solutionsu4(x, t) andv4(x, t) with respectively 3-dimensional plots and contour plots,
whenc = c1 = c2 = 1 and(x, t) = [−5, 5]× [−2, 2].
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Case 5. ConsideringP : 1, Q : −(1 + m2) from (9)
F (ξ) = dcξ, hence

u5 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1Pdc2ξ,

v5 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2Pdc2ξ.

If m → 0, thenF (ξ) = sec ξ, and one of the periodic
solutions of Eq. (12) has been attained as

u5(x, t) = −1
2
−2c2c1 − 8c2c2

1 − c2

cc1
− 12cc1 sec(x− ct)2,

v5(x, t) =
1
4
−8c2c

2c2
1 − 4c2c2

1 + c2
2

c2c2
1

+ 6c2 sec(x− ct)2.

Case 6.If we getP : 1−m2, Q : 2−m2, thenF (ξ) = scξ,
therefore

u6 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1Psc2ξ,

v6 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2Psc2ξ.

As long asm → 0, F (ξ) = tan ξ, and we obtain one of
the traveling wave solutions of Eq. (12) as

u6(x, t) = −1
2
−2c2c1 + 16c2c2

1 − c2

cc1
− 12cc1 tan(x− ct)2,

v6(x, t) =
1
4
−4c2c2

1 + 16c2c
2c2

1 + c2
2

c2c2
1

+ 6c2 tan(x− ct)2.

Case 7. For choicesP : 1, Q : (2 − m2) from table,F
is obtained asF (ξ) = csξ, in this way the solution may be
expressed as

u7 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1Pcs2ξ,

v7 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2Pcs2ξ.

Moreover, form → 1 from(8), F (ξ) = csc hξ, and one
of the solitary wave solutions of Eq. (12) can be found as

u7(x, t) = −1
2
−2c2c1 + 8c2c2

1 − c2

cc1
− 12cc1 csc h(x− ct)2,

v7(x, t) =
1
4
−4c2c2

1 + 8c2c
2c2

1 + c2
2

c2c2
1

+ 6c2 csc h(x− ct)2.

Case 8.SettingP : 1, Q : (2 −m2), thenF (ξ) = csξ, due
to this settings,

u8 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1Pcs2ξ,

v8 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2Pcs2ξ.

Furthermore, form → 0 by using from (9), F (ξ) =
cot ξ, and we attain one of the traveling wave solutions of
Eq. (12) as

u8(x, t) = −1
2
−2c2c1 + 16c2c2

1 − c2

cc1
− 12cc1 cot(x− ct)2,

v8(x, t) =
1
4
−4c2c2

1 + 16c2c
2c2

1 + c2
2

c2c2
1

+ 6c2 cot(x− ct)2.

Case 9.If we takeP = (1/4), Q = (1− 2m2/2) it may be
deducted from table,F (ξ) = nsξ ± csξ, therefore

u9 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1P (nsξ ± csξ)2 ,

v9 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2P (nsξ ± csξ)2 .

In this case form → 1, F (ξ) = coth ξ ± csc hξ, and one
of the solitary wave solutions of Eq. (12) can be shown as

u9(x, t) = −1
2
−2c2c1 − 4c2c2

1 − c2

cc1

− 3cc1(coth(x− ct)± csc h(x− ct))2,

v9(x, t) =
1
4
−4c2c2

1 − 4c2c
2c2

1 + c2
2

c2c2
1

+
3
2
c2(coth(x− ct)± csc h(x− ct))2.

FIGURE 4. The figures represent the shock wave soliton solutionsu9(x, t) andv9(x, t) with respectively 3-dimensional plots and contour
plots,c = c1 = c2 = 1 and(x, t) = [−5, 5]× [−2, 2].
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FIGURE 5. The figures represent the periodic wave solutionsu10(x, t) andv10(x, t) with respectively 3-dimensional plots and contour plots,
whenc = c1 = c2 = 1 and(x, t) = [−5, 5]× [−2, 2].

Case 10 . RegardingP = 1/4, Q = 1− 2m2/2, then
F (ξ) = nsξ ± csξ, so

u10 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1P (nsξ ± csξ)2 ,

v10 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2P (nsξ ± csξ)2 .

In addition, form → 0, F (ξ) = csc ξ ± cot ξ, and the
periodic solution of Eq. (12) can be obtained as

u10(x, t) = −1
2
−2c2c1 + 4c2c2

1 − c2

cc1

− 3cc1(csc(x− ct)± cot(x− ct))2,

v10(x, t) =
1
4
−4c2c2

1 + 4c2c
2c2

1 + c2
2

c2c2
1

+
3
2
c2(csc(x− ct)± cot(x− ct))2.

Case 11. AssigningP = (1−m2)/4, Q = (1 + m2)/2,
thenF (ξ) = ncξ ± scξ, hence

u11 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1P (nsξ ± csξ)2 ,

v11 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2P (nsξ ± csξ)2 .

In the limit case whenm → 0, F (ξ) = sec ξ± tan ξ, and
the periodic solution of Eq. (12) can be written as

u11(x, t) = −1
2
−2c2c1 + 4c2c2

1 − c2

cc1

− 3cc1 sec((x− ct)± tan(x− ct))2,

v11(x, t) =
1
4
−4c2c2

1 + 4c2c
2c2

1 + c2
2

c2c2
1

+
3
2
c2 sec((x− ct)± tan(x− ct))2.

Case 12. If we chooseP > 0, Q < 0 from table,F (ξ) =

√
−m2Q/(1 + m2)Psn

(√
−Q/(1 + m2)ξ

)
, so

u12 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1

− 12cc1
−m2Q

(1 + m2)
sn2

(√
−Q

1 + m2
ξ

)
,

v12 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2
−m2Q

(1 + m2)
sn2

(√
−Q

1 + m2
ξ

)
.

In the limit case when m → 1, F (ξ) =√
(−m2Q)/([1 + m2]P ) tanh

(√
−Q/(1 + m2)ξ

)
, and

the solitary wave solution of Eq. (12) can be stated as

u12(x, t) = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1

+ 6cc1Q tanh
(

1
2

√
−2Q(x− ct)

)2

,

v12(x, t) =
1
4
−4c2c2

1 + 8c2c
2Qc2

1 + c2
2

c2c2
1

− 3c2Q tanh
(

1
2

√
−2Q(x− ct)

)2

.

Case 13. For choicesP < 0, Q > 0,then F (ξ) =√
−Q/(2−m2)Pdn

(√
Q/(2−m2)ξ

)
, hence

u13 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1

− 12cc1
−Q

(2−m2)
dn2

(√
Q

2−m2
ξ

)
,

v13 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2
−Q

(2−m2)
dn2

(√
Q

2−m2
ξ

)
.

In the limit case when m → 1, F (ξ) =√
−Q/([2−m2]P ) sech

(√
Q/(2−m2)ξ

)
, and we get

Rev. Mex. Fis.69021401
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one of the solitary wave solutions of Eq. (12) as

u13(x, t) = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1

+ 12cc1Q sec h(
√

Q(x− ct))2,

v13(x, t) =
1
4
−4c2c2

1 + 8c2c
2Qc2

1 + c2
2

c2c2
1

− 6c2Q sec h(
√

Q(x− ct))2.

Case 14. While P = 1, Q = m2 + 2, then F (ξ) =
dnξcnξ/snξ, therefore

u14 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1P

dn2ξcn2ξ

sn2ξ
,

v14 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2P
dn2ξcn2ξ

sn2ξ
.

In the limit case whenm → 0, F (ξ) = cos ξ/sin ξ, and
one of the traveling wave solutions of Eq. (12) can be evalu-
ated as

u14(x, t) = −1
2
−2c2c1 + 16c2c2

1 − c2

cc1

+ 12cc1
cos2(x− ct)
sin2(x− ct)

,

v14(x, t) =
1
4
−4c2c2

1 + 16c2c
2c2

1 + c2
2

c2c2
1

+ 6c2
cos2(x− ct)
sin2(x− ct)

.

Case 15. When P = −4/m, Q = 6m − m2 − 1, then
F (ξ) = mdnξcnξ/(msn2ξ + 1), hence

u15 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1

− 12cc1P
m2dn2ξcn2ξ

m2(sn2ξ + 1)2
,

v15 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2P
m2dn2ξcn2ξ

m2(sn2ξ + 1)2
.

As long asm → 1, F (ξ) = m sec hξ sec hξ/(m tanh ξ
tanh ξ + 1), and we get one of the solitary wave solutions of

Eq. (12) as

u15(x, t) = −1
2
−2c2c1 + 32c2c2

1 − c2

cc1

+
48cc1 sec h4(x− ct)
(tanh2(x− ct) + 1)2

,

v15(x, t) =
1
4
−4c2c2

1 + 32c2c
2c2

1 + c2
2

c2c2
1

− 24c2 sec h4(x− ct)
(tanh2(x− ct) + 1)2

.

Case 16. SettingP = 4/m, Q : −6m − m2 − 1, then
F (ξ) = mdnξcnξ/(msn2ξ − 1), so

u16=− 1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
−12cc1P

m2dn2ξcn2ξ

m2(sn2ξ − 1)2
,

v16=
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+6c2P
m2dn2ξcn2ξ

m2(sn2ξ − 1)2
.

Whenm → 1, F (ξ) = m sec hξ sec hξ/(m tanh ξ tanh ξ−
1), and we obtain one of the solitary wave solutions of
Eq. (12) as

u16(x, t) = −1
2
−2c2c1 − 64c2c2

1 − c2

cc1

− 48cc1 sec h4(x− ct)
(tanh2(x− ct)− 1)2

,

v16(x, t) =
1
4
−4c2c2

1 − 64c2c
2c2

1 + c2
2

c2c2
1

+
24c2 sec h4(x− ct)

(tanh2(x− ct)− 1)2
.

Case 17. If we get P = 1/4, Q = (1− 2m2)/2, then
F (ξ) = snξ/(1± cnξ), hence

u17 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1P

sn2ξ

(1± cnξ)2
,

v17 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2P
sn2ξ

(1± cnξ)2
.

If m → 1, F (ξ) = tanh ξ/(1± sec hξ), and one of the
solitary wave solutions of Eq. (12) can be stated as

u17(x, t)=− 1
2
−2c2c1−4c2c2

1−c2

cc1
− 3cc1 tanh2(x− ct)

(1± sec h(x− ct))2
,

v17(x, t)=
1
4
−4c2c2

1−4c2c
2c2

1+c2
2

c2c2
1

+
3c2 tanh2(x− ct)

2(1± sec h(x− ct))2
.

Case 18. SupposingP = 1/4, Q = (1− 2m2)/2, then
F (ξ) = snξ/(1± cnξ), therefore

u18 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1P

sn2ξ

(1± cnξ)2
,

v18 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2P
sn2ξ

(1± cnξ)2
.
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Form → 0, F (ξ) = sin ξ/(1± cos ξ), and the travelling
wave solution of Eq. (12) can be obtained as

u18(x, t) = −1
2
−2c2c1 + 4c2c2

1 − c2

cc1
− 3cc1 sin2(x− ct)

(1± cos(x− ct))2
,

v18(x, t) =
1
4
−4c2c2

1 + 4c2c
2c2

1 + c2
2

c2c2
1

+
3c2 sin2(x− ct)

2(1± cos(x− ct))2
.

Case 19.If we getP = (1−m2)/4, Q = (1 + m2)/2, then
F (ξ) = cnξ/(1± snξ), hence

u19 = −1
2
−2c2c1 + 8c2c2

1Q− c2

cc1
− 12cc1P

cn2ξ

(1± snξ)2
,

v19 =
1
4
−4c2c2

1 + 8c2Qc2c2
1 + c2

2

c2c2
1

+ 6c2P
cn2ξ

(1± snξ)2
.

In the limit case whenm → 0, F (ξ) = cos ξ/(1± sin ξ),
and the travelling wave solutions of Eq.(12) can be attained
as

u19(x, t)=− 1
2
−2c2c1+4c2c2

1−c2

cc1
− 3cc1 cos2(x− ct)

(1± sin(x− ct))2
,

v19(x, t)=
1
4
−4c2c2

1+4c2c
2c2

1+c2
2

c2c2
1

+
3c2 cos2(x− ct)

2(1± sin(x− ct))2
.

4. Discussions

The dynamical behaviour of constructed solutions shows the
different soliton type solutions. We obtained some impor-
tant soliton solutions and profiles of the solutions is as fol-
lows: Figure 1, shows the physical structure of single soli-
ton with parameters,c = c1 = c2 = 1. Figure 2, exhibits
the physical structure of shock wave soliton with parameters,
c = c1 = c2 = 1. Figure 3, represents the physical structure
of periodic wave solution with parameters,c = c1 = c2 = 1.

Figure 4, shows the physical structure of shock wave solution
with parameters,c = c1 = c2 = 1. Figure 5, shows the
physical structure of periodic wave solution with parameters,
c = c1 = c2 = 1. Comparing with the results in [1, 2], we
obtained more comprehensive solutions. As our knowledge,
the results have not been previously reported. We expect that
the results will be used future studies. In future work, con-
servation laws, which have a very important role in physics,
can be obtained by group invariant analysis method. Also
complexton and interactive solutions can be considered by
various methods.

5. Conclusion

In this article we considered the(1+1)−dimensional Boussi-
nesq System which were encountered in real world applica-
tion problems such as coastal and civil engineering, harbour
and coastal design. Jacobi elliptic function method were ap-
plied to investigate the traveling wave solutions of the gov-
erning system. By means of this method we have constructed
exact solutions for nineteen cases. These solutions includ-
ing trigonometric and hyperbolic functions and original to
our knowledge. The hyperbolic solutions (including solitary
wave solution) and trigonometric-function solutions of Eq.
(12) can be attained in the limited case when the modulusm
→ 1 andm → 0 respectively. All solutions were verified
Maple package program by putting them back into the orig-
inal equation. Taking the parameters with special values, we
presented 3-D and contour graphs of the Jacobi elliptic func-
tion solutions of the underlying equation.(Figs.1-5) The algo-
rithm is very applicative and influential to investigate many
solutions, therefore it might be also applied to many other
nonlinear differential equations in mathematical physics.
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