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I.- INTRODUCTION

R. Kronig' wags the first to point out, on the basis
of his and Kramers' work-, that the principle of causslity

must entall some properties of the collision and scattering
matrices, Starting from Kroﬁig's suggestion, Schutgzer and
Tionno3 gave, for non relativistic particles, a derivation of
the well known theorem® that the poles of the scattering
function S(k) 1lie either in the lower half plane or on the
imaginary axis of k. Schutzer and Tiomno’s work has been
extended, since, by Toll and by Van Kampen5 1o the case of
relativistic particles with zero rest mass which formed also
the subject of Kronig’s and Kramer’ early congiderations”.
Results similar to these were obtained in the course of the
last years also in communication engineering, following the
pidneering work of Campbell, Zobel and Foster®, and of Cauer’,
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by Brune®, by Franz® and, particularly, by Richards'?., It was
possible to derive from the principle of causality also that
S(k) satisfies the further well known equations*

S(k) S(-k) = | S(k) (S(k*))* = | (1)

and that if p is larger than the range =& _, of the scatter-

ing forces

21ikp

S(k) e < ® (for p > a Imk > 0) (2)

nin’

is uniformly bounded in the uppar half plane of k.

The above theorems about the function S(k) have been
derived by Schutzer and Tiomno also from the properties of the
R(E) function. In the case of simple scattering with definite
angular momentum, which is the only one with which Schutzer
and Tiomno’s paper as well as the present one deal, K(E) 1is
the ratio of the wave function to its radial derivative, at a

point r = & > a outside the range of the scattering

ain
forces. Hence R(E) depends not only on E but also on a.
However, this quantity will be conaidered to be & constant in
all that follows, If the wave function outside a has the
form A sin kr + B cos kr, the connection between R and

the scattering function becomes

S(k) = e'zik‘ LMLL (3)

| — ik R(k")

R(E) as funotion of E = k® 4{s a single valued real function'

of E
R(E*) = (R(E))™ (4)

which has, for fipite E, no other singularities but poles'?

and its imaginary part is positive in the upper, negative in
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the lower half plane. It follows from this property that the
poles of R are all at real E and have negative residues.
A function R(E) which has these properties will be called a
permissible R. One can then formulate Schutzer and Tiomno's
secondary rerult also by stating that an S(k), derived by
(3) from a permissible R, has all the properties given in
the first paragraph.

The present note will first inguire whether, converse-
ly, the properties of S(k) enumerated above suffice to
establish the properties of R. This can =sasily be seen as
far as the single valued and real nature (4) of R are
concerned but will be answered in the negative concerning the
theorems about the poles and residues of R. FHence we shall
inquire for necessary conditions which S(k) must fulfill
in order to be derivable, by (3), from a permissible R,

This will lead to an alternation theorem for the poles of S

which are on the imaginary axis.

I1.- S(k) WHICH DO NOT L&AL TO PERMISSIBLE R(E)

A rather simple general expression which always

satisfies the requirements (1) and (2) for scattering functions

is

f (ik -o0ibk
S(k) =
k) = 1K) © (5)
in which
f(x* = f(x)* (58)
is a real function, b < - YO, and
__(_“kl + 11{2) <
f (k1 - ik2) - tor k1 >0 (5b)
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is bounded 4f k, + ik is in the right half plane. These

conditions are clearly all satisfied if f(x) is a real
polynomial of x, i.e., f(ik) a real polynomial of ik.

"Furthermore, the poles of S will have the proper location

if the roots of f(x) are all either real or lie in the left

half plane. Scattering functions of this form play an import-

ant role in communication anginearing°’7. Our procedure will

be to calculate the R from (5) by means of the inversion

of (3)

21k

— ezisk (a' > anin) (6)

R |
K | 4+ Se

and ascsrtain whether the R obtained in this way

k™' tg ak + F(k)

T kg ek 7

where
«a = a~—-b >0 (7a)
P (k) = f(ik) ~ f£(-ik) (7b)

ik [f£(ik) + f£(-ik)]

give a permissible R functior in the sense of the second
paragraph of the introduction.

Clearly, k ' tg ak, Xk tg ek as well as F(k) are
real 2ven functions of k. It follows that the R of (7) is=s
8 single valued real function of k’ = E which can have,
furthermore, no essential singularities for finite E. This
point was noted already by Schutzer and Tiomno°. The only
further conditions which remain to be verified concern, there-
fore, the position of the poles of R and their residues.

It easily follows from the general theorems on R functions'’
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that these conditiors would also be sat.sfied if F as well
as EF were themselves permissible R functiors. This, how-
ever, is not the case in general.
In order to find & simple case in which (7) is not
permissible wa note that this is a cortinuous functior of «
at a = 0 in every finite region of k except possible where
F{k) has a singularity. However, if F(k) should have a
negative imaginary part for 2 k for which k* has a positive
imaginary part, this will be true also for a sufficiently small
finite « and (7) will represent, for such an a, & not permis-
sible R. Hence (7) can represent a permissible R for all
permissible S only if this is trve also for the expressior
wkich one obtains by setting o« =0 in (7), i.e. if it is
true for the F of (7b). One sees that the permissible
nature of F 1is a necessary condition for the permissible
nature of R at all admissible a &and b while the permis-
sible nature of F and EF would be a sufficient condition,
The two simplest £ which give an S satisfying all
conditions but may give a not permissible F and, hence, a not

permissible R, ars

f(-ik) = -k* - 2ibk + ¢ (8a)
with either b > 0 or b® > ¢ and

£(-1k) = (-k? - 2ib,k + ¢1) (~k® - 2ibsk + c2) (8b)

in which either b; >0 or bf > ¢y, and either bs > 0 or
b: > ca. 1f the b is positive, the sum of the roots of

f(x) = x° + 2bx + ¢ is negative and they must lie in the left
half plane if they are complex. If b* > ¢, both roots are
rsal. The same considerations apply to (8b). It follows that
the S obtain from (8a) or (8b) by means of (5) will satisfy
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all conditions of the first paragraph., Nevertheless, the

2b _ 2b

c-k* o~k

F(k) = (9a)

will have a negative residue at ites pole E = ¢ only {f b
is positive, In the other case, in fact, F is "antipermis-
sible”, 1.e, it has a negative imaginary part in the upper, a
positive one in the lower half plane., Similarly, the F
'obtained from (8b) by means of (7b)

-2(b;, +bs) E + 2bice + 2bac

P=—————  ($b)
E® - (0| + Co +4b]b3) E'l-C'»IOz

will have complex poles if 4ocp ™ (61 + ©g + 4b|b2)2 which
is not incompatible with the conditions enumerated above. One
can put, for instapce ¢, = cp = -2, b; = be = |, In this
case, the imaginary part of F will assume arbitrarily large
positive values at asome points of the lower half plane ard
arbitrarily large negative values at the opposite points of

the upper half plane. We can conclude from these examples

that (1) and (2), together with the conditions for the location
of the poles of S, do not guarantee the permissible nature of
the R obtained from the S,

II11,- ALTERNATIOR THEOREM

Since the conditions on S which were enumerated in
the first paragraph of the introduction do not necessarily lead
to a permissible R, it is natural to ask whether ihe condition
to yield a permissible R leads to simple additional properties
of S. This will be found to be the case.

A1l the poles Zv of R are real and the zeros x,
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also lie on the real axis; there is one zero between any two
succsgsive poles's. Let 2¢, 2.4, Z.2,... be the negative poles

in decreasing order, 2, 25, Z3,... the positive poles in

increasing order, the zero between Z» and Zs+, shall be

denoted by x

ZF < xp < ZP+| (lO)

Zo £0 < 2, (IOa.)

Xo can be positive or negative. Then, every psrmissible R

allows a product expansion"
y £ - Xo I l—E/Ip . |—E/x_v |
R(E) = C E - Zg | ~E/Zv |-E/Z _» (1)

with positive real C. The two products I ocan be finite or

infinite.
It follows from (3) that the poles of S satisfy the

equation

- ik R(k?®) = | + « R(—«?) =0 (12)

where «~ = -ik. With (11), this gives

(x2+Z°) § ('+K2/Zv) If (|+K2/Z-r) =

= ~C(k® + xo) M (1 + «%/x,) 0 (tex®/x_) .  (13)

The left sids: of this equation is shown as function of the

real «, schematically, in the upper part of Figure |; the
right side of (13) in the two lower diagrams., The first product
M is positive in both cases for all real «. The szeros of

the left side lie at « = 2/ (~Z.»} = £ {» with v =0,]1,2,...
and the whole left side changes at every {(» and ~I» ; it
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is negative at « = 0. The zeros of the right side 1lies at

£V (~x_) =t ¢ with » =0,1,2 if
1,2,3,... if xo0 > 0. In the formwsr case

the right side is positive between 0 and ¢45: in the latter

case it is negative between (0 and ¢£&,.

x =0 and «

Xo <0 and v

Let us take up the second case (xo > Q) first. It
follows from (10) that

0 < Lo < &) <Y1< €2 < Lo ovs (14)

Hence (13) will have a solution «xo, between 0 and {,
because the left sids of (13) increases in this interval from
a8 negative value to zero; the right side drops from zero to

a negative value. On the other hand, (13) can have no root
between o and ¢; because the two sides of (!3) have op-
posite signs in this interval., Again, there will be & root

£1 < x; < I, and in general in every interval (&y,{s).

For negative «x, the situation will be opposite: the roots
—xy will be so situated that »_; < k, < v . One can sum-
marize this by stating that the absolute values of the positive
imaginary poles k = ixqo, ix;, ixg,... alternats with those of

the negative imaginary poles k = -ix , =ik, ~1Kg, e

0 < kg < x; < x; < x; < Ko < x; .o (|5)

The situation is very similar if xo 1is negative, except that,
in this case, eithar (15) holds or there can be two negative
jraginary poles k = —ix; and k = —ix; the absolute values
of which are both smaller than that of the smallsst positive
imaginary pole «o.

The situation as described above certainly seems the

most natural one and can be expected to be the usual one. It
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is conceivable, however, that instead of the & single vcie
between 0 and (o, for instance, one has three poles cor, in
fact, any odd number of poles. This can happen if the curves
of Figure | are not as smooth as drawn but show ?ppreciable
curvature., In such a case, every heavily drawn interval in
Figure | can contain an arbitrary odd number of poles while
the (-7o,0) interval, i.e. the first negative interval, will
contain an even number of poles, The final rule which emerges
is therefore as follows. If one orders the purely imaginary
poles of S according to their absolute value, one first finds
an even number (or zero) of negative imaginary poles, then an
odd number of positive imaginary poles, then an odd number of

negative imaginary poles, and odd numbers of positive and of

negative imaginary poles then continue to alternate.

left side

___....,___..0 , - of (13)

AN ANEAN ki
N4 N\ ./ £ Xo< O

right side

of (13)
Xo>0
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The above alternating rule is by no means a sufficiernt
condition for S to yield, by (8), a permissible R; it is
only a necessary condition. If the properties of S, enumerated
in the first paragraph, suffice to ensure the principle of
causalitya, this principle cannot suffice to derive the
properties of R, given in the second paragraph. Since these
properties of R follow from the possibility to define a
local probability and flux density, it would be interesting
to ascertain whether they remain valid for particles, such
as the light quantum, for which no such local densities can
be defined.
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