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Relativistic hyperbolic motion and its higher order kinematic quantities
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We investigate the kinematics of the motion of an observer with constant proper acceleration (relativistic hyperbolic miotiargrid1 + 3
dimensional Minkowski spacetimes. We provide explicit formulas for all the kinematic quantities up to the fourth proper time derivative (the
Snap). In thel + 3 case, following a recent work of Pons and de Palol [Gen. Rel. Grav. 51 (2019) 80], a vectorial differential equation for
the acceleration is obtained which by considering constant proper acceleration is turned into a nonlinear second order differential equation
in terms of derivatives of the radius vector. If, furthermore, the velocity is parameterized in terms of hyperbolic functions, one obtains
a differential equation to solve for the argumefits) of the velocity. Differently from Pons and de Palol, who employed the particular
solution, linear in the proper timg, we obtain the general solution and use it to work out more general expressions for the kinematical
quantities. As a byproduct, we obtain a class of modified Rindler hyperbolic worldlines characterized by supplementary contributions to the
components of the kinematical quantities.
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1. Introduction its modulus. Similar calculations are performed for the Jerk
and Snap. In Sec. 4, the general solution of the differential
In this paper, we study the kinematical quantities of accelequation for hyperbolic parametrization is obtained and the
erated motion in Minkowski spacetime, in which, as well same kinematical quantities are expressed in term of the gen-
known, one of the coordinates is the laboratory time. Ineral solution. In Sec. 5, the worldlines (Rindler-type hyperbo-
the lowest dimensional (one time component and one spaas) based on the general solution are obtained and displayed

tial coordinate) Minkowski spacetime, the relativistic motion graphically. Section 6 contains the conclusions of this work.
of constant proper acceleration (the hyperbolic motion) has

been throughly discussed over more than a century, starting . . . . .

with Born [7]. Even when only considering uniform proper 2- Hyperbolic motion in the 1+1 dimensional
acceleration, intriguing quantum field effects, like the famous ~ Minkowski spacetime

Unruh effect, show up [1, 2]. o ) . .

In the recent literature on this topic, there have been dis] "€ refativistic hyperbolic motion happens when a particle
cussions related to particular features of uniform and nonMOVes in a Minkowski spacetime with constant proper accel-
uniform relativistic acceleration [3], in which case, higher or- €ration. Ithas been studied in detail by Born, already in 1909,
der time derivatives of the four-velocity, like the Jerk;s), ~ Who called it “hyperbolic motion” since the equation of the
Snap,S(s), Crackle,C'(s), and beyond should be considered. rajectory in ther, ¢ plane (spacetime) is a hyperbola 7, 9].
Acceleration and further higher-order proper time derivatives ~ 1he basic physical concept in a hyperbolic frame is the
become important and non-trivial quantities in generalizayYPerbolic velocity, also known as the rapidity, given by
tions related to intrinsic differential geometric parameters of
the curves (worldlines) like in Ref. [4], or related to curved
spacetimes as in Refs. [5, 6].

The organization of the bulk of this paper is the fol-

V = arctanh(v) , @)

where we have considered the speed of light 1 and where
lowi NS 5 briefl ¢ the ki i (U= r’, namely, the derivative with respect to laboratory time.
owing. In =ec. <, we brietly present the kinematics o The hyperbolic acceleration, is defined as the deriva-

the hyperbolic motion in thd + 1 Minkowski case with . : . .
. . . . . . _tive of the hyperbolic velocityy” with respect to the proper
an iterative extension to higher order proper time deriva- yp W P prop

. . X . time s. Note that
tives. In Sec. 3, we consider the hyperbolic motion in four- s

dimensional Minkowski spacetime. In this case, a matrix = dV' _ 4 retanh(v) = ﬂiarctanh(v)
representation of Lorentz transformations between a traveler ~  ds  ds  dsdt
proper frame and a laboratory frame can be usede $pE3]. d 1 1 do dv

: . . . _ _ _3
In this matrix approach, one obtains a nonlinear second order —7$afctanh(v)—ﬁma—7 W=z @
differential equation which is solved based on the standard

parametrization of the four-velocity in terms of hyperbolic so the hyperbolic acceleration, is the proper acceleration,
functions. The four-acceleration is calculated, together withrelated to the laboratory acceleration dy= +3(v)(dv/dt).
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The relativistic trajectory can be found from
dv
(1 —v2)3/2

With the initial conditionv = 0 at¢ = 0, one obtains

= adt . 3)

_ at 4
'S irae *)

and considering that = ' = 2’ = dz/dt, by one more

integration one can obtain thecoordinate

x—xozé( 1+ (at)?2—1). (5)

Furthermore, thé + 1-Jerk and thd + 1-Snap are

J(s) = dA 22 (coshu> 7

ds sinh u
dJ 3 (sinhu
S(s) = i « (cosh u) . (16)

The higher order derivatives can be written iteratively as fol-
lows:

ar

The latter equation can be written as the equation of a hypefor even derivatives, and

bola
(x — 20 +b)* =12 =0, (6)

whereb = 1/a. We set the initial condition ta; = 0 and
use the hyperbolic parametrization
x =b(coshu — 1), t=bsinhu, 7
so that
dr = bsinhudu , dt = bcoshudu , (8)

which allows to identifyu with the rapidityV, because

i% = tanhu . 9)
Furthermore
ds = \/dt? — dxz? = bdu = bdV (20)
so that
AV du 1

Equation [7) contains the components of the positiba- 1-

vector
(o) = L (St )

cosh(u(s)) — 1 (12)

but to generate the iterative sequence of the higher order kine-
matical quantities, we find that the shiftée- 1 position vec-

tor X

5 1 /0\ 1 (sinh(u(s))
X=X+ @ <1) T a <cosh(u(s)) ’ (13)
is more appropiate. In terms of the shiftéd+ 1 position
vector, thel + 1-velocity is

dX coshu
Uls) = ds <sinhu> ’

whereu = « from (11) has been used. For the+ 1-
acceleration, one obtains
o sinh u
coshu /)’

(14)

A(s) = i

(15)

T X5 =0"X,  p=0123. (17
d2Q+1 dX
Ts@ar) s :ozzqa, q=20,1,2,3... (18)

for odd derivatives. For constant proper acceleration, the
higher order even derivatives { 1-acceleration] + 1-Snap,
etc.) are given in terms of rescaléd+ 1-position vectors
while the odd derivatives are in terms of rescaled- 1-
velocities. The moduli of both types of derivatives are suc-
cesive powers of fourth order im. The even derivatives are
spacelikel + 1-vectors, whereas the odd ones are timelike.
There is not much functional change when passing from one
kinematic derivative to the next one, which consists only in a
permutation of the hyperbolic functions from the time com-
ponent to the space component at each order and a power-law
modification of the square modulus.

3. Hyperbolic motion in the 1 4+ 3 dimensional
Minkowski spacetime

When considering relativistic hyperbolic motion in more di-
mensions it is suitable to use the matrix formalism since
Lorentz transformations, such as general Lorentz boosts,
have well defined matrix representations. In the case of
proper acceleration and proper velocity, one can use the fol-
lowing matrix relationship [8]

0
Apr(8) = —B(s) B~ (s)Upr = ;‘y , (9
a
where the laboratory velocity is defined as
06 = (a(ey) 20)
7' (t(s))

and is related to proper velocity by the boost transformation

Us) = B&UE) = || = U @D)

OO O
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(the traveler is at rest in the proper frame) @) is a matrix of the family of Lorentz transformations

v *W’(t) () ()
'@ le’(t)Q #w’(t)y’(t) Jtlx’(t)Z’(t)
PO v 2w Lt 08 Sy (020 | (22)
—y2(t) T’ ®)Z() TRy () 1+ A52(1)?

wheret = t(s) and the prime indicates derivative with re-

spect to the laboratory timeé, From (19) we obtain !

B v 3.1. The four-Acceleration
a=~r"+ ——~'7", (23)

v+l In the multidimensional space is not necessarily propor-

wherey’ = (1/2)~3d(7")?/dt and~y = dt/ds. Here,7isthe  tional tod, and in general is a non-constant vector related to

radius vector and the point indicates derivative with respeci by equationsi28), which are important for later calcula-

to proper time. One can notice that if one takés= 0 in  tions. The particular solutiorf,(s) = as is equivalent to

Eq. 23) then one had(7')?/dt = 0 and then23) turns into @ — 7, f, = 0, while in generali — 7 f # 0. For a two-

@ = 0, which tells us that the motion is a simple translationdimensional Minkowski system we can omits in the start

of constant velocity. Also, we get that the square modulus off the previous section, but for more dimensions we keep a

the four-acceleration is general.
We already have the velocity in terms of the general so-
A=A =—d-a=—-(F")?+0)), (24)  Iution f(s), (26), and so the calculations for the acceleration
are straightforward witl = dU/ds

where the minus sign comes from the chosen signature (

——). We study the case with constant proper acceleradion, fsinh( )
of constant square moduld@® = «2. Consideringy = f, Als) = (f cosh(f)i(s) +sinh(f)ﬁ>
Eq. (23) becomes
. . ( sinh(f) ) ( 0 )
. . = )+ i) 31
#(s) =G+ - £(s) 7(s). (25) / (cosh(f)n a— fn (31)

i(s)+1

. _ where in the last stej2) has been used. Contrary @al-
We parameterize the four-velocity as

thoughn is a unitary vector, it is not constant with respect to

i(s) cosh(f(s)) proper time,_as_ it may change according2a)( _
U(s) = i(s) = \sinh(f(s))n(s) (26) D_n‘ferentlatlng U2_ = 1 with respect to proper time we
obtainU - A = 0, which shows the basic fact that relativistic
wheren is a unitary vector, whose derivative is velocity and acceleration are always orthogonal to each other.
1 ) Now, let us compute the square modulus of the four-
n= Snh (/) (@— fn). (27)  acceleration that we expect to bex? due to proper accel-
eration only having spatial components. A$ = A? — A2
Because: - 7 = 0, we obtain we obtain
f=da-nand f=ad- n, (28) A% = f2sinh® f —a® — f2cosh® f + f2 = —a®. (32)
which leads to the second order nonlinear equation 3.2, The four-Jerk
. P
sinh(f)f + 7 —a” =0. (29)  Jerks are expected to be of no importance in the dynamics of

particles in classical mechanics since Newton’s equation of
motion is of the second orddf(z, ) = mi. However, the
force can depend anor £ at previous times, in other words,
fo(s) = as, (30)  has memory, then, if we take the time derivative of the equa-
tion of motion we have a Jerk dynamics that will contain extra
with ﬁp = 0,ad-a = o2 and for this particular case, terms. Such models are used in chaos theories. More gener-
f, = d/a. However, we move to calculate the+ 3-  ally, in classical physics, the Jerk dynamics have been studied
acceleration, Jerk, and Snap, mantaining an unspecified funas specific two- and three-dimensional cases such as [10-12],
tional form of f(s) only constrained by Eq20) to allow for  and its applications have been investigated in crystals with
the possibility of using the general solution instead of the parmemory [13], geomagnetic Jerks [14] and other chaotic sys-
ticular one [80). tems [15]. We also mention the famous example of a third-

A particular solution of this equation corresponding to the
initial velocity U (0) = (1,0) is

Rev. Mex. Fis68060702



4 I. PEREZ-ROMAN AND H. C. ROSU

order equation of motion in classical electrodynamics as embodied by the Lorentz-Dirac equation of the relativistic electron
[16], which is closer to the hyperbolic Jerk that we discuss here.

In the four-dimensional Minkowski spacetime, we compute the four-Jerk as the derivative of the four-accel@tpatidt (
respect to proper time

J(s) = @ B < fsinh(f) + f2cosh(f) > ' (33)

“ds  \f(cosh(f) — 1A+ [f(cosh(f) — 1) + f2sinh(f)]n

Considering Egqs|27) and 28), the expression for the Jerk is
o2 + f2(cosh f — 1)
J = cosh f— ¢ ~ [ ) 34
(®) ( sil:.}{fl {[Oé2 + f%(cosh f — 1)]A + fa} (34)
which can also be written as
2 (2
;2 ( cosh(f) a®— f

The total square modulug2 = J2 — J 2, is

s a2+ (f/a)(cosh f — 1)

/ cosh f+1

; (36)
wheref - @ = f has been used. Derivating twit& = 1 we getlU - J 4+ A2 = 0 so thatl/ - J = —A2? = o2, and we can check
that it is satisfied for31) and 33). We also check that the total modulus of the Jerk is constant by calculating the derivative of
(36) and proving it to be zero. We find that

d, 202 f sinh(f) , . . 5 i

= — i AV h — 37

5 = loosh F a1y sinh(f) —a - f2). (37

where the last parenthesis in the right hand side is zer@%)y (

3.3. The four-Snap

In classical physics, even much rarer systems are the systems where the Snap is taken into account, because being the derivative
of the Jerk, it can show up in an even more transient and localized way than the Jerk. In fact, we have been able to find only
one paper in which the authors have demonstrated that Snap could be of importance in some chaotic electric systems [17].

In Minkowski spacetime, the relativistic Snap is defined as the proper time derivative of the Jerk

S(s) — d o2 + f2(cosh f — 1) 38
)= 5 e {l0 + f(cosh f = 1))+ fa} ) 39)
which, considering27) and 9), can be written as
tanh (%) f(202 + f2(cosh f — 1))
S(s) = . 2 (f 5 i . RN (39)
5sech <§> (20 + f4(cosh f — 1)) (a + 2f sinh <§> n)
We can also write39) as
.. inh 2f(a? — f2)tanh (£
S(S) - fd <CSOI;1h(<;C))’fl) T 2024 f2(cosh f—1) o ¢ [ (204 f?(cosh f—g)Q) ginhZ f i ~ ] (40)
cosh f+1 a+ f ( (cosh f+1)2 - f cosh f) n

Having the expression for the four-Snap, we can calculate the modulus and its derivative to see if it is constant, just as the
modulus of acceleration and Jerk. The square modttis; S - S, is given by

1 f . 2
2 _ - 4 ( J 3 2 _
S = 4sech (2) (Qa + af“(cosh f 1)) , (41)
where we used - 74 = 1 anda - 72 = f. One can easily check thds2/ds = 0. One can go on with calculating the derivatives
of each modulus of the subsequent derivatives (Crackle, Pop, etc.), but it is clear that the expected result is that they all vanish.

We also notice that if the particular solutigifs) = f,(s) = as is used then31), (35) and @0) turn into (15) and (L6),
respectively.

Rev. Mex. Fis68060702



RELATIVISTIC HYPERBOLIC MOTION AND ITS HIGHER ORDER KINEMATIC QUANTITIES 5
4. The general solution to the nonlinear equation forf (s)

Equation [29) is vital to obtain the expressions for acceleration, Jerk, and Snap in their simplified form containing only terms
of f and f. Besides, the derivatives of their corresponding moduli vanish only when we cor@@)leff¢ find a solution to

(29), we note that this is a non-homogeneous differential equation of second order wheréflf€s)) factor complicates the
equation. This can be avoided by the following change of dependent variable

f(s) =In(g(s)), (42)
which turns[29) into
9(g° = 1§ — (9* — 29 — 1)§* — 2a°¢> = 0. (43)
With a second change of the dependent variable
9 = 1 (44)
in Ref. 43), one obtains
4h(h? — 1)h —4(h2 + 1)h2 — a2 (h® - 1)3 = 0. (45)

The general solution of the latter equation is

hi(s) = i;\/ﬁQ + (a? = ?) tanh? <;\/a2 — [2(s — so)>, (46)

where sy and 3 are integration constants that can be determined through initial conditions. Futhermore, we will use the
shorthand notations,s = (1/2)\/a2 — 32(s — sp) andTh?(s,s) = (a? — 32) tanh?(s,3); replacing46) in (44) givesg(s)

in the form
(5) aE4/p2+ Thz(saﬁ) )
g\s)+ = ,
a T /B + Th?(sap)

P + /8% + Th?(sap) 8
+ = )
a T /8% + Th*(sap)

f(s)+ = +2arctanh <;\/62 + Th2(sa5)> ) (49)

If 8 =0, then the general solutiod$) reduces to the particular ong,(s) = a(s — so).
Considering Eq.49) in Eq. (36), the square modulus of the Jerk is obtained in terms @fd the initial conditiors

J? =a?(a? - 3?), (50)

which shows that the square modulus of the Jerk is a constant quantity less*th&egarding the square modulus of the
four-Snap in Eq.41), one obtains

which implies

or alternatively

J4

52 — —062(042 _ 62)2 _ _?7

(51)
by using the general solutiod¥), which shows that the four-Snap is spacelike of square modulus lesath&@ne can also
write the general solutio@) in terms of the Jerk modulus() as

f(s)+ = *2arctanh (;\/<a2 - ii) + i—z tanh? <;g|(s - s()))) . (52)

Formulas of the general solution in terms of the moduli of higher order derivatives can be easily written down. For instance,
using 51) one can substituté? in Eg. (52) by the modulus of the Snap.

Due to the performed changes of variable fg¢&) and g(s), there are some restrictions we should take into account.
Equation %2) implies thatg(s) > 1, while Eq. @4) requires thah(s) € [0,1). Since,0 < tanh?(s,3) < 1 we make sure that
h(s) € [0,1) only if | 5] < |«|, and the limiting casé(s) — 1 happens whes — oo or |a| = |3].

Rev. Mex. Fis68060702



6 I. PEREZ-ROMAN AND H. C. ROSU
4.1. Kinematical quantities using the general solutiory (s)+

Considering Eq/49), the kinematical quantities computed in previous sections can be expressed in terms of the scaled variable
sq. For the four-acceleration in E31), one has

Th(s.s) 20 coshz(sag) 0

« Sap

A(s) = ————2~ . 53

(S) 062 _ ﬂQ ﬁ2+a2 cosh(2s.3) A To G — Th(sag) ~ ( )
B2+Th2(s0p) \V/B%2+Th?(sap)

For 8 = 0, the first term reduces td§), while the second term vanishes.

For the four-Jerk, one obtains

2 2 ap?
+ o cosh(2s, NG T
a®Th? (sas) ’ (25s) FPHTh (s0p)
70 = @ =+ T o0 RN ol R i | O
- aB . 2 S P — SaB) =
2a cosh™(sa3)1/ B2 + Th™(sap)n Th(sap)a + 62+Th2(sag)n
For 5 = 0, the first term reduces to the left part 46, while the second term vanishes.
For the Snap
) B2 + a? cosh(2s,
ABTh?(s4p) (25ap)
S(s) = T2
200/ 82 4 Th?(54) cosh? (sap)
0
1
* cosh?(s4p) 2 _ 32 Th?(sas) (32 | 42 cinh2 >
af [(Ox - p )+ Wz?;uﬁ)(ﬁ + o sinh (S(,ﬂ)):| a
2032 1
aTh(sag) Va2—32 \/B2+Th3(sap)

(55)

ﬁ2 + Th2(3aﬁ) a?—p> (a®?—B%)Th*(s45) B%+a?sinh? s, _ a?Th?(sap5) B*+a”cosh(2s45) A
cosh sa3 2 cosh? sap (B24+Th?(sag))? B24Th?%(sag) a?—p32

For 5 = 0, the first term reduces to the right part (@B, while the second and third term eliminate each other.

5. Modified Rindler hyperbolas

If one uses the particular solutigh)(s), it is easy to obtain the standard geometric hyperbolic behavior in the plane defined by
the coordinates$(s) andz(s) by integrating the corresponding components of the parametrized vel@6jtylistead of this,

we use the general arctanh solution to see graphically the kind of geometric behavior of the worldlines26)<samgl (49)

we compute the coordinate time as

-3/2 . 82
t(s) = /cosh(f(s))ds = (1 - ﬁz) sinh(2sas) + jﬂﬁj s. (56)

«

Similarly, by integrating the space component of the velocity alonghich issinh(f), leads to the projection,

. 2 . . . asinh(sq

rn(s) = / sinh(f(s))ds = Z =y (a smh(saﬁ)\/ﬁ2 + a?sinh?(s,) + Barcsinh <B(ﬁ))> . (57)
The plot ofr,,(s) as a function ofs is displayed in Fig. 1, for different values ¢f whereas in the vs r,, coordinates as
frequently presented in the literature [7, 18] are displayed in Fig. 2. The yhke0 corresponds to the particular solution
fo(s) = as.

We notice that one can also work with the hyperbolic tangent of the equivalent of the hyperbolic velocity (rapidity) as
defined in Eq.T), where we recall that the four-velocity can be representdd’as- v(1,7’), and we have for the hyperbolic
parametrization that

U™(s) = (cosh(f(s)), sinh(f(s))n), (58)

Rev. Mex. Fis68060702
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tnis)

FIGURE 1. Plots ofr,, vs s, with « = 0.5, for the standard Rindler
hyperbola ¢ = 0) and the deformed ‘hyperbolas’ corresponding
tog =0.1andg = 0.2.

n

00 05 10 15 20

FIGURE 2. For fixeda: = 0.5, original Rindler hyperbolad = 0)
and modified hyperbolas fg = 0.1, and3 = 0.2, respectively.

then
y= % - cosh(f(s)), (59)

where we can obtain
[r'| = tanh(f(s)), (60)
the modulus of the three-velocity. Considering equatis), (

and considering that

14z 2z
tanh(2arctanh(z))=tanh (ln (1—3:)) =T (61)

we can write/60) as

|| = tanh(f(s))
B 1+ cosh(2sq3) / 2
B aﬁz + a2 cosh(2s,5) B2+ Th™(sap) - (62)

The results are equivalent 8| = tanh(f) = /vy =

7/ cosh(f), sor(s) = sinh(f). However, it is of physical
interest becausg”’| is the magnitude of the three-velocity,
the velocity that the laboratory frame measures for the mov-
ing observer.

6. Conclusions

We have studied the kinematical quantities of relativistic hy-
perbolic motion,i.e.,, of constant proper acceleratian in

1+ 1- and 1 4 3-dimensional Minkowski spacetime. The
standard hyperbolic parametrization of the spacetime coor-
dinates has been used in the literature to obtain a nonlin-
ear differential equation for the argument of the hyperbolic
functions. In this paper, we have worked both with the par-
ticular linear solution as in the recent literature [8], but also
with the generahrctanh solution to evaluate the kinematical
higher quantities. All of the higher order derivatives beyond
the acceleration depend only on the proper constant accel-
eration when the particular solution is employed, but if the
general solution is used, they depend also on an integration
constant corresponding to a nonzero initial condition. In the
physics context, the effect of this nonzero initial condition is
to produce deformed Rindler hyperbolas which still belong to
the class of relativistic hyperbolic motion since all the proper
time derivatives are of constant square modulus, although of
smaller weight than in the case of the particular solution.
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