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In this work, the improved Hulten plus Hellmann potentials model in the presence of temperature-dependent confined Coulomb potential
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nonrelativistic quantum mechanics noncommutative phase space (3DNRQmM-NCSP) symmetries. In addition, we found another application
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using the generalized Bopp’s shift method and standard perturbation theory. The new energy eigﬂi\ﬁfﬁﬁfsand (EZ’_";, EM™ and
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the new mass of heavy mesons. Four special cases were considered when some of the improved potential parameters were set to zel
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(3DNRQmM-NCSP) symmetries. The limiting cases are analyze®ferandy — 0 are compared with those of literature.
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1. Introduction centrifugal barrier and obtained the numerical energy eigen-
values and the corresponding normalized eigenfunctions [2].
William et al. obtained BS solutions of the radial SE by the
superposition of Hulten and Hellmann potentials within the
framework of the NUM for arbitraryl-state with the GAS

Although a century has passed since the 8dimger equa-
tion (SE), it is still an effective tool for physicists and

hemists. In f it i lativistic (NR ion th . : " .
chemists. In fact, it is a nonrefativistic (NR) equation t atfor the centrifugal term, in addition to the corresponding

has a field of validity at low energies. It applies to many . . .
: : : ..~ normalized wave functions and computed the numerical en-
guantum mechanics problems in general, like quantum infor- . :
rgy eigenvalues of different quantum states [3]. Edel.

mation theory, thermodynamic and thermochemical studie§

of diatomic and polyatomic molecule systems, and it playsobtamed an approximate solution of the SE in arbitrary di-

a very vital role in the study of quarkonium systems (QS),VTE;E'ONHSI{/? r;::g gg?nerjtlgdec:hseh'ggdei::&poéiergga%c;d:;n d
among other systems. The Cornell potential (CP) is consid- b gy €lg

ered typical in the study of QS. Ikhdair obtained bound stateé)btamed the corresponding eigenfunctions [4]. The authors

(BS) of a spinless particle placed in scalar and vector CP uan Ref. [5] studied the Helmann potential in the presence

of external magnetic and Aharonov-Bohm flux fields within

der the influence of external magnetic and Aharonov-Boh . .
flux fields using the wave function Ansatz method for an;j[he framework 9f the SE and obtr?uned the energy equation
and wave function of the system in closed form. Edet and

arbitrary |-state with principaln and magnetion quantum . i )
numbers [1]. The solutions of SE with many potential modelset al. obtained the BS approximate solution of the SE for

or combined potentials such as Hua potentiabdidis square t\?ekg_ief%rtrgriqaﬁ:I?jj.ﬂ:isgggsra!;ﬁﬂe'?]V;rsgf ?ﬁ:dNrSt'Mc
plus Kratzer potential, Kbius square plus Mie type poten- ukawa p all ! : Wi P

tial, and Morse potential have been solved by applying varf”md the corresponding eigenfunctions are expressed in Ja-

ious techniques, including the asymptotic iteration methodcObl polynomials [6]. Edeet al. obtained the approximate

Nikiforov-Uvarov method (NUM), Laplace transforms, su- analytical solutions of the relativistic Sdinger equation

. : : . %RSE) with Hellmann-Kratzer potential and calculated the
persymmetric quantum mechanics, and a series expansio . X i
in addition to other methods. Inyargs al. obtained ana- ehergy eigenvalue and the corresponding wave function and

lytical solutions of theN-dimensional SE for the Varshni- compact form using the NUM [7]. Al-Jamel and Widyan .
Hulthén potential within the framework of the NUM by us- studied the spin-averaged mass spectra of heavy quarkonia

ing the Greene-Aldrich approximation scheme (GAS) to the(CE andbb) in a Coulomb plus quadratic potential using the
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NRSE and obtained the energy eigenvalues and eigenfuneras developed by Snyder in 1947) was one of the major solu-
tions in compact forms for anlyvalue using the NUM [8].  tions to these problems. As a result of all these motivational
Abu-Shady calculated quarkonia mestih and ¢cs meson  data, it is logical to consider the topographical properties of
masses for théV-dimensional relativistic Scbdinger equa- the noncommutativity space-space and phase-phase have a
tion (ND-RSE) under CP plus harmonic oscillator potentialclear effect on the various physical properties of relativistic
and obtained the energy eigenvalues and the correspondignd nonrelativistic quantum systems [13-18].

wave functions in the ND-space using the NUM [9]. The  Alot of research has been devoted to study the properties
authors of Ref. [10] have proposed an NR model that in-of quarkonium in the noncommutative space phase (NCSP)

cludes both Hultn V (r) = —fﬂ%((:g;)) and Hellmann in the framework of the two cases: the nonrelativistic NR and
V (r) = — 41 4 Azexp(an) hotentials and obtained BS solu- relativistic, based on the three fundamental equations related

tions of the RSE within the framework of the NUM for arbi- 10 the Yukawa potentials such as modified Klien-Gordon
trary |-state with the GAS for the centrifugal term. Very re- €quation (KGE) with modified scalar-vector Yukawa poten-
cently, Akpacet al. adopted a Hulten plus Hellmann poten- tial [19] and the relativistic interactions in one-electron atoms
tials temperature-dependent (TD) model (HHPTd, in short)"’ith modified Yukawa potential for spin-l_/2_ p_articles [_20].
as the quark-antiquark interaction potential for studying théVloreover, we have treated the nonrelativistic behavior of
mass spectra of heavy mesons; the authors made it to gydrogen-like and neutral atoms subjected to the generalized
TD by replacing the screening parameter with a Debye masRkerturbed Yukawa potent_igl with a centri_fugal barrier [21].
and solving the RSE analytically using the series expansio¥/€ are studying the qulﬁed unequal mixture scglar vector
method and obtained the energy eigenvalues and calculatifgulthén-Yukawa potentials model as a quark-antiquark in-
the mass spectra of heavy mesons such as harmariamd teraction and neutral atoms with relativistic treatment using

bottomoniumbb [11]: the approximation of the centrifugal term and Bopp’s Shift
method [22]. We have investigated the approximate solu-
Vi (1) = — Aoexp(—ar) A1 Agexp(—ar) tions of DKG and DSE under the modified more general ex-
P 1—exp(—ar) T r ponential screened Coulomb potential plus Yukawa potential
. in NCQM symmetries [23]. We have constructed a theoret-
ical model of the DKG equation with generalized modified
Vi, (12 T) Aopexp (—mp (T)r) Ay screened Coulomb plus inversely quadratic Yukawa potential
hhp \T = - -

1 —exp (—ar) r in RNCQM symmetries [24]. We have obtained solutions of
the KG equation for the modified central complex potential in
, (1) the symmetries of noncommutative quantum mechanics [25].
We are studying spectra of heavy quarkonia with modified
where A, A, and A, are the potential strengthy is the  CP in the framework of modified SE [26]. We have obtained
screening parameter that controls the shape of the potet€ new NR atomic energy spectrum of energy-dependent
tial andmp (T) is the Debye mass which is TD potential potential for heavy quarkonium in noncommutative spaces
Vinp (r,T) TD is obtained fromV,;, () by replacing the and phases symmetries [27]. In 2019, we constructed a new
screening parameter with Debye massnp (T') thatis TD ~ model for Heavy-Light Mesons (HLM) in the extended NR
and vanishes when the temperature is zero. In the same cofitark model under a new modified potential containing Cor-
text regarding temperature, Inyaeg al. adopted Hulten  nell, Gaussian, and inverse square terms in the symmetries
plus Hellmann potentials, which rendered TD by replacingof NCQM [28]. We investigated a new asymptotic study to
the screening parameter with a Debye mass, as the quarle 3D-RSE under modified quark-antiquark interaction po-
antiquark interaction potential for studying the thermody-tentia| [29]. We have calculated the new relativistic atomic
namic properties and the mass spectra of heavy mesons [12Zass spectra of quarks (u, d and s) for the extended modi-
fied CP at nano and Planck scales [30]. In addition, we have
Motivation built a new model for HLM in the symmetries of the extended
NR quark model [31]. Furthermore, we have investigated the
Relativistic and NR quantum mechanics have achieved greiMR-BS solution at finite temperature using the sum of a mod-
successes in terms of the convergence of theoretical treatied CP plus inverse quadratic potential in the framework of
ments with experimental measurements. However, some irthe DSE [32]. Motivated by the previous works in ordinary
dications show that there are many problems that quantumuantum mechanics and NCSP, we hope to investigate the
mechanics known in the literature has not been able to solvéjulthén plus Hellmann potentials in the 3D-NR quantum me-
for example, the problem of non-renormalizable electrowealchanics noncommutative phase space 3SDNRQM-NCSP sym-
interactions, the problem of quantization of gravity, and addi-metries to obtain new applications on the microscopic scale
tion the problems in string theory. The idea of noncommuta-and contribute to the knowledge of elementary particles at the
tivity resulting from properties of deformation of space-spacenanoscale. The NR energy levels under the improved Enlth
(Heisenberg in 1930 is the first to suggest the idea and then glus Hellmann potentials model temperature-dependent have

n Asexp (—mp (T)71)
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not been obtained yet in the 3SDNRQM-NCSP symmetries, we propose a new version of the improvéd plukrHellmann
potentials model temperature-dependent (IHHPTd mddggty (r, 7') and a corresponding Hamiltonian operatff (r, p, T)
in the presence of TD confined Coulomb potential in the 3BDNRQM-NCSP symmetries as follows:

1(1+1) 3
A 2
Vnhchp (r,T) = Vanp (r, T) + LO
_fo b . 2

HMw (r,p,T) = Hppyp (r,p, T) + 572 + (1 +1)r =4 —28pr=3 = 261771 + 3) LO
The two couplingsL.® andLé are equal toL, 012 + L,O23 + L.013 and L, 612 + L, 025 + L. 613, respectively, and

they appear automatically from the influence of noncommutativity NC effect space@p(&?z@ 23, 013) on the potential

Vi (r,T) and NC effect phase- phas%( 012, Ba3, 913) on the kinetic tern% with the angular momentum operathr

(Le, Ly, L), and©, = 0.,,,/2, (—=f2, f1, fo andas) are the new potential parameters defined in See. B, the distance
between the two particles whilH}, (r,p,T') is the usual Hamiltonian operator of the HHPTd in NRQM symmetries. In

the present work, we modify the HHPTd modé}”” () by adding new termg (! + 1)r—*L®, - % »—3LO, -2 L® and

(B2LO + L9)) due to the topological properties of the self-quantum influence of space- space and phase- phase including the
effect of the centrifugal termi(l + 1)r—2 which appears in the first additive part. The study of quarkonia systems with the
HHPTd model at finite temperature in 3DNRQM-NCSP symmetries is an essential tool for understanding the status of the
matter formed in the heavy-ion collisions as in Ref. [33], on the other hand, it is a continuation of our previous efforts in
this context as in Ref. [32] and which falls within the context of the investigation of the properties of the quarkonium system
under the influence of the sum of modified Cornell plus inverse quadratic potential at finite temperature in 3DNRQM-NCSP
symmetries. To the best of our knowledge, this new study of DSE Wit (r, ') was not done before by any researcher.

The structure of 3SDNRQM-NCSP symmetries based on NC canonical commutations relations odi{@gn Heisenberg

and interactions) pictures (SP, HP and IP), respectively, as follows (throughout this article, the naturakuhits 1 will be

applied) (seee.g, [34-41]):

[25pl) = a7 (1) 3 6)) = (225 (6905 (0] = g,
] = [ (1) (0] = o5 () 3 (0)] = o,
[p‘rru Tp;“] — [nC (t) ’pﬁc( )] = [pn¢ (t) ,pg}( )] = Z?Tm (3)

wherefi.s; = h (14 Tr (66/4)) andh are the effective Planck constant and the usual reduced Planck constant, respectively.
However, the unified operatofS}§; (¢t) = (7 V p2°) (¢t) and Y2 (t) = (z2¢ Vv p2¢) (¢) in (HP and IP, respectively) depend
on the corresponding operafit’g = z2¢ v p2¢ in SP with the following prolectlon relations:

Yo (t) \ [ exp(iT22T)Yre exp(—i 22 T) 1)
T, 1 (t) B hh Tnc H};hPT ’ ’
T exp(i=4—T) 175 exp(—i=5—T)
=
i hhp hhp
( 175 (1) ) [ exXP(REET) # Y exp(—ies 4.2)
177 (1) exp(i H:’l’};f T) T x exp(—1i I;ng—ffT) . .

HereT =t —to, Yrs =2, Vp,, Yrm (t) = (z: Vpr) (1) and Y7 () = (27¢ V p¢) (¢) are the usual three representa-
tions of SP, HP and IP in NRQM, while the new dynamics of studied systeéms" describe from the new following motion
equations in BDNRQM-NCSP symmetries:

A, (1) i drme, (t i
Tl - E o 0) ) = T - g (). ©)

dt _h[

HereHy,,, (H""?)andH""» (H""?)denote the ordinary and generalized quantum Hamiltonian (free) operators for the of

onc

IHHPTd model in the NRQM and 3DNRQM-NCSP, respectively. The two infinitesimal paran(e?t‘étrsﬁm) =€ (6,0)

(compared to the energy) are the elements of two antisymmetric real matrices with dimensions of(Emd{momentunt)

respectively whilee,,,, just an antisymmetric number, for examele = —ex1 = 1, €11 = €2 = €33 = 0. Furthermore,
the star notatiorx, denote to the star product, which is generalized between two arbitrary fun¢fighér, p) of the form
(fg) (™, p™) = (f x g) (x,p) in 3D-NCSP symmetries (seeg, [42-51]:
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G0 ) = ) ) — 5 (52 20407 JL 20 0 (,7°) ©

This allows the construction of two scales of space and phase cells with elementary vefmes 63/2 and Toe =

?3/2respectively. On the other hand, Eq. (6) allows us to satisfy the postulated algebra in Eq. (3). The second and the
third terms in the above equation are the effects of (space-space) and (phase-phase) noncommutativity properties, respectively.
This paper aims to present approximate solutions of the deformed@ober equation (DSE) with the improved Hiéthplus

Hellmann potentials temperature-dependent (IHHPTd, in short) model in 3DNRQM-NCSP symmetries using the generalized
Bopp's shift method (GBSM), in addition to the standard perturbation theory (SPT).

The organization of the present work is given as follows: in the next section, we briefly review the SE with the HHPTd
model. We divided the third section into subsections, the first one reserved to the physical and mathematical model for the
HHPTd model in 3D-NCSP by applying the GBSM, in the next subsection, we generate the new spin-orbit Hamiltonian
operator for the hydrogenic atoms (HAs) and the HLM under the IHHPTd model and by applying SPT we find the corrected
spectrum ofn*" excited levels in the framework of the global group 3D-NCSP and then, we derive the modified magnetic and
rotational spectra for the IHHPTd model, which produced with the effect of both perturbed HamiltﬁfﬁéﬁandH;Le”f; rot
due to the topological properties of phase space. In the fourth section, we resume the global spectrum and corresponding NC
Hamiltonian operator for the IHHPTd model and corresponding energy levels of the HAs (iHe and Be") and the HLM
such as charmoniunt and bottomoniundb and we calculate the new mass spectraafip) in 3D-NCSP symmetries, we will
also treat some special cases that demonstrate the correctness of our results. Finally, the paper ends with concluding remarks
in Sec. 5.

2. Background and preparation

2.1. Overview of the eigenfunctions and the energy eigenvalues for HHPTd in NRQM

In this section, we shall recall here the SE for the HHPTd model, which is an important short-range potential that behaves like
a Coulomb potential for small values and decreases exponentially for large values presented in Eq. (1). For small values of
(—r/B2) the HHPTd model takes the form [11,12]:

Vinp (r,T) = —% + i1 — Bor? + B, (7)

with By = A2 — Ay — (Ao/mp (T)), b1 = (Aem}, (T)/2) — Ao(mp (T)/12), B2 = (A2mi}, (T)/6) andfs = (Ao/2) —
Asmp (T). If we consider a nonrelativistic virtual particle of reduced masa a central potential liké/,y, (r,T), the
qguantum evolution of this particle governed with the SE in the spherical coordipates) as follows:

d2Rnl
Hiy (p) W (7) = BP0 (7) — ot o (B < VU7 1)) B () = 0. ®
The operatoH,,, (p, z) is just the ordinary Hamiltonian operator in NRQW(r, 0, ¢, ) = (R, (r)/r)Y;™ (6, @) e~ (/WEL",
Y™ (0, ¢) are the spherical harmonic funcuori&ghh” (r,T) = —(Bo/r)+Bir—PB2r?+ B3+ (I[l + 1]/r?) is effective potential,

Eh’”’ are the eigenvalues of the Hutth plus Hellmann potentials model in the presence of TD whé&d! are the radial and
0rb|tal angular momentum quantum numbers. The wave function and the energy spectrum of Eq. (8) for HHPTd model (7) are
respectively given by [11,12]:

Nn o o €n ,
VY oim (7'3 03 Qoat) = 71T2m exp (7 enl”') L( /\/7) (2 €nl T) YE (0 )exp ( thvlhpt> : (9)

Herea = (611031/6%) + 2180 — (1682/8%), —€ni = 21 (En — B3) + (12u52/8%) — (6p31/5) andd = 1/ry while rq is a
characteristic radius of the meson. The eneEd{}p of the potential in Eq. (7) is given by [11,12]:

Ehhe _ 1 mp (T) o 2 3mp (T) 2 . . i
2 [A2 - A+ ( )} + “mD(T) [34omp (T) — 42] — Wéfmf)m

X

(10)

n+%+ \/(l+ ) #Az?D<T) ( . mD(S(T)> _ qug;?(T)
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THE IMPACT OF DEFORMED SPACE-PHASE PARAMETERS INTO HAS AND HLM SYSTEMS. .. 5
3. Solution of the DSE with the NR-IHHPTd model
3.1. Review of the concepts of GBSM

In this subsection, we devote this part to studying the nonrelativistic improved é#ufilus Hellmann potentials model
temperature-dependent in the presence of TD confined Coulomb potéffialr, T'), in SDNRQM-NCSP symmetries. To
perform this task the physical form of the deformed $dimger equation DSE, it is necessary to replace the ordinary three-
dimensional Hamiltonian operatof,,, (p, x), ordinary energyEZlhp and corresponding complex wave functidr{7") in

the symmetries of NRQM by three-dimensional Hamiltonian operadis (p,.., T,.), new unknown value&?of energy

and corresponding new complex wave functibitr,..), respectively, in 3SDNRQM-NCSP symmetries. In addition, we need
to replace the ordinary product with the star produdt this allows us to construct the DSE in (NC-3D: RSP) symmetries as
(seee.q, [52-56]):

HP (Pes @ne) U (Fne) = EREPY (Fug) = Hunp (p,@) * ¥ (T) = EypP 0 (T) (11.1)

allowing us to obtain the modified radial part of the SE as follows:

2
<CZ~2 +2u [N~ VI (T }D % Ry (r) =0, (11.2)
Among the possible paths to find the solutions to Egs. (19) and (20), we make use of the Connex method or Seiberg and
Witten map. It is known to specialists that the star product can be translated into the ordinary product known in the litera-
ture using what is called Bopp’s shift method. Bopp was the first to consider pseudo-differential operators obtained from a
symbol by the quantization rulgs, p) — ( = « — (¢/2)0,,p = p + (i/2)0,) instead of the ordinary corresponderieep)

— (x==z,p=p+ (i/2)0,), respectively. It is known to specialists that BSM has been applied effectively and has succeeded
in simplifying the known four fundamental equations: the NRDSE [67—70], the relativistic deformed Klein-Gordon equation
RDKGE [60-68], the relativistic deformed Dirac equation RDDE [20, 41, 69], and the deformed relativistic Duffin-Kemmer-
Petiau equation (DRDKPE) [70] with the notion of star product to the NRSE, RKGE, RDE and RDKPE with the notion of or-
dinary product, respectively. Thus, BSM is based on reducing second-order linear differential equations of DNRSE, DRKGE,
DRDE, and DRDKPE with star product to second-order linear differential equations of NRSE, RKGE, RDE, and RDKPE
without star products with simultaneous translation in the 3D-NCSP. The CNCCRs with star product in Eqgs. (3) become new
CNCCRs without the notion of the star product as follows (seg, [59-61]):

(274, p5¢] = [27° (8) , pi© ()] = [277 (1), 5 (D)] = ihespOr
(27, 23] = [a7¢ (), 23° ()] = 277 (8) , 237 ()] = 1670 : (12)
re, P = [pre (8) i (B)] = [pf (), P ()] = i0r

The generalized positions and momentum coordin&t&s, p<) in 3ADNRQM-NCSP depend on the corresponding usual

pu

generalized positions and momentum coordinatesp., ) in NRQM by the following, respectively (see,g, [57-59]):

()

e
br
The above equation allows us to obtain the two operatprandp? . in 3SDNRQM-NCSP symmetries [52-55]:

72 r2, r2 - LO
<p2>_>(pic>_(1)2+w ' (14)

Thus, the reduced radial part of the SE (without star product) can be written as:

3
II?nC Tr — Z 95” Duv
< T ) — v=1 (13)

pnc 3 5
i prt+ Y 5T,

d2
<d7‘2 + 2/1 {Enl - Vef}}}p (Tncv T)]) Ry (’/‘) =0. (15)

The Hamiltonian operatof*» for the improved Hultén plus Hellmann potentials model temperature-dependent can be
expressed as:

070 g‘rv
Hg?p =H <.’L:_Lc =Tr — 7]%_;,]7?0 =pr+ va> . (16)

Rev. Mex. Fis68 050702



6 ABDELMADJID MAIRECHE
Now, we want to find the new effective potential of IHHPV@””LM (r,T) in 3BDNRQM-NCSP symmetries:

VI (r, 1) — VPP () = ViR (o) + 11+ 1)r 2 (17.1)

The new IHHPTd in the presence of temperature-dependent confined Coulomb pdtéftia, ) and the new centrifugal
term (I + 1)r,,2 in 3DNRQM-NCSP symmetries:
‘Cf,lc-hp (Tncv T) = _% + B1Tne — ﬂQr%c + 3 (17 2)
W+ D)2 =11+ 1)r? +1(1+1)r~*Le + 0 (6?) '

After straightforward calculations, we can obtain the important ternds/r,.c, S17. and —32r? which will be used to
determine the IHHPTd in the presence of TD confined Coulomb poténfi#! (r, T') in SDNRQM-NCSP symmetries as:

s b o
s | = | || B2 | Le Lo (e, 4o
_ﬁ2r727,c —ﬂZT 762

By making the substitution above Egs. (18) and (17.2) into Eq. (16) and (17.1), we find the global our working Hamiltonian
operatorH"? and the new effective potential of IHHPT"_ . (r) in SDNRQM-NCSP symmetries:

HMwP = Hpp, + (WD By _ By g VLO + 57? +0 (62,92)

nc rd 273 27

VA L T) = VP () + (M - Ly By 5,000 + 0 (07)

(19)

where the operatalf,;, (p, z) is just the ordinary Hamiltonian operator in usual nonrelativistic quantum mechanics:

p2 Bo 2
HhhpZQ*—*-ﬁ-ﬂﬂ“—ﬁﬂ + B3, (20)
" T
while the rest five terms are proportional with two infinitesimal paramet@rar{d §) and then we can be considered as
perturbations term& " andV,""? (. T') in 3DNRQM-NCSP symmetries as:

pert pert

HIYE = (11 + 1)r=* — 28pr=3 — 281771 + 3,) LO + 12;3 L0 (527 @2>

(21)
VIR (r,T) = (I(L+ 1)r~* = 2807~ = 2810~ + B2) LO + O (©?)

It is clear that the operatdtl;.,, (p, z) is just the Hamiltonian operator for HAs such as'Hé.i*2 and Be” and HLM in
ordinary quantum mechanics while the generated Hiﬁ,’; appears as a result of the deformation of the 3D-NCSP. In the
following, we can disregard the second ternﬂﬁ’”’ because we are interested in the corrections of first-adande.

ert
3.2.  New spin-orbit Hamiltonian operator for HAs and HLM under the IHHPTd model

In this subsection, we want to derive the physical form of the induced perturbed Hamilt;ﬁfﬁﬁﬁ (Pne, Tne) due to space-
phase noncommutativity effects. To achieve this goal, we redl&eoth and Lé with the useful physical forms QLS or
gsOLS) and €ILS or g,0LS), respectively (see.g, [51-55]):

LO — < € > OLS andLf— ( ; >9LS, (22.1)

Gs

allowing us to construct the induced perturbed spin-orbit Hamiltonian operator as fdll3{¥s

€. HAs

gs: HLM (22.2)

HMhr = [(z(z + 1)t —280r7 3 = 28177 + B2) © + i] LS {

1/2

Here® = (0%, + 035 + @%3)1/2, 0= (932 05y + 014 / , LS isjustthe scalar produdt, S, +L,S,+L.S., e~ 1/137

is the atomic fine structure constant agd,is the strong coupling constant, aBddenotes the spin of the hydrogenic atoms
such as (Hg, Li*2 and B€") or the heavy-light mesons. Thus, the spin-orbit interactifijé? appear automatically as a
result of the deformation of the space phase. Now, physically, we can rewrite the quantum spisSarbitpling as follows:

J=L+S—=—2LS= G*withG®> =J? - L? - 82. (23)

Rev. Mex. Fis68 050702



THE IMPACT OF DEFORMED SPACE-PHASE PARAMETERS INTO HAS AND HLM SYSTEMS... 7

HerelJ is the total momentum of the hydrogenic atomsHei 2 and Be~ and HLM. Substituting this equation into Eq. (22)
yields:

_ _ _ 0 ¢ HAs
HMP — ¢ ([1{1 + 1t = 28gr7% = 208107 4+ 5] © + 2u> G? { G HLM (24)

Our recent study can apply in two principal cases: The first case considers Ze?, Z ande are the atomic number and
the charge of the electron, the term 4, /r ) becomes an attractive Coulomb potential, thus, we can consider the Hamil-
tonian described hydrogenic atoms such as*(He*2? and Be") under the influence of external fields described by other
terms [Agexp (—mp (T) r)/1 — exp (—ar)]+ [Az exp (—mp (T) ) /r]) in ordinary quantum mechanics and its extension
to 3DNRQM-NCSP, which allows us to get the eigenvalyesf the total angular momentum operatbifrom the interval

|l —1/2| < j < |l + 1/2|. Because the operatof®as two eigenvalues, we can obtain two values of energy, as follows

. . ky(j=1-1/2,1,5): Spinu
k:(j,l,s)zj(]+1)—l(l+1)—s(s+1):{ Y e (25)

A second way of determining a diagonal mat#'? of order ¢ x 3) with diagonal element¢H /7)., (H!')  and
(HMP),, =0as:
33

SO

(HE?P),, = eky ([1{1 + 1t = 280073 = 2B1r7 + o] © + i) if j=1+1/2,

(HM?Y,, = ek <[l{l + 13t = 26pr7% = 2B + B2] © + jﬂ) if j=1-1/2. (26)

The non-null diagonal elementg7”#), and (H"#),_ of the perturbed Hamiltonian operaté; can be influenced by

the energy values,; by creating three new valueSE;_1"" = (U (HE), |¥) and AEL_W7 = (0| (HMP),, |P)

—So n—so

corresponding the polarizations gp= [ + 1/2) and down( — 1/2) that can expressed as:

AEZ0P = eky (V| ([l{l + 1t = 280r7% = 28107 + 2] © + %) W)
_ (27)
AEMP — g (| ([z{z 1}t =280 — 28 4 By] © %) D)

The second case is for the heavy-light mesons (HLM), for example: scalar, vector, pseudoscalar, and pseudovectey for (

, D and D,) mesons, or the heavy quarkonioum systems, such as charmonicamd bottomonioundb, which quarks and
antiquarks of the same systefd@), the eigenvalues of the spin-orbit coupling operdtSrarek (j,1,s) = j(j + 1) — I(l +

1) — s(s+ 1) corresponding = [ + 1 (spin great); = [ (spin middle) and = I — 1 (spin little), respectively. Then, one can
form a diagonal matrix for modified nonrelativistic quark-antiquark potential with diagonal element, and in 3DNRQM-NCSP
symmetries:

(HEP) | = goks ([l(l +1)rt = 28pr3 = 281r7 1 4+ 3] © + %) for j=1+1
(If;lohp)22 = gsko ([l(l + l)r*4 _ 2ﬂ0r73 _ 2ﬂ17"*1 + ﬁz] O+ %) for j =1 . (28)
(HEP), . = goks ([1(1 1)t = 280 — 28 L 4 Ba] © + %) for j—1—1

Here 2 (ki, ks, k3) = (I,—2,—2l —2). The non-null diagonal elementgi[)’?) , (H/'*),, and (H!'?),, of the per-
hhp

turbed Hamiltonian operatoHZ'jfﬁ can be influenced to the energy valuBs, by creating three new valueAE; ™) =

hh, hh, .
(U (HEGP),, [9), AE™, = (O] (H{TP),, |¥) and ALY = (U] (H{?) ,, |¥) as:

AER = guly (9] ([0 + Dt = 28503 = 260071 + 3] 0 + L) |)

2n

21

AEN™ = giks (V| ([1(1 + 1)t = 2680r73 = 2817 4+ 3] © + E) w) . (29)

AEN = goks (W] ([L0 -+ 1)r~1 = 280078 = 2807 + 3] €+ ) W)
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After straightforward calculations, the radial functioRs; () satisfy the following differential equation in 3D-NCSP for
hydrogenic atoms Hg Li*2 and Be" and HLM systems under the improved H@thplus Hellmann potentials model:

dQRnl (’I“)

dr? +2p (EZlhp - Ve}}}}pfnc (r, T)) Ry (r) =0 (30)

with
hh _ hh e for HAs . s . 9
VI () = VP () 4 ({ ity ) <[ HEF 1=t = 26 =260 + 5y [0+ 5 TS, @)

hereVe’}}}p_m (r,T) is the new generalized effective potential in 3D-NCSP symmetries. We have seen previously that the
induced spin-orbit{ "7 is infinitesimal compared to the principal Hamiltonian operdi@y,, (p, z) in NRQM for HAs and

HLM, such as charmoniour® and bottomoniounb under the improved Hul#m plus Hellmann potentials model, this allows

us to apply standard perturbation theory to determine the nonrelativistic energy corrdcljghat the first order of two
infinitesimal parameter® andé due to noncommutativity space-space and phase-phase properties.

3.3. BS Solution for the spin-orbit operator for HAs and HLM systems under the IHHPTd model

The Hultrén plus Hellmann potentials model is extended by including new radial t§ims1)r=4, 3or=2 and 817~ to

become an improved Hulém plus Hellmann potentials model temperature-dependent in 3DNRQM-NCSP symmetries. The
additive partH;,‘fj; (Eg. (19)) of the new Hamiltonian operatéf"’? is also proportional to the infinitesimal vecta®sand

. This allows us to consider the additive paf fﬁ/ as a perturbation potential compared with the main poteffial, (p, z)

(Eq. (20)) in the symmetries of 3SDNRQM-NCSP, that is, the inequdlify’; < Hy, has to become satisfied. That is, all

the physical justifications for applying the time-independent perturbation theory become satisfied. This allows us to give a
complete prescription for determining the energy level of the generaliZedxcited states. Now, we use perturbation theory

and in the case of relativistic 3DNRQM-NCSP, we find the expectation values of the radiallteris /r3 and1/r taking

into account the wave function which we have seen previously in Eq. (9). Thus, we obtain

+o0
(nlm|r~* |nlm) = N2, / rver T hexp (—2v/€nir) (lea/m) [2 enlr]) : dr, (32.1)
0
oo 2
(nlm| =3 |nlm) = N2, / rvemLexp (—2\/€nir) (Lg,,a/m) [2 enlr]> dr, (32.2)
0
o 2
(nlm| 7t |nlm) = N2, / Vet P exp (—2v/€ni7) (Lff"/m) [2 enlr]> dr. (32.3)
0

where we have used the property of the spherical harmonics given by

// Y—lm (97 99) le’;”/ (97 ‘P) s = 6ll’6mm’

with df2 = sin (0) dfdp. To ease the notation, we will provide useful abbreviationsn| D [nlm) = (D) ,im). Comparing
Egs. (32) with the integral of the form [71,72]:

—+oo

/ £~ exp (—pt) Ly, (pt) L, (pt) dt =
0

p T (W) T(n—v+B8+1)T(m+A+1)
nmI'(1—v+ )T (A+1)

X3F2(—m7y71/—ﬂ;7n+1/7ﬂ7>\+1;1) (33)

Where Re (v))0, Re(p))0, m € N An € N andzFs (—m,v,v — 3;—n + v, A+ 1;1) is obtained from the generalized
hypergeometric functiopF (o, ..., ap; B, ---, B4, ) andl’ (v) being the Gamma function. After some manipulation, we can
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obtain the explicit results:

(n+1) (n+ %) (vl E’”ﬂ)F( =) (nr )

(nlm|r=* |nlm) = N3, X, (34.1)

2l (227)
n+ —2= ) e (2v/€n Ve T n+ —=
(nlm|r=3 |nlm) = N2, ( m> ( n'a) ( \/W) X2, (34.2)
and
(nlm|r~* |nim) =0, (34.3)

with X and X, are equalsF, (—n, [/ /€] — 1, —1;—n — 1, [a/\/eu] + 1;1) and 3Fo(—n, [a/\/nl], 0; —n, [/ /€ni]

+1; 1), respectively. We have replac&€d2) andI" (1) with a value of 1 in the denominators of both Egs. (34.1) and (34.2),
respectively, and /T’ (—1) with zero in Eq. (34.3). Furthermore, we have used the propdritjes+ 1) = nI" (n) = n!. The

main goal of this subsection is to determine the corrected energy speAtEﬁﬁffp (ky,m,mp (T), A1, As, Ao, 7,1, 8) =

AE""MP and AEX="" (k:_ n,mp (T), A1, Ay, Ao, j, 1, s) = AEZ~""? which come fromH " (p,..., z.,.) corresponding

toj = [ + 1/2 at the first order of two paramete® and @ for hydrogenic atoms Heg Li*2? and Be" for (n,[ ) states by
applying standard perturbation theory and through the structure constants which specified the dimensionality of the improved

Hulthén plus Hellmann potentials model:

u—hhp ? =
( AEn—so > =€ (F (TL,mD (T) ) Al; AQ»AO) O + > ( k+f0r y L 1/2 ) ’ (35)

AEIMP on ) \ k_for j=1-1/2
with
F (n; mp (T) 7A17 A27 AO) = l(l + 1><r_4>(nlm) - %<’r—3>(nlm) - %(T_l>(nlm) + ﬁQ . (36)

For the HLM, such as charmoniouaz and bottomonioundb, which quarks and antiquarks of the same syst&®), the
eigenvalues of the spin-orbit coupling, we obtain the following results, fonthexcited state%AEh””’ AE"h? AEZE’;) ,

n—g’ n—m»
respectively:
N gskr (1) (F (n,mp (T), Ay, A, Ag)© + 1) if j=1+1
n—g -
AEM™ L= | gk () (F (n,mp (T), Ay, Az, Ag) © + %) it j=1 |. (37)
hhp _
AEM gsks (1) (F (n,mp (T), Ar, As, A0)© + L) if j=1-1

4. BS solution for MZE for the IHHPTd model

In this subsection, having obtained the energy specteni(”""* and A EZ~""?) from t'» (p,,., z,,.) corresponding tg =
I+1/2andj = [—1/2 atthe first order of two parametesandd for the hydrogenic atoms fon(! ) states and the degenerated
energy AE"? AE"  AE!") of the heavy quarkonioum systems, such as charmonigand bottomoniounhb. Now,

it is possible to obtain the second self proper symmetry for the improved &tufplus Hellmann potentials model in the
presence of temperature-dependent confined Coulomb potential. This physical phenomenon is induced automatically from the

influence of an external uniform magnetic fiéldif we make the following two simultaneous transformations,

(5)—():

Here A and\ are just two infinitesimal real proportional constants, for the purpose to simplify calculations without compro-
mising the physics content we choose the magnetic field parallel todkis. Then, we make the replacement

<[z{z + 13t = 280173 = 281 + 3] © + 21) L (39)
— ([1{1 + 1t = 28pr73 = 268177 + B A+ 2;) NL, (40)
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This allowed us to derive the modified magnetic Hamiltonian oper&tgt” (r, A, \) for the HAs He", Li™ and Be" and
the HLM ce andbb under the improved Hulém plus Hellmann potentials model in the presence of temperature-dependent
confined Coulomb potential in global 3DNRQM-NCSP symmetries as:

HIP (1, A N) = ([l{l 1 =280 = 28 4 Bo] A+ 21) Hioee for HAs, (41)
and
HIP (r, M, X) = <[l{l F 1t = 26072 = 28+ o] A+ ;) H? o495 for HLM (42)
o

Here H},y = NJ — H, denotes the modified Zeeman effect (MZE) in nonrelativistic NCQM, wiiile = 7§’§> is

just the usual Zeeman effect. To obtain the exact NC magnetic modifications of energy for the ground state, the first ex-
cited state anch'" excited states of the hydrogenic atomstHé.it2 and Be and the heavy quarkonioum systems un-

der the improved Hultbn plus Hellmann potentials model temperature-depent; Zijfghp (n,mp (T), A1, Aa, Ag) and

AEM™ e (0 mp (T), A1, Ay, Ay), We just replacel(, or k (1))and(©, §) in the Eqs(35) and Eqs(37) by the following

n—mag -
parametersn and (A, A)R, respectively:
AEM™-Me (i (T, Ay, Ag, Ag) h) €
pomag A TS =N T),A1, Ay, Ag) A + — . 43
( EZT:,;};hp (n,mp (T), Ar, As, Ag) (F (n,mp (T), Ar, A2, Ao) A + 2M>m ( 0e ) (43)

It is known that the discreet magnetic numbetakes the possible valuésl, +l), which allows us to fix %l + 1) values. It
should be noted that the results obtail(ekiEhy_hh” AEhlm_hh”> in Eqg. (43) can be found directly by applying the formula

n—mag '’ n—mag

(U HP (r, X, X) |¥) that takes the following explicit relation:

n—mag

X<[l(l+1)%ﬂl+ﬁg}A+QL>dr, (44)

ré 2r3  2r

+0oo 2
AEh,y_th = eNile / r\/% exp (_2 €nl7“) <LL(1/\/§] [2 enl’r])
0

—+00 2
A phim—hhp _ gs N2 Rm / Vet exp (—2+v/€nr) <L7[,a/m] [2 enlr])
0

n—mag
X([l(l+1)_ﬂo—ﬁl+ﬁz}/\+)’;>dr- (45)

ré 2r3  2r

Now, for our purposes, we are interested in finding a new important symmetry for the improvedérHuiitls Hellmann poten-

tials model at zero temperature in DSE symmetries. This physical phenomenon is induced automatically from the influence of
a perturbed effective potentiﬁi{,ﬁ’; which we have seen in Eq. (21). We discover these important physical phenomena when
our studied system consists of a non-interacting Fermi gas and it is formed from all the particles in their gaseous'state (He
Li+2? and B€") undergoing rotation with angular velocify if we make the following two simultaneous transformations to

ensure that the previous calculations are not repeated:
0 — o} LO — oL
<9 —>UQ>:>(L6—>0LQ>’ (46)

Hereo andz are just infinitesimal real proportional constants. We can express the effective poH{jjﬁ'}aWhich induced the
rotational movements of the hydrogenic atoms Hei 2 and Be™ and the HLM ¢z andbb) as follows:

(l+1)  Bo B o e HAs
e Mo P1 ~Z\LO . 47
pert ({ = ] 2 gs - HLM “n

To simplify the calculations without compromising physical content, we choose the rotational vébggyrallel to the £)
axis. Then,

S(o,7,r)LQ =S(0,7,r)QL, , (48)
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with

S(U,U,r)z( = —,—T—i—ﬁg)a—i—(;. (49)

All of this data allows for the discovery of the new corrected eneﬁsgy,{;;"t (n,mp (T), A1, As, Ao, 0,7, m) due to the

perturbed Fermi gas effe Z},ﬁf’“’t (r) which is generated automatically by the influence of the improved Enlthus

Hellmann potentials model temperature-dependent fonthexcited state in DSE symmetries as follows:

(50)

- g a : for HA
AE}{}”’ "(nmp (T), Ay, Az, Ao, 0,7, m) = (S(n,mp (T),AMAQ,AO)U—&—QCL) { € s

gs. for HLM

It is worth mentioning that the authors of Refs. [73] studied rotating isotropic and anisotropic harmonically confined ultra-cold
Fermi gases in two and three-dimensional spaces at zero temperature, but in this study, the rotational term was added to th
Hamiltonian operator, in contrast to our case, where this rotation f&ema, r) L2 automatically appears due to the large
symmetries resulting from the deformation of space-phase.

5. Global results and discussion

In the previous subsections, we obtained the solution of the deformeddioger equation for the improved Huéh plus
Hellmann potentials model, which is described by the Hamiltonian operator as given in Eq. (19) by using the GBSM and SPT.
The energy eigenvalues are calculated with help of 3D-NCSP symmetries. The modified eigenenergies-tbretketed

states of the HAs (He, Lit2 and B€") under the improved Hulén plus Hellmann potentials model temperature-dependent
E,(;éiilbhy(n, mp (T), A1, A, Ag, j,1,m, s) = Efjéﬂhy with spin-1/2 and the degenerated enet§y'(%. (n, mp (T) , A1, As,

Ao, j,l,m,s) = EMm . EMT (n,mp (T), Ay, As, Ao, j,1,m,s) = EM™ 0 EM% (n,mp (T), Ay, Az, Ao, j, 1, m, s) =

EMmy of the heavy quarkonioum systems, such as charmoniguamd bottomonioundb are obtained in this paper based

on our original results presented on the Egs. (35), (37), (43) and (50), in addition to the ordinary energy fen iglugh
Hellmann potentials model which presented in Eq. (10) take the form:

Case 1.For the HAs (He, Lit2 and B€"), we have:

u B X\ + Q5
Bt { i =B+ (F (n,mp (T), Ay, As, Ag) (RA + Qo) + 2u0> o
0 kyforj=1+1/2
2 7 + 10rJ
+eNy (F (n,mp (T), A1, A2, A0) © + 2#) { koforj—1—1/2 ° (51)

For the HLM, such as charmonioutfi and bottomoniounhb:

EM™ = B 4 g, (f (n,mp (T), Ay, Az, Ag) (R + Qo) + M;}ﬁ") m
+ g.k1 (1) (F (n,mp (T), Ay, Ay, Ag) © + i) if j=1+1, (52.1)
EMm = BN + g, (F (n,mp (T), A1, Az, Ag) (RX + Qo) + W) m
+ gska (1) (F (n,mp (T), A1, As, Ag) © + 20#) if j=1, (52.2)
and
hm — B g, <F (n,mp (T), A1, Az, Ag) (RA + Qo) + W) m
+ gsks (1) (F (n,mp (T), Ay, Az, Ag) © + jﬂ) if j=1—1. (52.3)
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Thus, the total energgg " and Em, grin B for the HAs and the HLM, respectively, under the improved Hesth
plus Hellmann potentials model temperature-dependent SDNRQM-NCSP symmetries, is the sum of the ordinary part of energy
Eﬁlhp and the three corrections of energy that are produced automatically with the effect of perturbed spin-orbit effect, MZE
and perturbed Fermi rotational effect. This is one of the main objectives of our research. Finally, we end this section by
introducing the important result of this work as:

Case 1.For the HAs:

2 OLS + 7L R, ’
(Hhhp +€ [9(7“))\ + :| Hr?od + € g(r’) (ULQ + @LS) + +0 ) . (7“) lm (9’ (p)
" 2p r
Ewhj/ forj =1+ 1/2 Ry (1)
— nc—n vmig s
{ E,:ff;lhyfor]:l_l/g l [ 799] y ( )
with
(l+1) Bo B

9 =" T Ty T (54)

Case 1.For the HLM (c¢ andbb), we have:

A = R, (r
(H +0. [90003+ 5| Hag 0. o) o102 + L8] 4 Brsgana |) e Chym g

EMmif j=1-1
This is one of the main motivations for the topic of this work. It is clear, that the obtained eigenvalues of energies are real,
which allows us to consider the NC diagonal Hamiltontfy; , (r,©,0, X\, A, 0, 7) as a Hermitian operator. In addition, and
regarding the previously obtained results (20), (24), (42) and (47), the global Hamiltonian operator, at first order in and with
the improved HultBn plus Hellmann potentials model temperature-dependent for hydrogenic atomsljatétes takes the
form as:

EMmif j=1+1
(R’”(’"’Ylm [e,w}) | (55)

r

e o~ A ; ¢ :HAs
Hpiip (10,0, X, 0,3) = Hynyp + (g(r))\+ 2#) mOd{ gs: HLM
OLS + 5LQ ¢ ‘HAs

This is the equation for Has and the HLM, such as charmoniauamd bottomonioundb under the influence of the improved
Hulthén plus Hellmann potentials temperature-dependent model interactions. It should be pointed out that this treatment
considers only the first-order terms in eitl&@ror 0. Clearly, the first two parts of Eq. (55) presents the Hamiltonian operator

in the ordinary QM for the Hultén plus Hellmann potentials model, the third part is the MZ operators while the last part is
the combined two effects correspond the spin-orbit and the rotational Fermi operator for the improvéd dluithHellmann
potentials model, which are induced automatically by the NC properties of space and phase. It is evident to consider the atomic
quantum numben can take 2! + 1) values and we have also two values fot [ + 1/2 andj = [ — 1/2 corresponding to up

and down polarities for the HAs. For the HLM, such as charmoniegiand bottomonioundb, we have also three values for

j =1+ 1andj = l. Thus, every state in the ordinary NRQM symmetries of energy for the improvedéiyiilins Hellmann
potentials model temperature-dependent wilBt# + 1) a sub-state in 3SDNRQM-NCSP symmetries. Thus, the total complete
degeneracy of obtained energy level of the improved Hulthlus Hellmann potentials model TD is obtained as a sum of all
allowed valuesl. Total degeneracy is thus,

n—1 n—1
D 2(2+1) =20 -2 (Z 2(21 + 1)) = 4n%: HAs , (57)
=1 =1

Ordinary NRQM symmetries

and

n—1 n—1

2020 +1) =2n* — 3 < 2(21 + 1)> =6n* : HLM . (58)

=1 =1

Ordinary NRQM symmetries
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5.1. New mass spectra of HLM

This section is devoted to deriving the mass spect@@f(Q = ¢, b) charmonium and bottomonium,in the improved Hélth

plus Hellmann potentials model. It is well known that the spin of charmonium and bottomonium equal two values (0 or 1),
because it consists of quark and anti-quark. For spin-1, we have three vajugs ef l + 1, j» = [, j3 = [ — 1), which allows

us corresponding three valugs , k-, k3) = (1/2) (I, —2, —2I — 2) and thus, we obtain three values of energy:

KX + 05
A%, = B 4 g, (1 (e (7). Av, Az, Ao) (82 + 1) + 297
i\
+ il (r (n,mp (T), Av, As, Ag) © + m) it i1, (59.1)
EMm — g g (,r (n,mp (T), A1, Az, Ag) (RX + Qo) + W) m
i\ L
—gs | F (n,mp (T),Al,Az,Ao)@Jrﬂ if j=1, (59.2)
and
B = EU7 4 g (1 (momp (D). A, Az, Ag) (004 )+ 2220
i\
— gs (l + 1) (F (n,mD (T),Al,A27A0)® + 2[LL> if j =[—-1. (593)

In the symmetries of usual NRQM, the mass spe@a(Q = c, b) obtained by applying the following formula [74, 75]:

MMP = 2m g + EMP. (60)

nl

Here,m¢ are the bare quark masses. Thus, the modified Mg%¥ (s = 1) with spin-1 of QQ (Q = A, Ag) charmonium
and bottomonium, becomes
nc n—g n—m n—

1
Mpe? (s = 1) = 2mq + = (Epl + ERT, + Bplty) (61)

The value(1/3) (EX'™ + E!'™ 4 EM™) physically represents the non-polarized energy (energy independent of spin). After
a simple calculation we obtain tlé/:

SM (s = 1) = g, (f (n,mp (T), Ar, As, Ag) (RA + Qo) + m;f“) m
2 0
- ggs <F (7’L, mp (T) 7A17A27 AO) S} + 2,LL) 3 (62)

with §M (s = 1) = M7 (s = 1) — M"» M"P is the mass spectra of the heavy quarkonium system [11]:

MMP — om + A, (; - miéT)> + Aymp (T) (37”’236@) —m3 (T) — 1)

2

4 27r3
L (20 A2 - A+ |+ [ (T) — ] - 0

-5 -
I n+;+\/(z+§)2+ gy (1) (1_ mDJ(T>> _ wAomp(T)

(63)

This is the noncommutativity contribution for the mass spectr@€f charmonium and bottomonium under an improved
Hulthén plus Hellmann potentials model. For spin-0, we have only one val(g ef) , allows us the valuek = 0 and thus,

we obtain the energy:
N\ + Q7
Ep"y = Byt + gs (F (nymp (T), Ay, Ag, Ap) (RA + Q0) + ~20—C ") m

o (64)
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Thus, the modified mas®/"? (s = 0) with spin-0 ofQQ, becomes

(65)

OM (5 =0) = My (s = 0) = MM = g, <f (n,mp (T), A, Az, Ao) (A + Qo) + NHQU) m.

2p

5.2. Special case

Considering that the studied IHHPTd potential, in the presence of a temperature-dependent confined Coulomb potential in our
paper is composed of four important potentials in terms of physical and chemical applications, we will address four special
cases.

First: When we sedy = A; = 0, the potentiaV},, (r, T') of the HHPTd model in Eq. (7) reduces to the Yukawa potential
in the presence of a temperature dependence as follows:

yp
Vihp (1, T) = *% + Bir = Bar® + B3 — Vi (r, T) = *% + BYPr — By + BYY, (66)

with B¥F = Ag, B{F = Aom?, (T)/2, BY¥ = Aom3, (T)/6 andB5F = —Aamp (T'). The new global perturbed Hamiltonian
operator?? . and the new effective perturbed potential of the improved Yukawa potd@,’(}iﬂg (r,T) in 3BDNRQM-NCSP

pert
symmetries:
I(1+1) yp yp Lo 72
yp _Fo M yp = 2
Hyere = ( rd 2r3 2r +57L6 + 20 +0 (6 0 > ’ (67)
and
1) oy 2
Vi, (r,T) = ( v s BEPILO + O (7). (68)
The new energy of HAs, under the improved Yukawa potefiid], (-, ") will be reduced to the following form:
Bty — gy (pr (n,mp (T), Az) (A + Qo) + m;m) em
u
0 kyforj=1+1/2
2 yp i + J
+€an (F (namD (T)’A2)@+ 2#) { k_ forj:l71/2 (69)

With £ 92 (n,mp (T), A1, Az) = U0+ DL/ iy — (B8 /2) (/) ey — (B2 /2){L/7) iy + G4 and EYY is given
by [11]:

3puAsm? (T) 8uAam (T)
Eyp _ AQmD (T) _ i 2/,6142 + H 252D _ ou 2363D

nl
8 P
Pl \/(l +4)" 4 2emp@ (7 mp(D)

The new of energy of HLMd¢ andbb) for the improved Yukawa potential in the presence of a temperature dependence in the
3DNRQM-NCSP symmetries obtained from Eq. (52.1), (52.2) and (52.3) is

. (70)

EQT; =FE" +gs (pr (nymp (T),A2) RA+ Qo) + N)\;IMQU> m
6\ .
+ g5k (1) (pr (n,mp (T),Ag)@‘f'%) if j=1+1, (71.1)
B, = B2+ 9. (17 nmp (1) A2) 093+ ) + 2027 Y o
0\ .
+ gst (l) (f P (nva (T) ) AQ) S} + 2/}[)) if J = lv (712)
and
N + QF
Ehlm — E¥ + g4 <pr (n,mp (T), A2) (RA + Qo) + ;MU) m
0\ .
+gsks (l) <pr (n,mD (T) ,AQ) O+ 2,&) if g=1—-1. (713)
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SecondWhen we se#d; = A, = 0, the potentiaV},,, (r, T') of the HHPTd model in Eq. (7) reduces to the Heéltipotential
in the presence of a temperature dependence as

hp
Vinp (1, T) = —@ + By — Bor? 4 B3 — Vi (1, T) = =22 4 giPy 4 ghe, (72)

with g7 = —Ao/mD( ), BIP = —Ag(mp (T)/12), B2 = 0 and 55” = A/2. The new global perturbed Hamiltonian
operatorHr, and the new effectlve perturbed potent|al of the improved Hellmann poté#jffal (r, T') in SDNRQM-NCSP
symmetries:

—2
i (452 - )16 0 (o2 )
(73)
Vo, (r,T) = (1) — Lol _ ﬁT) LO + 0 (6?)
The new energy of the HAs such asHe.i*2 and Be',
R\ + Q5
Bl — phr (th (n,mp (T), Ag) (RA + Qo) + L; U) em
o
0 kyforj=1+1/2
2 hp + J=
w e (P mo (1) a0 + ) { I 21T (72)

with 772 (n,mp (T), A1, Ag) = 1L+ 1)1/ tnimy — (B0 /2)(1/7) (mimy — (BY /2)(1/7) (nimy @NDE"? is given by [11]:

B2t = 40 (5 - "2 ) — 2aamy 1) (220 ity 1) - 1)

A mp(T)A
— i 2MmD(DT) - D252 3 (75)

8
“n+§+\/(z+;)2 (1- 250 _ sdomp(r)

The new of energy of HLMdgc andbb) for the improved HultBn potential in the presence of a temperature dependence in the
3DNRQM-NCSP symmetries obtained from Eq. (52.1), (52.2) and (52.3) is

N\ + Q7
EZ“’; = Enl + 9s <F (n,mp (T), Ag) (XA + Qo) + ;U> m
6\ .
+ gsk1 (1) (th (n,mp (T)7AO)®+2#> if j=1+1, (76.1)
N\ + Q7
B = B+ gc (P (o (7). A0) (0 4 820) 4 22 Y
0\ .
T guka () (rhp (n.mp (T), 40) © + m) =1 (76.2)
and
EZZ_"ZL = Eﬁf + gs (th (n,mp (T), Ag) (RX + Qo) + N/\;_MQU) m
+auka () (1 (m (1) A0+ ) j=1-1. (76.3)
1

Third: When we se#, = 0, the potentiaV,,, (r, T") of the HHPTd model in Eq. (7) reduces to the Hellmann potential in the
presence of temperature dependence as

hlp
Vinp (r,T) = —@ + Bir — Bar? + B3 — Vi (r, T) = — 20— 4 ghtop _ glipg2 4 ghiv (77)
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with i = A, — A4, ﬂllp = Aym? (T)/2, B2'" = Aym?3, (T)/6 and 54" = —Aymp (T). The new global perturbed
Hamiltonian operato:H ... and the new effectlve perturbed potential of the improved Hellmann potéqf;l&l (r,T) in
3DNRQM-NCSP symmetnes

Hy?, = (M - 2 ﬂ’”p ) Le + ¥ 10 (02 7) N
Vphe% (rT) = (l(l%l) _ + ﬂhlp ﬁhlp 2) LO®+0 (@2) (78)
The new energy of HAs,
ElDhy _ phiv (F“P (n,mp (T), A1, As) (RA + Qo) + NA;:“) em
st (rnmam o ) 111 =
with £ (n,mp (T), A, A2) = 11+ 1)(75) (nim) — @(}Q(nm) <%>(n1m) + 84" andE"” is given by [11]:
BN = Ay (1) — L — 22 A E SMmD( g (80)

nels \/(l +3)" + 2@ (1 mp(D)

The new of energy of the HLMcE andbb) for the improved Hellmann potential in the presence of a temperature dependence
in the 3ADNRQM-NCSP symmetries obtained from Eq. (52.1), (52.2) and (52.3) is

N\ + Q7
EZIJV; = EleP + gs (Fhlp (na mp (T) ) Ala A?) (N)‘ + QU) + )\;,—LLO-> m
+aaa @) (7 (o (7). A1 A€+ o) if G =141, (81.1)
B, = B+ g (1 (nmp (1) v, ) (0 +920) 4 22 Y
T guka () (r'ﬂp (mmp (T), Ay, A2) © + 29) =1, (81.2)
1
and
N\ + Q7
Bl = BN 4 g, (F (mm (T), Ar, 42) (RA + Qo) + A;H”) m
0\ .
+ gskg (l) <Fhlp (n,mD (T) s Al, AQ) O+ 2M> if ] =[l—-1. (813)

Forth: When we setdy = Ay = mp (T) = 0, the potentialVy,,, (r,T') of the HHPTd model in Eq. (7) reduced to the
Coulomb potential in the presence of a temperature dependence as

cp
Vinp (1, T) = *@ + Bir = Bor® 4 Bz — Vi (r, T) = %7 (82)

with 857 = — Ay, 37¥ =0, 55" = 0andjs” = 0. The new global perturbed Hamiltonian operatdf?,, and the new effective
perturbed potential of the improved Hellmann potenwgﬁjﬂ (r,T) in SBDNRQM-NCSP symmetries:

ep _ (1+1) 0" L 2 72
it = (1 - fl) Le + 51+ 0 (2.7%) )
Ve (r, ):(7<:;>_%)L@+o(@2)
The new energy of the HAs,
N\ + Q5
E,(Ziizlhy =ET+ (FC” (n,mp (T), A1) (RX+ Qo) + ;;U) em
0 kyforj=1+1/2
2 cp s + J
+eNg, <F (n,mp (T),A1)O + ){ ko forj—1-1/2 (84)
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with 12 (n,mp (T), A1) = 10+ D1/ iy — (557 /2)(1/r) iy @NDES, is given by [11];
cp 1 72,uA1

'rLl*iSi 5" (85)
Fn+le/(i+3)

The new of energy of HLMdg andbb) for the improved Coulomb potential in the presence of a temperatura dependence in the
3DNRQM-NCSP symmetries obtained from Eqg. (52.1), (52.2) and (52.3) is

N\ + Q7
B = B gu (1 (nymp (1), A0 (03 +20) + 2197 )
0 .
+g5k1(l)<F(p(an( )A)@+2#> if j=1+1, (86.1)
\ . NX + Q5
EMm = ENP + g, (F P (n,mp (T), A1) RA+ Qo) + 2Mo) m
[ .
and
N\ + QF
Eﬁlm Ehlp + gs <Fcp (n7mD (T) 7A1) (N)\ + QO‘) + )\;—U) m
"
[ .
+ gsks (1) <FC” (n,mp (T),A1)6)+2,u> if j=1-1 (86.3)

We have obtained the solutions to the Sefidinger equation, the most well-known nonrelativistic wave equation described
without spin, but its extension in 3BDNRQM-NCSP symmetries under the improvedéutttus Hellmann potentials model
temperature-dependent in the presence of a temperature-dependent confined Coulomb potential has a physical behavior simil
to the Dirac equation [76] for fermionic particles

with spin-1/2, it can describe the dynamic state of a partiwe considered as Hulm plus Hellmann potentials for the
cle with spin-1/2 for HAs such as He Li*? and Be'or  hydrogen atoms (Hg Li*2? and Be") and quark-antiquark
similar to the relativistic Duffin-Kemmer equation [77-79] interaction. The potential was made to be temperature-
for mesons with spin-(0,1) for the heavy quarkonium sys-dependent by replacing the screening parametevith a
tems cc and bb, which can describe a dynamic state of aDebye massnp (7)) which vanishes af’ — 0 in the
particle with spin one in the symmetries of RNCQM. The presence of 3DNRQM-NCSP symmetries. The deformed
conventional nonrelativistic approach of a SE under the imSchibdinger equation is analytically solved using the gener-
proved Hultlen plus Hellmann potentials model temperature-alized Bopp’s shift method and standard perturbation theory.
dependent in the presence of the temperature-dependent calfe obtained new approximate solutions of the eigenvalues
fined Coulomb potential involves solving the second- orderEn“ d)'“’(n mp (T), Ay, As, Ao, j,1,m,s) for the hydro-
KGE for spin-0 and the Proca equation for spin-1 [80].genic atoms and K™ (n,mp (T), A1, As, Ag, j, 1, m, 5),

n—g

Worthwhile it is better to mention that for the two simulta- E"™ (n,mp (T), Ay, Az, Ao, j,1,m, s), EM™ (n,mp (T),
neous limits(©, A, o) — (0,0,0) we recover the results of A, A,, Ay, j,1,m, s)) for the heavy quarkonioum systems,
the Refs. [11,12]. Itis possible to recover the results of comsuch as charmonioure and bottomoniounbb. The new

mutative space when we considé¥ (A, o) .0 (X\,7)) equal  energy values are sensitive to atomic quantum numbers

(0,0). In the limit (©,0) — (0, 0), we have: (4, m, 1, s andm), the noncommutativity paramete® (o, x)
lim E@OMw _ g z due to the topological properties of the gelf-quantum in-
©,8)—(0,0 " " fluence of space-space and phase-phase, in NRNGQM
lim (EBhim ghim  ghim) — . (87)  Rsp symmetries, in addition to the discreet atomic quantum
©.8)—(0,0) = O™ " numbers 4, ) and the parameterg:.(A,, d ) of the IHH-
PTd model that appeared in the literature. We have shown
6. Conclusion that new global Hamiltonian operatdi}’;, (r,0,0,\,})

in (NRNCQM_3D-RSP) symmetries is the sum of the main
In this study, we adopted an inversely quadratic Yukawa poHamiltonian operator of the Hulém plus Hellmann poten-
tential plus Yukawa potential and Coulomb potential whichtials model temperature-dependeft,;, (p,z) and three
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perturbed operators; the first one is the modified spin-orbit indrogenic atoms and the heavy quarkonioum systems under
teractionH!"? (r, ©, ), the second is the modified Zeeman the improved Hultkn plus Hellmann potentials temperature-
operator H"» (1, A, ) while the third operatorﬂgglfmt dependent model in 3DNRQM-NCSP symmetries could pro-
is the perturbed Fermi Hamiltonian for the hydrogen atomsvide valuable information in many physical fields, and opens
Het, LiT? and Beand the heavy quarkonioum systems.a new big window for profound theoretical and experimental
Consequently, the ordinary kinetic termA /2 modified to  research. The generalized Bopp’s shift method used in this
the new form ¢A/2u — LO/2u — La/2u — LA/2u) for  paper is efficient and systematically gives physical and prac-
the IHHPTd model in 3DNRQM-NCSP symmetries. Fur- tical solutions to interesting problems, it provides logical and
thermore, we applied the present results to calculate heavyealistic solutions to physics problems that were considered
meson masses such as charmoniai@nand bottomonioum very complex in the past, and can be used to obtain the so-

bb.

guantum mechanics when the lim{3, A\, o) — (0,0, 0) are
applied simultaneously.

three-dimensional deformed Sdékiinger equation for hy-

t

lutions of other potentials of practical value and prospective
It has been shown that the DSE under an improvedmportance.
Hulthén plus Hellmann potentials model with temperature
dependence presents a useful symmetry to solving the hy-
drogenic atoms HeLi2+and Be" and the heavy quarko- Acknowledgments
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