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The hybrid atoms-cell site entanglement in a one-dimensional Su-Schrieffer-Heeger (SSH) topological insulator with first and second neigh-
bor hopping in space representation of finite chains is analyzed. The geometrical phase is calculated by the Resta electric polarization and
the entanglement in the atomic basis by the Schmidt number. A relation between entanglement and the topological phase transitions (TPT)
is given since the Schmidt number has local critical points of maximal entangled (ME) states in the singularities of the geometrical phase.
States with second-neighbors have higher entanglement than first-neighbors hopping. The general conditions to produce ME hybrid Bell
states and the localization-entanglement relation are given.
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1. Introduction

Topological systems promise to be materials with various
implementations [1,2] in condensed matter physics. These
materials gained interest in recent years due to their pecu-
liar properties like efficient transport in electronic hetero-
structures [3], high thermal conductivity [4], favorable me-
chanical properties under strains [5,6], minimization of ther-
mal noise [7], and decoherence effects in open systems [8].

The property of topological robustness protects these ma-
terials from quantum fluctuations or defects in the system [9]
and presents protected states, also known as zero-mode en-
ergy states [2].

There are already some works that mention peculiarities
of these types of materials [2,8,10-13], and in general, due
to the robustness of these materials, there are more quan-
tum correlations which allow a greater degree of efficiency
in electronic transport [14,15] related with the appearance of
flat bands. Therefore, topological materials are expected to
be suitable for quantum information processing [12,16-18].

One of the topics in quantum information theory is the
study of entanglement and quantum correlations involved in
condensed matter systems [19-21]. The origin of the rela-
tionship between quantum correlation metrics and geometric
phases comes from the Fubini-Study geometrical quantum
tensor of the complex projective space in the projective ge-
ometry of Hilbert space [22]. The connection between topo-
logical materials in condensed matter physics and manipu-
lating qubits with entanglement properties in quantum infor-
mation theory [23] opens a new research area to create new
technology, like topological quantum computing, cryptogra-
phy, and quantum security [24-26].

There are several experimental setups [27-31], that have
been used to study some properties as anomalous transport,
decoherence times, and thermal capacity. More recently, pho-
tonic systems and detection of topological states in light-
matter devices have been broadly studied [32] as crystal pho-
tonic systems promise to have robust transport due to the
presence of these protected gapless states [33].

In the SSH model, modulation of the hoppings generates
a phase transition between a metal-insulator behavior due to
the Piers instability of the hopping deformation. In this work,
we present a characterization of the TPT via the Schmidt
number metric [33,34] as a measure of entanglement in the
simple [35,36] and extended [37] SSH models. Also, the re-
lation entanglement-localization and topology are discussed.

2. 1D SSH topological insulator

The system of study is the SSH Hamiltonian [32], which is
a tight-binding model of a wire with alternating single and
double hopping (Fig. 1). The basis of the wire is constructed
by a cell of two types of atoms A and B.

The Hamiltonian in real space can be written as,

Ĥe = Ĥs + z

N∑
m

(|m + 1〉 〈m| ⊗ |B〉 〈A|+ h.c.)

= Ĥs + z

N∑
m

(|m + 1〉 〈m| ⊗ σ̂− + h.c.), (1)
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FIGURE 1. Extended SSH model. Topological wire, with intra
v (black lines) and interw (orange lines) hopping and an addi-
tional second neighborhood hoppingz (green lines). The indexm
(dashed lines) indicates the cell number and atoms A (Red) and B
(Blue), withN = 6 unit cells.

where z is the second neighbor hopping and̂Hs =∑N
m(v |m〉 〈m|⊗|A〉 〈B|+w |m + 1〉 〈m|⊗|A〉 〈B|)+h.c. =

v
∑N

m |m〉 〈m| ⊗ σ̂x + w
∑N

m(|m + 1〉 〈m| ⊗ σ̂+ + h.c) is
the simple SSH Hamiltonian wherêσi with i = x, y, z are
the Pauli matrices witĥσ+ = (σ̂x + iσ̂y/2) and σ̂− =
(σ̂x − iσ̂y/2). Herev andw represent intra-cell and inter-
cell hopping in 1D wire,|m〉 is the index of the cell num-
ber,|A〉 and|B〉 are the occupation type atom in a cell. This
model defines the basic form for the bipartite system of2⊗N
dimension.

The eigenfunctions can be expanded as a superposition of
the composite states,|m,α〉 = |m〉⊗ |α〉 ∈ Hext⊗Hint, here
Hext → |m〉 is the external dimension or degree of freedom
related to the position over the chain, whileHint → |α〉 rep-
resent the internal degree of freedom withα ∈ (A, B) related
to the type of atom.

The eigensolution of the Hamiltonian Eq. (1), H |ψn〉 =
En |ψn〉 can be expressed as a combination of the composite
state,|ψn〉 =

∑N
m(CA

m,n |m,A〉+ CB
m,n |m,B〉), whereCα

m

are the amplitude of probability of the particle to be in cell
|m〉 and atom|α〉.

3. Geometrical phases and electrical polariza-
tion

To understand geometrical phases in our models, we charac-
terized the phases in the k-space, and we provided a specific
procedure to determine it in real space based on the calcula-
tion of electric polarization in periodic systems introduced by
Resta [33].

The Hamiltonian in real space can reduce to a2×2 matrix
in k-space asH =

∑
k ψ†kH(k)ψk, whereψk = (ak, bk)T

are the Nambu spinor. For the extended Hamiltonian we get,

H(k) =
(

0 v + we−ik + zeik

v + weik + ze−ik 0

)
, (2)

which can be rewritten in terms of Pauli matrices asH(k) =
h(k)·σ, whereh(k) = (v+(w+z) cos k, (w−z) sin k, 0) is
a vector in the planehx − hy that maps an ellipsoid centered
onv. Also, in the complex planeh(k) = hx(k) + ihy(k).

The energy in k-space is given byε±k =
±

√
v2 + w2 + z2 + 2v(w + z) cos k + 2wz cos 2k with as-

sociated eigenvectors|u±k 〉 = (1/
√

2)(±e−iφ(k), 1) where
φ(k) = tan−1 (hy/hx). Usingz = 0 the simple SSH case
can be recovered withh(k) = (v + w cos k,w sin k) being

now a circle center inv. Clearly, the energy spectrum is
quiral and therefore we have thatE− = −E+ and also have
the property of chirality of the HamiltonianσzHσz = −H,
or {σz,H}=0 with σ2

z = 1.
The topology of the 1D SSH model is characterized by

the winding number that is related to the Berry phase or geo-
metric phase for an adiabatic system [34]. The winding num-
ber for the extended Hamiltonian can be written as,

ζ =
1

2πi

∫

C

d

dk
ln(h(k))

=
1

2πi

∫

C

d

dk
ln(v + weik + ze−ik), (3)

whereC is the Brillouin zonek ∈ [−π, π]. We get the simple
SSH model settingz = 0 in the integral Eq. (3); therefore, the
winding number has values,

ζ =

{
0, v > w

1, v < w
, (4)

where the topological region (TR) isv > w, the trivial region
v < w and the singularity of the winding number occurs in
v = w.

For the extended SSH modelz 6= 0, we obtain the wind-
ing number,

ζ =





0, v > w + z

1, v < w + z, w > z

−1, v < w + z, w < z

, (5)

where the TR happens inv < w + z and trivial region in
v > w + z.

Forζ = ±1, we have a topological insulator with the sign
related to the direction of the path over the curve. This topo-
logical invariant is related to the Berry phase asγ = πζ and
also with the electrical polarizationP = e(ζ/2).

In the extended SSH model there are two points of TPT
v = w + z andw = z, the first onev = w + z is related to
TPT between trivial and non-trivial regionsζ = 0 → 1 while
w = z is related to TPT between TRζ = ±1 → ∓1.

However, geometrical phases are determined in k-space,
where the system has periodic boundary conditions. There-
fore we need to use another more convenient procedure in
real space where the non-separable property of the bipar-
tite system still remains. For this reason, we calculate the
electrical polarization by the definition of Resta polarization
[33,35],

Pn =
e

2π
Im ln [〈ψn| eiδx̂ |ψn〉], (6)

whereδ = (2π/Na) andx̂ =
∑N

m x̂m =
∑N

m m[|m,A〉 +
|m,B〉], with the charge of electrone and the atomic dis-
tancea in natural unitiese = a = 1 andX̂ = eiδx̂. It fol-
lows that geometrical phase isγn = Im ln [〈ψn| eiδx̂ |ψn〉],
so the electrical polarization,Pn = (e/2π)γn, is pro-
portional to the geometrical phase [36]. The idea in
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this formulation is to consider a new operator of posi-
tion for a composite system with periodic boundary con-
ditions in real space [37]. For the SSH basis wavefunc-
tion we can write the electric polarization [38] asPn =
(1/2π) Im ln [

∑N
m eiδm(|CA

m,n|2 + |CB
m,n|2)].

4. Schmidt Number and entanglement

For the measure of entanglement we use the Schmidt number
[39,40]. It is defined as the metric of entanglement in pure
bipartite systems and can be described by bi-orthonormal
wavefunctions as|ψext,int〉 =

∑k
n=1

√
pn |uext

n , wint
n 〉 [41],

wherek ≤ dim[min(ext,int)] andH = Hext ⊗ Hint, which
allows to characterize the degree of entanglement through the
Schmidt numberK, defined as follows

K =
1∑
i λ2

i

=
1

Tr(ρ2
r)

, (7)

whereρr is the density matrix of the reduced spaceρr =
Trp(ρext,int), such that for non-separable systems it follows
that ρext,int 6= ρext ⊗ ρint with the propertyTr(ρext) =
Tr(ρint) = 1.

The Schmidt number is also defined as the metric of en-
tanglement for the SSH model in the reduced space of the
qubit formed by the two-level system referred to as the type
of atomA or B. The total dimension of the SSH model is
2 ⊗ N with N the number of sites over the chain. By doing
the partial trace, we have that the reduced matrix is a2 × 2
matrix.

We considered that the hoppings are real numbers, there-
fore, the wave function of the eigenstaten is |ψn〉 =∑N

m(CA
m,n |m, A〉+ CB

m,n |m,B〉) = (1/
√

2)(|φA〉 ⊗ |A〉+
|φB〉 ⊗ |B〉), where|φα〉 =

√
2

∑N
m Cα

m,n |m〉. Expressing
|ψn〉 in this form it is clear that has a non-separable basis,
where|φA〉 and|φB〉 are mutually orthogonal.

The Schmidt number can be interpreted from a geometric
point of view when the reduced density matrix represents a
two dimensional system, in this condition the density matrix
defines a Bloch vector of the form〈r〉 = 〈σ〉 = Tr(ρnσ),
whereρn = |ψn〉 〈ψn| is the density matrix of the pure state
|ψn〉 andσ = (σx, σy, σz) are the Pauli matrices. For a qubit
systemρ = (1/2)(I+ r ·σ), using this notation the Schmidt
number can be rewritten as,K = (d/1 + |r|2), whered is
the dimension of the reduced density matrix in qubit system.

Here we considerd = 2, due to the internal dimension of
the basis atom|α〉. The ME is reached whenK = 2, this oc-
curs for Bloch vectors where|r| → 0. On the other hand, the
system becomes separable whenK = 1 such that the Bloch
vector is|r| → 1. The ME states are hybrid Bell states for
the structure of the wavefunction.

The hybrid entanglement is between cell sites and atoms,
and must satisfy the conditions i)〈φA|φA〉 =

∑
m |CA

m|2 =
1/2; ii) 〈φB |φB〉 =

∑
m |CB

m|2 = 1/2; and iii) 〈φA|φB〉 =∑
m(CA

m)∗CB
m = 0. Using this basis we can write Schmidt

number as,Kn = [(
∑

m |CA
m,n|2)2 + (

∑
m |CB

m,n|2)2 +
2(

∑
m CA

m,nCB
m,n)2]−1.

The normalization forψ leads to the obvious condition
for the coefficients

∑
m,n |Cmn|2 = 1, which shows that

each squared coefficient can be interpreted as a weight (prob-
ability). The average probability|Cmn|2 is then given by∑

m,n |Cmn|4. The inverse of this is the ‘number’ of effec-
tively non-zero probabilities [42], so a degree of correlation
K is defined in this way,K = 1/

∑
m,n |Cmn|4.

In contrast to some other similar and also ‘natural’ defi-
nitions, K has the following desirable properties: a) it is in-
dependent of the representation of the wavefunction, so that,
for example, K is the same in configuration and momentum
space; b) K is also gauge invariant, which is important for
systems in the presence of electromagnetic (laser) fields; and
c) it obviously achieves its minimum value of 1 for the least
correlated state.

An important case to analyze for entanglement aspects is
the dimerized limit, the bulk in the fully dimerized limits has
flat bands. These consist of even energyE = +1 and odd
energyE = −1 superposition of two sites forming a dimer.
Trivial dimerized case occurs forv = 1 and w = 0, so,
the eigenvalue equation reduces toĤ(|m,A〉 ± |m,B〉) =
±(|m,A〉 ± |m, B〉). The topological dimerized case oc-
curs forv = 0 andw = 1, therefore, the eigenvalue equa-
tion reduces toĤ(|m,B〉 ± |m + 1, A〉) = ±(|m,B〉 ±
|m + 1, A〉). In the topological dimerized limit, the corre-
sponding normalized states areψmax

± = (1/
√

2)[|m, B〉 ±
|m + 1, A〉] and the reduced density matrix is

ρmax
r,± =

1
2
[δm,m′ |B〉 〈B|+ δm+1,m′+1 |A〉 〈A|], (8)

these states has a Schmidt number,

Kmax =
1

Tr[(ρmax± )2]
= 2, (9)

therefore, in the topological dimerized limit, there is an en-
tangled state with a maximum Schmidt number. On the
other hand, trivial dimerized limit have normalized states as
ψmin
± = (1/

√
2)[|m,A〉 ± |m, B〉] and the reduced density

matrix is

ρmin
r,± =

1
2
[δm,m′ |B〉 〈B|+ δm,m′ |A〉 〈A|

± δm,m′ |B〉 〈A| ± δm,m′ |A〉 〈B|], (10)

and the corresponding Schmidt number is

Kmin =
1

Tr[(ρmin± )2]
= 1. (11)

Therefore, in the trivial dimerized limit, the system becomes
disentangled. In both fully dimerized limits, the energy
eigenvalues are independent of the wavenumber,E(k) = 1.
In this so-called flat-band limit, the group velocity is zero,
which again shows that as the chain falls apart to dimers, a
particle input into the bulk will not spread along the chain. In
k-space trivial and topological dimerized limits arêH(k) =
σ̂x andĤ(k) = σ̂x cos k + σ̂y sin k.
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FIGURE 2. a) Energy spectrum in the simple SSH model forN = 40 unit cells, and inter-hoppingw = 0.5 and the second neighbor hopping
z = 0. b) Resta polarization for the quantum state|ψ1〉. c) Schmidt Number as a function of the intra-hopping parameterK(v), with
inter-hoppingw = 0.5. The red vertical line specifies the transition point between the trivial(v < w) and non-trivial(w > v) zones. The
Schmidt number for the bulk quantum states|ψ1〉, |ψ20〉, |ψ50〉 and|ψedge〉 related to one of the edge states is plotted. d) We see that in the
TPT pointv = w the quantum state|ψ1〉 related to the nearest zero energy is ME.

5. Results

5.1. Simple SSHz = 0

For the simple SSH model, two kinds of eigenstates can be
distinguished: i) edge states, in the regionv ≤ w with the
property of zero energy,E = 0; and ii) bulk states, in the
regionw ≤ v, these become exponential and the energy gap
increase (Fig. 2a)). The Resta definition for the electric po-
larization for the nearest states to the edge state|ψ1〉 is shown
in Fig. 2b).

The SSH model has a spectrum of2N eigenvalues
{−EN , ...,−E1,−E0, E0, E1, ..., EN}, where±E0 would
be the edge state in the topological regimen. To get a gen-
eral picture and observe the behavior of each state, we study
the bulk states|ψ1〉, |ψ20〉, |ψ50〉 and one of the edge states
|ψedge〉, for the case withN = 80 unit cells.

We observe that the TPT occurs in the singular point
v = w according to the geometrical phase definition in
Eq. (4). The eigenstateψ1 characterizes the relationship be-
tween the quantum entanglement and topology just in the
TPT.

The Schmidt number as function ofv is plotted in Fig. 2c)
for fixed w = 0.5. The red vertical line indicates the sin-

gularity pointv = w = 0.5, and the curves correspond to
eigenstates|ψedge〉 (black line),|ψ1〉 (blue solid line),|ψ20〉
(blue dashed line) and|ψ50〉 (blue dotted line). In the simple
SSH Hamiltonian case, we see for the quantum states a direct
relation between entanglement and geometrical phases in the
TPTv = w.

The edge state is the most robust in the regionv < w with
a maximal Schmidt numberK = 2. For the state|ψ1〉 in the
singular pointv = w of the winding number have a ME state.
|ψ1〉 is the nearest state to the edge state and has a narrow
peak of a ME state. For the higher energy eigenstates,|ψ20〉
and|ψ50〉, the peak is broadened and shifted to small values
for v. The casev = 0 calculated in Eq. (9) which is the
topological dimerized limit presents ME.

In Fig. 2d) it is shown the entanglement diagram of eigen-
state|ψ1〉 as a function ofv andw. The state|ψ1〉 for all the
values that satisfy the critical point conditionv = w has max-
imum Schmidt number and has a peak with a small width.
Away from this region, the system becomes disentangled.

Therefore,|ψ1〉 is maximally localized asδ(v−w). In the
regionv = w, the Schmidt number is ME, but an increment
in hoppingsv andw produces that the localization of wave-
function starts to broaden; however, it is always centered in
v = w as a Gaussian distribution.

Rev. Mex. Fis.68031404
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FIGURE 3. a) Energy spectrum in the extended SSH model as function ofv for N = 40 unit cells andw = 0.5 andz = 0.3. b) Resta
polarization for the quantum state|ψ1〉. Schmidt number in extended SSH as function ofz for N = 300 unit cell, for |ψ1〉 with c) v = 0.3,
w = 0.5 and d)v = 0.5, w = 0.3, and for|ψ20〉 with e)v = 0.3, w = 0.5 and f)v = 0.5, w = 0.3.

5.2. Extended SSHz 6= 0

For the extended SSH model, the energy spectrum is similar
to the simple case; however, edge states appear in the region
v < w + z (Fig. 3a)).

The Fig. 3b) shows the electric polarization for the near-
est states to the edge state|ψ1〉, non-trivial geometrical phase
occurs in the regionv < w + z. From Eq. (5), this has three
distinct values for the geometrical phase. Forζ = 0 is a triv-
ial insulator and therefore the electric polarizationP1 = 0,
while, for the topological casesζ = ±1 hasP1 = ±e/2.

In Fig. 3c) for |ψ1〉, the Schmidt number has a TPT
ζ = 1 → −1 whenw = z for v = 0.3 andw = 0.5. Also
the Schmidt number as function ofz is characterized by the
instantaneous lost of the ME. It is important to remark that

in the regionw > z (red) the Schmidt number reaches ME
K1 = 2 whenv < w + z, and in the regionw < z (blue) ME
states are always present.

On the other hand, in Fig. 3d) forv = 0.5 andw = 0.3,
three regions can be distinguished. The regionv > w + z
(green) hasζ = 0 andK1 = 1, therefore, the state is separa-
ble. Forv < w + z andw > z (red),ζ = 1 and|ψ1〉 tends
to a ME. In the regionv < w + z andw < z (blue)ζ = −1
also has a ME behavior.

Note that the TPT pointsv = w + z andw = z repre-
sent a different kind of degeneracy. This difference is visible
looking at the Schmidt number. The pointv = w + z is
an ME singularity, and the state tends to reach hybrid Bell
state, whilew = z is a disentanglement point, and the system
becomes separable. For higher energy states like|ψ20〉,

Rev. Mex. Fis.68031404



6 L. A. NAVARRO-LABASTIDA, F. A. DOMÍNGUEZ-SERNA AND F. ROJAS

FIGURE 4. Schmidt number and electric polarization diagrams in the extended SSH model as function ofw andz for v = 0.4 andN = 300

unit cells. For|ψ1〉 a)K1(w/v, z/v) and b)P1(w/v, z/v). For |ψ20〉 c) K20(w/v, z/v) and d)P20(w/v, z/v).

Schmidt number has more energy fluctuations in both topo-
logical phasesζ = ±1 (Fig. 4e)-f)), therefore, topological
protection does not prevent quantum fluctuations in higher
energy levels. Note however that|ψ20〉 also characterizes the
critical pointsv = w + z andw = z.

To obtain a general picture of the whole parameters space
influencing on entanglement for the extended SSH model,
the diagram of the electric polarizationP (w/v, z/v) and
the Schmidt numberK(w/v, z/v) with an intra-hopping of
v = 0.4 are shown in Figs. 4a)-d).

For |ψ1〉, the presence of topological phases indicates
states with ME; however, note that not the entire region
v < w + z presents states with ME. The Schmidt number
presents disentangled states inw = z and entangled states in
v = w + z just in singularities of the winding number, which
are also related to the transition feature of the topological in-
sulator and with the broken chiral symmetry. Forz/v < 1
there is a trivial electric polarizationP1 = 0 while z/v > 1
has a non-trivial electric polarizationP1 = −1/2.

Whenz = 0, we recover the simple SSH model, and the
critical transition point remains forw = v. The entanglement
behavior for both topological phasesζ = ±1 is the same, and
between them there is a singular behavior that generates dis-
entanglement. For the eigenstate,|ψ20〉, the singularities of
winding number are still preserved.

6. Conclusions

We studied the one-dimensional Su-Schrieffer-Heeger(SSH)
topological insulator with first and second neighbor-
hoppings. In the simple SSH model, the TPTv = w has
states with MEK → 2 that satisfy hybrid Bell conditions.
The topological regionv < w always presents ME states,
and the trivial region becomes disentangledK → 1.

The extended SSH model with second neighbor hopping
interactionz 6= 0 generates more ME states. The states with
ME are contained in the topological regionv < w + z ac-
cording to the winding numbersζ = ±1.

In general, the Schmidt number is a good metric of bi-
partite entanglement that characterizes TPT and regions with
ME. The chiral Hamiltonian for the SSH model presents a ro-
bust relationship between TPT and states with ME. More im-
portantly, the Schmidt number as a metric of entangled allows
us to characterize the winding number as a topological invari-
ant in the SSH model. There is a strong relationship between
the Schmidt number and localization of the wavefunction be-
cause in the TPT both quantities have a local maximum.

A new paradigm towards understanding the behavior of
these topological material’s properties opens the possibility
to explore the hybrid nature of entangled states, as well as
their potential application in quantum information process-
ing. We only considered the effects mediated by hopping in

Rev. Mex. Fis.68031404



TOPOLOGICAL PHASES AND ENTANGLEMENT IN REAL SPACE FOR 1D SSH TOPOLOGICAL. . . 7

a tight-binding model but would be desirable to study entan-
glement and topological phases for systems with more variety

of interactions, couplings, long-range interaction, and spatial
dimensions.
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10. X.-L. Lü, and H. Xie, Topological phases and pumps in the
su-schrieffer-heeger model periodically modulated in time,J.
Phys.: Condens. Matter31 (2019) 495401.https://doi.
org/10.1088/1361-648X/ab3d72 .

11. P. Roman-Taboada and G. G. Naumis, Spectral butter-
fly and electronic localization in rippled-graphene nanorib6
bons: Mapping onto effective one-dimensional chains,Phys.
Rev. B92 (2015) 035406.https://doi.org/10.1103/
PhysRevB.92.035406 .

12. J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,
Generic new platform for topological quantum computation us-
ing semiconductor heterostructures,Phys. Rev. Lett.104(2010)
040502.https://doi.org/10.1103/PhysRevLett.
104.040502 .

13. G. G. Naumis, L. A. Navarro-Labastida, E. Aguilar- Méndez,
and A. Espinosa-Champo, Reduction of the twisted bilayer
graphene chiral hamiltonian into a 2× 2 matrix operator
and physical origin of flat bands at magic angles,Phys.
Rev. B103(2021) 245418.https://doi.org/10.1103/
PhysRevB.103.245418 .

14. Y.-X. Chen and S.-W. Li, Quantum correlations in topo-
logical quantum phase transitions,Phys. Rev. A81 (2010)
032120.https://doi.org/10.1103/PhysRevA.81.
032120 .

15. P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Measur-
ing multipartite entanglement through dynamic susceptibili-
ties, Nature Physics12 (2016) 782.https://doi.org/
10.1038/nphys3700 .

16. D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on elec-
tronic properties,Rev. Mod. Phys.82 (2010) 1959.https:
//doi.org/10.1103/RevModPhys.82.1959 .

17. J. Li, T. Yu, H.-Q. Lin, and J. Q. You, Probing the nonlocality of
majorana fermions via quantum correlations,Nature Scientific
Reports408 (2014) 4930.https://doi.org/10.1038/
srep04930 .

18. T. Yu and J. H. Eberly, Quantum open system theory: Bi-
partite aspects,Phys. Rev. Lett.97 (2006) 140403.https:
//doi.org/10.1103/PhysRevLett.97.140403 .

19. S.-P. Zeng, H.-L. Shi, X. Zhou, X.-H. Wang, S.-Y. Liu, and
M.-L. Hu, Protecting quantum correlations of the xxz model
by topological boundary conditions,Nature Scientific Re-
ports 1083 (2019) 2389.https://doi.org/10.1038/
s41598-018-37474-x .

20. J. Cho and K. W. Kim, Quantum phase transition and en-
tanglement in topological quantum wires,Nature Scientific
Reports 7 (2017) 2745.https://doi.org/10.1038/
s41598-017-02717-w .

21. K. Morita, S. Sota, and T. Tohyama, Magnetic phase di-
agrams of the spin-1=2 Heisenberg model on a kagome-
strip chain: Emergence of a Haldane phase,Phys. Rev
B 104 (2021) 224417, https://doi.org/10.1103/
PhysRevB.104.224417 .

22. D. C. Brody and L. P. Hughston, Geometric quantum mechan-
ics, J. Geometry and Physics38 (2001) 19.https://doi.
org/10.1016/S0393-0440(00)00052-8 .

23. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement,Rev. Mod. Phys.81 (2009) 865.
https://doi.org/10.1103/RevModPhys.81.865 .

24. S. Valerio,et al., The security of practical quantum key dis-
tribution, Rev. Mod. Phys.81 (2009) 1301.https://doi.
org/10.1103/RevModPhys.81.1301 .

25. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger,
and M. Zukowski, Multiphoton entanglement and interferom-
etry, Rev. Mod. Phys.84 (2012) 177.https://doi.org/
10.1103/RevModPhys.84.777 .

Rev. Mex. Fis.68031404

https://doi.org/10.1103/RevModPhys.82.3045�
https://doi.org/10.1103/RevModPhys.82.3045�
https://doi.org/10.1103/RevModPhys.83.1057�
https://doi.org/10.1103/RevModPhys.83.1057�
https://doi.org/10.1103/ PhysRevB.103.014407�
https://doi.org/10.1103/ PhysRevB.103.014407�
https://doi.org/10.1103/PhysRevB.98.035132�
https://doi.org/10.1103/PhysRevB.98.035132�
https://doi.org/10.1038/nphys2835�
https://doi.org/10.1038/nphys2835�
https://doi.org/10.1103/PhysRevB.89.241404�
https://doi.org/10.1103/PhysRevB.89.241404�
https://doi.org/10.1103/PhysRevB.94.155150�
https://doi.org/10.1103/PhysRevB.94.155150�
https://doi.org/10.3390/app10103425�
https://doi.org/10.3390/app10103425�
https://doi.org/10.1103/RevModPhys.81.109�
https://doi.org/10.1103/RevModPhys.81.109�
https://doi.org/10.1088/1361-648X/ab3d72�
https://doi.org/10.1088/1361-648X/ab3d72�
https://doi.org/10.1103/PhysRevB.92.035406�
https://doi.org/10.1103/PhysRevB.92.035406�
https://doi.org/10.1103/PhysRevLett.104.040502�
https://doi.org/10.1103/PhysRevLett.104.040502�
https://doi.org/10.1103/PhysRevB.103.245418�
https://doi.org/10.1103/PhysRevB.103.245418�
https://doi.org/10.1103/PhysRevA.81.032120�
https://doi.org/10.1103/PhysRevA.81.032120�
https://doi.org/10.1038/nphys3700�
https://doi.org/10.1038/nphys3700�
https://doi.org/10.1103/RevModPhys.82.1959�
https://doi.org/10.1103/RevModPhys.82.1959�
https://doi.org/10.1038/srep04930�
https://doi.org/10.1038/srep04930�
https://doi.org/10.1103/PhysRevLett.97.140403�
https://doi.org/10.1103/PhysRevLett.97.140403�
https://doi.org/10.1038/s41598-018-37474-x�
https://doi.org/10.1038/s41598-018-37474-x�
https://doi.org/10.1038/s41598-017-02717-w�
https://doi.org/10.1038/s41598-017-02717-w�
https://doi.org/10.1103/PhysRevB.104.224417�
https://doi.org/10.1103/PhysRevB.104.224417�
https://doi.org/10.1016/S0393-0440(00)00052-8�
https://doi.org/10.1016/S0393-0440(00)00052-8�
https://doi.org/10.1103/RevModPhys.81.865�
https://doi.org/10.1103/RevModPhys.81.1301�
https://doi.org/10.1103/RevModPhys.81.1301�
https://doi.org/10.1103/RevModPhys.84.777�
https://doi.org/10.1103/RevModPhys.84.777�


8 L. A. NAVARRO-LABASTIDA, F. A. DOMÍNGUEZ-SERNA AND F. ROJAS
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