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topological insulator: effects of first and second neighbor-hoppings
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The hybrid atoms-cell site entanglement in a one-dimensional Su-Schrieffer-Heeger (SSH) topological insulator with first and second neigh-
bor hopping in space representation of finite chains is analyzed. The geometrical phase is calculated by the Resta electric polarization an
the entanglement in the atomic basis by the Schmidt number. A relation between entanglement and the topological phase transitions (TPT
is given since the Schmidt number has local critical points of maximal entangled (ME) states in the singularities of the geometrical phase.
States with second-neighbors have higher entanglement than first-neighbors hopping. The general conditions to produce ME hybrid Bell
states and the localization-entanglement relation are given.
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1. Introduction There are several experimental setups [27-31], that have

been used to study some properties as anomalous transport,
Topological systems promise to be materials with variougjecoherence times, and thermal capacity. More recently, pho-
implementations [1,2] in condensed matter physics. Thesgynjic systems and detection of topological states in light-
materials gained interest in recent years due to their pecinatter devices have been broadly studied [32] as crystal pho-
liar properties like efficient transport in electronic hetero-tgnic systems promise to have robust transport due to the
structures [3], high thermal conductivity [4], favorable me- presence of these protected gapless states [33].

chanical properties under strains [5,6], minimization of ther- In the SSH model, modulation of the hoppings generates
mal noise [7], and decoherence effects in open systems [8]. . X r )
a phase transition between a metal-insulator behavior due to

_The property of topologlcgl robustness protects these m he Piers instability of the hopping deformation. In this work,
terials from quantum fluctuations or defects in the system [9 e present a characterization of the TPT via the Schmidt

and presents protected states, also known as zero-mode Hlimber metric [33,34] as a measure of entanglement in the
ergy states [2].

. ... simple [35,36] and extended [37] SSH models. Also, the re-
There are already some works that mention peculiaritie

Yation entanglement-localization and topology are discussed.
of these types of materials [2,8,10-13], and in general, due I g zal pology ISeu

to the robustness of these materials, there are more quan-
tum correlations which allow a greater degree of efficiency

in electronic transport [14,15] related with the appearance 06 1D SSH topological insulator
flat bands. Therefore, topological materials are expected to

be suitable for quantum information processing [12,16-18]. The system of study is the SSH Hamiltonian [32], which is

One of the topics in quantum information theory is the . - : . . ;
: ) - a tight-binding model of a wire with alternating single and
study of entanglement and quantum correlations involved in . : ) o
. double hopping (Fig. 1). The basis of the wire is constructed
condensed matter systems [19-21]. The origin of the rela;
. . ; : by a cell of two types of atoms A and B.
tionship between quantum correlation metrics and geometric

phases comes from the Fubini-Study geometrical quantum The Hamiltonian in real space can be written as,
tensor of the complex projective space in the projective ge-

ometry of Hilbert space [22]. The connection between topo- . . N

logical materials in condensed matter physics and manipu-  He = Hs + ZZ(W +1) (m| ® |B) (A[ + h.c.)
lating qubits with entanglement properties in quantum infor- m

mation theory [23] opens a new research area to create new . N

technology, like topological quantum computing, cryptogra- =H,+z2 Z(|m +1) (m|®6_ + h.c.), 1)
phy, and quantum security [24-26]. m
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now a circle center inv. Clearly, the energy spectrum is
quiral and therefore we have that = —FE_ and also have
the property of chirality of the Hamiltoniam, Ho, = —H,
or{o,, H}=0 witho? = 1.

The topology of the 1D SSH model is characterized by
FIGURE 1. Extended SSH model. Topological wire, with intra the winding number that is related to the Berry phase or geo-
v (black lines) and interv (orange lines) hopping and an addi- metric phase for an adiabatic system [34]. The winding num-

tional second neighborhood hoppiadgreen lines). The index: ber for the extended Hamiltonian can be written as,
(dashed lines) indicates the cell number and atoms A (Red) and B

(Blue), with N = 6 unit cells. 1 d

¢= i . %l"(h(k))

Whjsre z is the second neighbor hopping and, = 1 d

> om(vm) (m|®|A) (B|+w|m + 1) (m|®|A) (B|)+h.c. = =—— | —In(v+we* + ze7%*), (3)
0N m) (] © 6+ w N (jm+ 1) m| @ &4 + huc) is 2mt Jo dk

the simple SSH Hamiltonian wherg with i = z,y,z are  whereC is the Brillouin zoné: € [, ]. We get the simple
the Pauli matrices withv, = (6, +1i6,/2) and6_ =  SSHmodel setting = 0 in the integral Eq. (3); therefore, the
(6 —i0,/2). Herev andw represent intra-cell and inter- winding number has values,

cell hopping in 1D wire,|m) is the index of the cell num-

ber,|A) and|B) are the occupation type atom in a cell. This ¢= 0, v>w 4)
model defines the basic form for the bipartite systerhofV 1, v<w’
dimension.

The eigenfunctions can be expanded as a superposition $fhere the topological region (TR)is> w, the trivial region
the composite statep, a) = |[m) ® |a) € Hex® Hin, here v < w and the singularity of the winding number occurs in
Hext — |m) is the external dimension or degree of freedom? = w.
related to the position over the chain, whitky — |a) rep- ~ Forthe extended SSH model~ 0, we obtain the wind-
resent the internal degree of freedom witke (A, B) related  ing number,
to the type of atom.

The eigensolution of the Hamiltonian EAQ)( H |¢,,) =
E, |1,) can be expressed as a combination of the composite (=41 v<w+zw>z, ®)
state/1,) = S0 (CA L, Im, A) + CE | |m, B)), whereC, ~1, v<wtz,w< 2
are the amplitude of probability of the particle to be in cell
|m) and atom«).

0, vV>w+ 2

where the TR happens in < w + z and trivial region in
v>w+ 2.
For{ = +1, we have a topological insulator with the sign
3. Geometrical phases and electrical polariza- related to the direction of the path over the curve. This topo-
tion logical invariant is related to the Berry phasejas- ¢ and
also with the electrical polarizatioR = e(¢/2).
To understand geometrical phases in our models, we charac- |n the extended SSH model there are two points of TPT
terized the phases in the k-space, and we provided a specific— 4 + » andw = z, the first onev = w -+ z is related to
procedure to determine it in real space based on the calculgpT petween trivial and non-trivial regiods= 0 — 1 while
tion of electric polarization in periodic systems introduced by,;, — » is related to TPT between TR= +1 — F1.
Resta [33]. However, geometrical phases are determined in k-space,
The Hamiltonian in real space can reduce fo@ matrix  where the system has periodic boundary conditions. There-
in k-space asgi = P H (k)r, whereyy, = (ay, by)T i '
p > U H (K)o, U = (ak, bk) fore we need to use another more convenient procedure in
are the Nambu Spinor. For the extended Hamiltonian we getr,'ea| space where the non_separab|e property of the bipar-

0 v+ we—ik 4 ik tite system still remains. For this reason, we calculate the
H(k)= (v + wek 4 ze—ik 0 ) , (2) electrical polarization by the definition of Resta polarization
[33,35],

which can be rewritten in terms of Pauli matricestégc) = e .

h(k)-o,whereh(k) = (v+(w+z) cosk, (w—2z) sink, 0) is P, = %Im In [ | €07 [h)], (6)

a vector in the plané, — h, that maps an ellipsoid centered

onw. Also, in the complex plang(k) = h, (k) + ihy, (k). whered = (2r/Na) andi = Ez Tm = Ez m[lm, A) +

The energy in k-space is given bye,iE = |m, B)], with the charge of electroa and the atomic dis-

+1/v2 + w2 + 22 + 2v(w + z) cos k + 2wz cos 2k with as-  tancea in natural unities: = a = 1 and X = %, It fol-
sociated eigenvectoriss) = (1/v/2)(xe @) 1) where lows that geometrical phaseds = I'mIn [(1),| €% [¢),)],
#(k) = tan™* (hy/hs). Usingz = 0 the simple SSH case so the electrical polarizationP,, = (e/27)v,, is pro-
can be recovered with(k) = (v + wcosk,wsink) being  portional to the geometrical phase [36]. The idea in
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this formulation is to consider a new operator of posi- The normalization for) leads to the obvious condition
tion for a composite system with periodic boundary con-for the coefficientsy" . |C..,|> = 1, which shows that
ditions in real space [37]. For the SSH basis wavefunceach squared coefficient can be interpreted as a weight (prob-
tion we can write the electric polarization [38] d3%, = ability). The average probabilityC,,,|? is then given by
(1/27) ImIn [N e0m(|CA 12+ |CB  12)]. > n |Cmnl®. The inverse of this is the ‘number’ of effec-

' ' tively non-zero probabilities [42], so a degree of correlation
K is defined in thiswayK =1/, |Cynn|?.

In contrast to some other similar and also ‘natural’ defi-
For the measure of entanglement we use the Schmidt numbgftions, K has the following desirable properties: a) it is in-
[39,40]. It is defined as the metric of entanglement in puredependent of the representation of the wavefunction, so that,
bipartite systems and can be described by bi-orthonormdPr €xample, K is the same in configuration and momentum
wavefunctions agy®tiny — ZZ:I VP [uSt wiM) [41],  Space; b) K is also gauge invariant, which is important for
wherek < dim[min(ext,in)] andH = H®' @ K™, which ~ Systems in the presence of electromagnetic (laser) fields; and
allows to characterize the degree of entanglement through tHa it obviously achieves its minimum value of 1 for the least

Schmidt number, defined as follows correlated state. .
An important case to analyze for entanglement aspects is

4. Schmidt Number and entanglement

= #)\2 = T%’ (7)  the dimerized limit, the bulk in the fully dimerized limits has
2N r(pr) flat bands. These consist of even enefgy= +1 and odd

where p,. is the density matrix of the reduced spage = energyFE = —1 superposition of two sites forming a dimer.
Try(p®4"), such that for non-separable systems it followsTrivial dimerized case occurs far = 1 andw = 0, so,
that p&tint £ pet @ pint with the propertyTr(p™) =  the eigenvalue equation reducesHd|m, A) + |m, B)) =

Tr(p™) = 1. +(|m, A) £ |m, B)). The topological dimerized case oc-

The Schmidt number is also defined as the metric of eneurs forv = 0 andw = 1, therefore, the eigenvalue equa-
tanglement for the SSH model in the reduced space of théon reduces toH (|m, B) &+ |m +1,A4)) = +(|m,B) +
qubit formed by the two-level system referred to as the typdm + 1, A)). In the topological dimerized limit, the corre-
of atom A or B. The total dimension of the SSH model is sponding normalized states afg>* = (1/v/2)[|m, B) +
2 ® N with N the number of sites over the chain. By doing |m + 1, A)] and the reduced density matrix is
the partial trace, we have that the reduced matrix 2sxa2

matrix. | P = 2 G 1BY (B4 b a1 [4) (AT, (®)
We considered that the hoppings are real numbers, there-

fore, the wave function of the eigenstateis |¢,) = these states has a Schmidt number,

S (Cit o Im, A+ CE L m, B)) = (1/V2)(1¢%) ©]4) + .

167) ® |B)), where|¢p®) = V23 C¢, . |m). Expressing KM = T 2, 9)

|¢,,) in this form it is clear that has a non-separable basis, Pz

where|¢*) and|¢”) are mutually orthogonal. therefore, in the topological dimerized limit, there is an en-

The Schmidt number can be interpreted from a geometrigangled state with a maximum Schmidt number. On the
point of view when the reduced density matrix represents ather hand, trivial dimerized limit have normalized states as

two dimensional system, in this condition the density matrixz/,ilin = (1/v/2)[|m, A) + |m, B)] and the reduced density
defines a Bloch vector of the forfr) = (o) = Tr(pn0), matrix is
wherep,, = |[¢,,) (¢, is the density matrix of the pure state

|¢,) ando = (0,, 04, 0,) are the Pauli matrices. For a qubit P = l[ém’m, |B) (B| + 6m,m’ |4) (A
systemp = (1/2)(I+ 7 - o), using this notation the Schmidt 2
number can be rewritten a& = (d/1 + |r|?), whered is + 6mme |B) (Al £ 8pme |A) (B] (10)

the dimension of the reduced density matrix in qubit system. . ) i
Here we consided = 2, due to the internal dimension of and the corresponding Schmidt number is
the basis aton). The ME is reached wheR = 2, this oc- , 1
curs for Bloch vectors wherie| — 0. On the other hand, the KM= TriEE L. (11)
system becomes separable whén= 1 such that the Bloch +
vector is|r| — 1. The ME states are hybrid Bell states for Therefore, in the trivial dimerized limit, the system becomes

the structure of the wavefunction. disentangled. In both fully dimerized limits, the energy
The hybrid entanglement is between cell sites and atomsigenvalues are independent of the wavenumbék) = 1.

and must satisfy the conditions@@4|¢?) = >, |C2|? = In this so-called flat-band limit, the group velocity is zero,

1/2;i0) (#B|pB) =3, |CB|? = 1/2; andiii) (¢“|¢®) =  which again shows that as the chain falls apart to dimers, a

>, (CA)*CEB = 0. Using this basis we can write Schmidt particle input into the bulk will not spread along the chain. In
number as,K,, = [(3_,,1Ch .1?)? + (X2, [C5 .1*)> +  k-space trivial and topological dimerized limits atE(k) =
203, CA CB 2L 6y andH (k) = 6, cosk + 6, sin k.

m ~m,n~m,n
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FIGURE 2. a) Energy spectrum in the simple SSH modelfo= 40 unit cells, and inter-hopping = 0.5 and the second neighbor hopping
z = 0. b) Resta polarization for the quantum state). c) Schmidt Number as a function of the intra-hopping paramkter), with
inter-hoppingw = 0.5. The red vertical line specifies the transition point between the trjviat w) and non-trivial(w > v) zones. The

Schmidt number for the bulk quantum stafes), [120), [¥s0) and|¢eqq.) related to one of the edge states is plotted. d) We see that in the
TPT pointv = w the quantum statk), ) related to the nearest zero energy is ME.

5. Results gularity pointv = w = 0.5, and the curves correspond to
eigenstates).qq4.) (black line),|11) (blue solid line),|v90)
(blue dashed line) anids,) (blue dotted line). In the simple
SSH Hamiltonian case, we see for the quantum states a direct
For the simple SSH model, two kinds of eigenstates can bee|ation between entanglement and geometrical phases in the
distinguished: i) edge states, in the regior< w with the  TPTy = w.
property of zero energyiz = 0; and ii) bulk states, in the The edge state is the most robust in the regienw with
regionw < v, these become exponential and the energy gag maximal Schmidt numbek = 2. For the statéy); ) in the
increase (Flg 23.)) The Resta definition for the electric pO'Singu|ar pointv = w of the W|nd|ng number have a ME state.
larization for the nearest states to the edge $tateis shown ) is the nearest state to the edge state and has a narrow
in Fig. 2b). peak of a ME state. For the higher energy eigenstatgg,

The SSH model has a spectrum 2NV eigenvalues and|is), the peak is broadened and shifted to small values
{-EnN,...,—E1,—Eo, Eo, B, ..., ENn}, Where+Ey would  for v. The cases = 0 calculated in Eq. (9) which is the
be the edge state in the topological regimen. To get a genopological dimerized limit presents ME.
eral picture and observe the behavior of each state, we study |n Fig. 2d) itis shown the entanglement diagram of eigen-
the bulk statelg)), |120), [¢50) and one of the edge states state|y, ) as a function of» andw. The statg, ) for all the
[edge), fOr the case withV = 80 unit cells. values that satisfy the critical point condition= w has max-

We observe that the TPT occurs in the singular poinimum Schmidt number and has a peak with a small width.
v = w according to the geometrical phase definition in Away from this region, the system becomes disentangled.
Eq. (4). The eigenstate, characterizes the relationship be-  Therefore|v, ) is maximally localized a§(v—w). In the
tween the quantum entanglement and topology just in theegionv = w, the Schmidt number is ME, but an increment
TPT. in hoppingsv andw produces that the localization of wave-

The Schmidt number as functionofs plotted in Fig. 2¢c)  function starts to broaden; however, it is always centered in
for fixed w = 0.5. The red vertical line indicates the sin- v = w as a Gaussian distribution.

5.1. Simple SSH: =0

Rev. Mex. Fis68031404
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FIGURE 3. a) Energy spectrum in the extended SSH model as functianfof N = 40 unit cells andw = 0.5 andz = 0.3. b) Resta
polarization for the quantum staft¢; ). Schmidt number in extended SSH as functiorr &r N = 300 unit cell, for |41 ) with ¢) v = 0.3,
w = 0.5 and d)v = 0.5, w = 0.3, and for|20) with €)v = 0.3, w = 0.5 and f)v = 0.5, w = 0.3.

5.2. Extended SSH: # 0 in the regionw > z (red) the Schmidt number reaches ME

K, =2whenv < w+ z, and in the regiomw < z (blue) ME
For the extended SSH model, the energy spectrum is similatates are always present.

to the simple case; however, edge states appear in the region On the other hand, in Fig. 3d) fer= 0.5 andw = 0.3,

v<wz (Fig. 3a)). . o three regions can be distinguished. The region w + =
The Fig. 3b) shows the electric polarization for the near{green) hag = 0 andK; = 1, therefore, the state is separa-

est states to the edge state), non-trivial geometrical phase ble. Forv < w + z andw > z (red),¢ = 1 and|+;) tends

occurs in the region < w + z. From Eq. (5), this has three to a ME. In the region < w + z andw < z (blue)¢ = —1
distinct values for the geometrical phase. Ect 0 is a triv- also has a ME behavior.

ial insulator and therefore the electric polarizatiBn = 0, Note that the TPT points = w + z andw = z repre-
while, for the topological cases= +1 hasP; = +e/2. sent a different kind of degeneracy. This difference is visible
In Fig. 3c) for[yy), the Schmidt number has a TPT looking at the Schmidt number. The point= w + z is
(=1— —1whenw = zforv =0.3andw = 0.5. Also  an ME singularity, and the state tends to reach hybrid Bell
the Schmidt number as function efis characterized by the state, whilew = z is a disentanglement point, and the system
instantaneous lost of the ME. It is important to remark thatbecomes separable. For higher energy states |likg),

Rev. Mex. Fis68031404
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FIGURE 4. Schmidt number and electric polarization diagrams in the extended SSH model as funetian@f for v = 0.4 and N = 300
unit cells. Forjy1) a) K1(w/v, z/v) and b)Pi (w/v, z/v). For|pag) €) Kao(w/v, z/v) and d)Pag(w/v, z/v).

Schmidt number has more energy fluctuations in both topo6. Conclusions

logical phaseg = +1 (Fig. 4e)-f)), therefore, topological

protection does not prevent quantum fluctuations in higheWe studied the one-dimensional Su-Schrieffer-Heeger(SSH)
energy levels. Note however thalty,) also characterizes the topological insulator with first and second neighbor-
critical pointsv = w + z andw = z. hoppings. In the simple SSH model, the TRT= w has

states with MEK — 2 that satisfy hybrid Bell conditions.

To obtain a general picture of the whole parameters spaQFhe topological region < w always presents ME states
influencing on entanglement for the extended SSH model '

the diagram of the electric polarizatioR(w/v, z/v) and and the trivial region becomes d.lsentang!éd—>.1. )
the Schmidt numbek (w /v, z/v) with an intra-hopping of The extended SSH model with second neighbor hopping
v = 0.4 are shown in Figs. 4a)-d). interactionz # 0 generates more ME states. The states with

ME are contained in the topological region< w + z ac-

For [¢1), the presence of topological phases indicatesording to the winding numbers= 1.
states with ME; however, note that not the entire region In general, the Schmidt number is a good metric of bi-
v < w + z presents states with ME. The Schmidt number,ite entanglement that characterizes TPT and regions with
presents disentangled statesun= z and entangled states in \ie_The chiral Hamiltonian for the SSH model presents a ro-
v =w + zjustin singularities of the winding number, which 1, rejationship between TPT and states with ME. More im-
are also relate_d to the transitior_1 feature of the topological inbortantly, the Schmidt number as a metric of entangled allows
sulator and with the broken chiral symmetry. Fgiv < 1 ;51 characterize the winding number as a topological invari-
there is a trivial electric polarizatiof, = 0 while z/v > 1 an¢in the SSH model. There is a strong relationship between
has a non-trivial electric polarizatioh, = —1/2. the Schmidt number and localization of the wavefunction be-

Whenz = 0, we recover the simple SSH model, and thecause in the TPT both quantities have a local maximum.
critical transition point remains far = v. The entanglement A new paradigm towards understanding the behavior of
behavior for both topological phasés= +1 is the same, and these topological material’s properties opens the possibility
between them there is a singular behavior that generates dite explore the hybrid nature of entangled states, as well as
entanglement. For the eigenstalg¢s,), the singularities of their potential application in quantum information process-
winding number are still preserved. ing. We only considered the effects mediated by hopping in

Rev. Mex. Fis68031404
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a tight-binding model but would be desirable to study entan-of interactions, couplings, long-range interaction, and spatial
glement and topological phases for systems with more varietdimensions.
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