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Quasi-point versus point nodes in SfRuQy, the case of a flat tight binding~ sheet
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We perform a numerical study of the unitary regime as a function of disorder concentration in the imaginary part of the elastic scattering
cross-section for the compound28uO; in the flat band non-disperse limit. By using a self-consistent tight binding (TB) method, we
find a couple of families of Wigner probabilistic functions that help to explain macroscopically the distribution between Fermion dressed
quasiparticles and Cooper pairs, and also the position of nodes in the order parametdR@,SiTherefore, we are able to show that a TB
model for the FSy-sheet, numerically shows 4 point nodes in aflatheet limit, or 4 quasi-point nodes for strong dispersjasheet limit

in the reduced phase scattering space (RPS).
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1. Introduction We use the elastic scattering cross-section in our work to
study strontium ruthenate in order to obtain a classical win-

Strontium ruthenate (SRuO,) [1], a ternary body-centered dow [18] to the quantum effects in the unitary limit [41] for
tetragonal crystal with a layered square structure for thehe FS~-sheet, therefore we consider our work important,
ruthenium atoms has a normal state described by a Fermgince this approach was previously not considered to be rel-
liquid model [2], with three FS metallic conduction sheets, evant in this compound, even it was used widely for HTSC
namely thea and 8 (1D), and~ (2D) ones. Moreover, in the past, mainly by Carbotte and collaborators [22]. Addi-
Sr,RUO, belongs to the family of low temperatures uncon- tionally, we use a couple of TB Wigner distribution probabil-
ventional superconductors, withi. ~ 1.5 K, but strongly ities aiming at helping to clarify and to contrast visually the
depending on non-magnetic disorder [3]. Furthermorejgcation of the nodes.
SrRUO; is an unconventional superconductor with triplet  This communication concerts the 2Dsheet of the FS in
pairing and some type of nodes in the order parameter fogr,Ru0Q,. We investigate using a tight binding approach (TB)
each sheet of the FS [4]. In addition, the symmetry of the suf10], the conjecture of nodes position, due to the fact that it
perconducting gap breaks the time reversal symmetry [5-7].continues to be a matter of intense discussions among the sci-

The discovery of several superfluid phases at ultraloventific community, despite it was experimentally discovered
temperatures in the liquid isotopéle in 1972 by Lee, Os- 27 years ago [11-17] and references there in.
hero and Richardson was an initial point of remarkable inves-  As in previous works using a Wigner probabilistic distri-
tigations in unconventional superconductors [8He atoms  butions macroscopic approach [18], in this numerical study,
are naturally fermionic, and thus the formation of Cooperwe use a TB first nearest neighbor expression for the disper-
pairs in3He, provides a system similar to bulk superconduc-sion lawé, (ks k) in order to model the FS sheet, which
tors but with some differencesHe is superconducting in a is centered at (0,0) in the first Brillouin zone. We extend
liquid state at ultralow temperatures wilh ~ 2.6 mK, the  our previous phenomenological works [119-20] by varying
order parameter (OP) shows an odd momentum k-pairing deand analysing the behavior of one of the TB parametess,
pendence in one of the phases’diie, namely in the A phase  specifically the Fermi enerdy | accordingly to table 1.
with a p-wave spin triplet broken state with jumps observed  Following this idea, we have noticed that by making the
in specific heat in an external magnetic field [9]. Fermi energy TB parametérr| very small in absolute value

In 1994 the discovery of the low temperature unconvenfor the v sheet, we get point nodes (shown in Fig. 2) in the
tional bulk superconductor RuO; has since then attracted MN model instead of quasi-point nodes of Fig. 1. Therefore,
a lot of attention [1] due to the similarities with the A phase the case shown in Fig. 2 corresponds to the half-filling metal-
of the isotop€’He [4]. Strontium (stoichiometry) ruthenate is lic limit with one electron per site, and with almost not dis-
isostructurally similar to the the HTSC compounds but with-persion, the so called flat band limit, and where the ground
out copper. In contrast to the HTSC, it shows triplet odd pair-state of SyRuQ, has the lowesiV states occupied. In this
ing with a p-wave order parameter and k-dependence similatase, superconducting.®uQ is therefore gaplesse., is is
to the OP proposed in phase A of fermioride. A recent a metallic unconventional system, meaning that it can be ex-
review favoring this argumentation is given in [38]. cited above the ground state by any infinitesimal energy/tem-
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TABLE |. TB Parameter and dispersion law values and limits for the quasi-point and point models nodes shéte¢ of SfRuO;.

(t, er, AJ) type of nodes dispersion law limit Figure
(0.4, 0.4, 1.0) (meV) 4 quasi-point nodes strong disperse law Figures 1 &id3|€r|)
(0.4, 0.04, 1.0) (meV) 4 point nodes flat non-disperse law Figures 2 a3 (er|)
3 ", 120 time symmetry broken state in the FSsheet of SfRuQ,

e, AV (kp, k) = Ag d7(Ky ky), With d7(ky, ky) =
[(sin(kxa) + i sin(kya)]z and Aj = 1.0 meV, according

21 to experimental measurements in impurity samples [3].
£=0 The nine points where the order paramedé(ky, k)
11 has zeros are sketched in both, Figs. 1 and 2. From nine OP
_ zeros only 4 points, symmetrically distributed in 19} and
© : A=§) {01} planes ak-points(0, £7) and (£, 0) give symmetric
Q 071 L point nodes, according to group theoretical considerations,
' whener << 1 and whent| > |er|. The other five points in
-1 Fig. 1, do not touch the sheet, i.e., the 4 points symmetri-

cally distributed in the 11} planes ak-points(+x, =) and
1 point in the{00} plane at:-point (0,0).
=21 As noticed firstly in [16] and also by us in [19-20], the
gap on they sheet is very anisotropic and leaves a tiny gap
A} around four points(0, =) and(+, 0), but now we state
'3_3 ) 1 0 1 > 3 that when|t| > |er| there is not such a gap. According to
K a group theory considerations, in this case as in the tiny gap
% MN model, the imaginary OP has two components which be-
FIGURE 1. 2D implicit plot of the TB anisotropic Fermj sheet  |ong to the irreducible representatidi,, of the tetragonal
& (kz, ky) = 0 and the triplet superconducting Miyake-Narikiyo point group Dy, [17]. It also corresponds to a triplet odd
tiny gap with the localization of the nine quasi-point nodes where paired statel” (—ky, —ky) = —d”(ky, ky) with the same

d’ (ks ky)l = 0 from the TB values Wit_heﬂ' %f|t|' I:his mOdfl basis functionsin (k,a) andsin(k,a) and Ginzburg-Landau
gives an electronic anisotropic dlsperS|0n aw for the normal Statecoeﬁicients(l, Z) [17'39]

quasiparticles. ) ) .

We ought to emphasize that the difference with our pre-
perature value, and it correspond to a point nodes model adous work [19], consists in using the metallic ground state,
we numerically aim at showing in this work. which is given by decreasing an order of magnitude of the

We also notice, that the quantum mechanics dispersioffermi energy for they sheet, with a new valuer = 0.04
effect is caused by the hopping integral between local ormeV, as can be observed in Fig. 2, giving us a new model
bitals, is the one that makes the energy of thsheet with ~ With natural point nodes, that intercept the gap in 4 points on
values|t| ~ |er| to have quasi-node points, but as it wasthey-sheet, making it gapless, name(9, +7) and (&, 0)
note in Ref. [21] in some casebe., with only first neigh- ~ arriving to a 2D non disperse flatsheet model for SRUG;.
bors hopping there are bands with no dispersion, and these We use a numerical methodology able to control the non-
bands are called flat bands. It is very interesting to noticenagnetic disorder values, proposed by J. Carbotte and E.
that in reference [21], it is state that these compounds do n@chachinger [22],e., we vary first the inverse of the strength
include magnetic elements, such as transition or rare-earfarameter: from 0 to 1 and second, we vary the value of the
elements, but we point out that the element Strontium (Sr) iparameter concentratidn™, from optimal to dilute doping
non-magnetic, therefore is not excluded from their approachin the function in the imaginary part of the scattering cross-

In this research, we set up a new numerical study withsection. The numerical analysis is performed in the reduced
almost non dispersion if, (k,, k), i.e., when|t| > |er|,in  elastic scattering phase-space (RPS), giving us two fami-
contrast with our previously studied [19-20] where we usedies of Wigner distribution macroscopic probabilities. This
[t| = |eF|. methodology resembles an analysis using quantum collision

In other order of ideas, the 2D TB normal state electronictheory with a phase-space scattering space with a Wigner
energy expression in a first neighbor approximation is giverprobabilistic distribution, where those represent a classical
by & (ks, ky) = —ep + 2t [cos(kga) + cos(kya)], which  window to study the quantum world [18]. This numerical
follows electron-hole symmetry. The 2D TB OP expressionapproach agrees with a previous theoretical formalism, such
in a first neighbor approximation, corresponds to the MNas the work developed by I. M. Lifshitz and collaborators on
model [16]. These equations allow the study of the tripletdisordered systems [23].
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3 =0 A= 0 components and its self-consistent form is given as follows
5 (G(k,e)) = G'k,e) + G°(k,e)B(k, ) (G(k,e)). (D)
§=0 In this case, the average represents a sum over all the elec-
14 tronic moment& and for all the pointg locating at each of
the N impurities.
© v A
S 070 & ()= @)
X k,j
=1 The solution to Eq.1), which represents th& F' normal-
ized by the effects of the scattering by non-magnetic impuri-
tiesis
-2
1 —1
G(k = ———-3(k 3
3 (Cs9) = (grgeg ~300) @
-3 = =i KOa 1 i 3 with an undressed normal metalE given by:
X
FIGURE 2. 2D implicit plot of the tight binding anisotropic Fermi GO(k7 €)= - 1 . (4)
~ sheeté, (kz, ky) = 0 and the triplet superconducting Miyake- ie — &k
Narikiyo point nodes half filling state with the localization of the .
nine points whered” (kx,ky) = 0 from the TB values with On the_o'ther hand, th&F in a Supercon(jug:tor fqr a
ler| & (|t|/10). This model gives a flat electronic dispersion law COOPer pair in the presence of a non-magnetic impurity po-
for the normal state quasiparticles. tential is known as the Edwards-Nambu-Gorke¥' [25] and
is defined as
In the following sections, we report first, a theoretical . . . o
derivation of the scattering cross-section formalism, and sec- G(e,K) = Go(e,K) + Go(e,K)T(e)Go(e, K). 5)
ond, a visual numerical analysis of the imaginary part of
the elastic scattering cross-section oaR8r0, at the phe- The symbolA introduced by Y. Nambu above th@&F

nomenological level, using the gapless point nodes model oheans that the superconducting state is described by a two-

Fig. 2 and comparing it, with the quasinodal case previoushyimensional Pauli Matrix basis, since it takes into account the

studied [19-20]. spin space, in addition to the momentum space. Any function
in the spin space can be decomposed in terms of the Pauli ma-

2 Non-maanetic impurity scatterin the trices, and it becomes a scalar for a normal metal [24].
) 9 purity 9, The normalGF' in the superconducting state is given by

Edwards-Nambu-Gorkov formalism the expres§i0|@()(€,k) (We will not use in this work, the

It is known that non-magnetic elastic scattering destroys thfnomalousF(s, k) Green function introduced by L. Gorkov

coherence of the Cooper pairs in unconventional superco zi] t?n:hreftet:]enﬁersngereln, Slncef tgetiagor??l?nu@rre?nr
ductors. The decrease®f is a function of the concentration unction has the ke gap as a function ot temperature,

ofnor-magnetic impuritiesy,,). Thus, the maximum tran- £ 18 1SR T @ SV, 0F RECIES REEn® CoRa
sition temperaturd’, is given for the case when;,,, = 0 thereforeC! i F|)s written as p )
and is denoted a&?. o(&,k)

S. Edwards _in 1961 (see [24] for a summary and origi- A | e60+ kb3 + A(R)6y
nal references) introduced the technique that allowed the use Gole, k) = —5—> 7 - (6)
. . nat ¢ e~ & — [A(K)|
of Feynman diagrams to include the Hamiltonian that would
describe the effect of static impurities in a normal metal, his
model assumes the following physical conditionsTat 0,
the N impurities are equal and independent, they are ran-
domly distributed in the normal metal (however on a macro- T(e) = Us -
scopic scale the metal is homogeneous), and finally, a very
important point, this is a quantum model, since impurities
scatter electrons elastically and there is no loss of energy iwith the impurity potential matrix/y = Uyés. Since we
collisions. want to use a tight binding numerical formalism, it is conve-
A dressed normal metal Green functigiK) is defined nient to define an average where the sums in the dpad#é
as an averaged by non-magnetic impuritieg’, in Fourier  be now averages over the Fermi Surface for each component

The arrayl” has the following general form

-1
&0 — Uo Zéo(&k)] ; Q)
K
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of the GF is described by the Pauli matrices in the following that by assuming e-h symmetry, it is obtained that the com-

way:

> Gole.k) = > (Gh(e,k)b0
k

k

+ Gi(e, k)61 + G (e, k)63). (8)

Studying each component separately we have the follow!

ing relations:

0 = —im £
ijGo<s,k)— NF< 62—IA<k>2>FS’ 9)

S Gh(er k) — —ir Alk)
- GO(Eak) =1 NF< 2 _ |A(k)2>FS’ (10)
and
3 _ Sk
Ek Gi(e, k) = —inNp <52 A >FS. (12)

Integrating over the spade for the energy of the metal

ponentT™(e) = 0, and

. i(mNp)“lg(e) .,
Te="a1mr ™

17)
The self-energy induced by the concentration of impu-
ities nimp is denoted byX(e) = nimpI'(¢), whereI'™ =
nimp/ (™ Nr), and where finally the renormalized self-energy
due to the presence of non-magnetic impurities is given by
t(e) = e+ X(t(e)). (18)
Since we use Planck unit$i = kg = ¢ = 1), then
Eq. (18) can be converted according to the following self-
consistent expression which finally, allow us to have an ex-
pression for the scattering cross-section parameterized as
function ofc andI'* [22]

9(w)

o(w+i0") =w+inal T —22
( ) ERRPSIE

(19)

The first thing to notice is that they represent a classi-

and averaging in our TB model on the Fermi surface, assuneal set of Wigner distribution probabilities, the second issue
ing electron-hole symmetry, we have two important condi-about (9) is that it describes both the Born classical elas-
tions: >, G{(e, k) = 0 for a superconductor in a triplet state tic scattering and also the coherent phase (unitary) limit for
with D4, symmetry, since the order parameter has odd pamwhich ¢ = 0. Thirdly, it should be noted that the real part of
ity A”, = —A]. In addition, the value of", G3(,k) =  the equation represents the enetgy. Fourthly, the imagi-

0 means that in the metallic system there is a symmetri;mary part of Eqg./19) defines the inverse of the quasiparticle
electron-hole physical systeg] = ¢7,, as we pointed out dressed lifetime-—!(w) in a RPS according to the expression
in the introduction. With these two conditions, we rewrip (
with a new function that we call(¢)

> Gole, k) =D Gi(e, k)60 = —i ® N g(c) 60, (12)
k k

T w) =29 [ (w+i0T)]. (20)
Therefore, we have theoretically derived the main equa-
tion for the elastic scattering cross-section formalisin. +
i0™") in the case of non-magnetic disorder, in order to model
low energy self-consistent frequencies in the unitary region
of the reduced scattering phase space, by varying the tight
binding parameters, to obtain several families of the macro-
scopic Wigner probability distributions.
For very large values ob/y, the unitary limit(¢ kg ~
la=t ~1& c=0)inEq. (19 is given by the expression

whereg(e) is given by the equation

(13)

E
o= <¢— - A<k>|2>FS'

Now with this result, we calculate the inverse matrix of

the arrayl’
. 1
T(e) = U6y - [60 + inNpUoos - (9(€)0)] ", (14) &(w+1i0") = w +inl* ok (21)
and, . o e i
The functiong(©) in Eq. (19) is given by
S . =1 |60+ inNpUyg(e)ds]
(60 +inNrUog(e)ds] = 1 — (imNrUog(e))? 4o 9(@) = < : >
to get Vo2 = AR (ke ky) [ g
. Uobs + it NpUs2a(£)6, and the average over thesheet of the FS ...)rg is per-
T(e) = == £l 9(€)50 (16)  formed following an integration over the FS according a nu-

1-— (iWNFU(]g(E))Q

Instead of using the impurity potentiél,, we use the pa-
rameterc inverse to the strengtti,. The parameter which
is defined as: = (7 Nrp Up)~! = cotdy is related to the

merical technique successfully used to fit experimental low
temperatures data with an accidental 3D point nodes TB
model, i.e, the ultrasound attenuation, the electronic heat
transport, and the electronic specific heat igR&rO; [26-

phase shift), of the Cooper pair wave function. Recalling 28]. This kind of approximation is indeed characterized by
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root singularities at the edges of the dependence for the uni- 1.8
tary casej.e., whereg(®) can go to zero within the model,
. O 16r  ¢=0.0 r+=0.05 meV
following Lifshitz disorder system theory [23]. Ph=0.10 mey
_ Born’s_ approximation apphes anc_jaf>> 1(.e Up 1) % 1.4 — [*=0.15 meV
with a disorder renormalized doping paramefef, = = —— [*=0.20 meV
't /c? < 1, with is proportional to the square of the strength = — [+=0.25 meV
potentiallUy, and tonimp. However, as we recently reported + 1.0 = [+=0.30 meV
[20], Born scattering does not play a role in the low tempera- 2 e [*=0.35 meV
ture properties of SRuQ; it has a RPS window ok = 1.0 + 08 —— [*=0.40 meV
meV. At this point we also emphasize, that for the case of the 33 0.6
lines nodes superconductord g Sr, CuQ,, we reported that .§.
this compound can be numerically be in the Born limit with €04
a RPS scattering window ikg = 33.9 meV, for it we found 020
another family of Wigner probabilistic distributions [20,29]. '
On the other hand, the unitary limit has a unique feature 0.0

4 =% =2 =1 @ 1 2 3 &

which is the resonance at zero frequency, thabi€)) = i+, wimeV)

where~ defines the “impurity averaged” zero energy elas-
tic scattering rate [22], and determines the crossover energiicure 3. Evolution of the family of Wigner probabilistic distri-
scale separating several scattering limits (Born, intermediateutions obtained from imaginary part of the scattering cross-section
and unitary). Finally, impurity effects within unitary scat- in the unitary limit, for eight values of non magnetic concentration
tering has been widely investigated in several works [30-36}?‘5“6”“EﬂGITJr (meV) in the RPS for a quasi-point model and the
among other references, but not exactly within the TB macrof MN gap.
scopic Wigner probabilistic distribution approach, we per-

form here. posed only by Cooper paif& (w + i07) = 0 meV), and

the mixed phase with both, Cooper and normal state quasi-
particles for the whole range of energies from 0 to 4 meV
3. The unitary limit for the case of quasinodal  (from pale blue to gray color lines and a maximum region in
points in the FS gamma-sheet of Strontium scattering space shaded gray in Fig. 3 Eng! 0.10 meV).
ruthenate This corresponds to the quasinodal point nodes model as
was previously reported in Refs. [19-20]. We also observe the
In this section, we calculate numerically and visualize theSMooth resonance centered at zero frequency for all values,
behavior of the imaginary part of the elastic scattering crossWith smaller values of residual zero energyor very dilute
section in the unitary limitd = 0) for different values of ~values of disorder™".
the impurities concentration parameiér, starting at very
dilute disorder (turquoise line), to an optimal disorder (gray . L
line) as it was done in our previous publications [19-20] but ™ Th_e unitary limit ]_cor th_e case _Of nodal
with a different purpose, the study of the flaisheet limit. points and a flat dispersion law in the FS
We use the following TB parametetg|, [er|) = (0.4,0.4) gamma-sheet of strontium ruthenate, and
meV given in Table |, where there is anisotropic dispersion the metallic half filling ground TB state.
reflected in the normal state electronic energy that can be seen
in Fig. 1. If ler| ~ (]t|/10), i.e, |ep| < |t|, the unitary regime
The unitary limit means that the dressed normal stateind the family of Wigner distribution functions of Fig. 4,
quasiparticles have an ill-defined momentum between elashow a different behavior from the one studied in the pre-
tic collisions, but the energy is conserved [41]. In addition,vious section. It resembles a gapless node points in uncon-
the signature of the unitary state is the resonance at zero freentional superconductors (also it resembles the line nodes
guency with the parameter = 0, in the imaginary part of points model of higlf,. compounds we previously calculated
the scattering cross-section as can be seen from all Wignéor La,_,.Sr, CuQy in Ref. [29]). This intuitively means that
distribution functions of Fig. 3. the half filling ground state in the unitary limit gives point
If |er| ~ t, as in Fig. 1, the unitary regime in the elastic nodes and a flat dispersion law if the TB parameters are ap-
scattering due to non-magnetic disorder is so strong that theropriately chosen.
mean-free patlf becomes comparable to the inverse Fermi  Therefore, the normal state quasiparticles with a-lat
momentumk;l, and to the lattice parameterand it has two sheet in the unitary region for §RuO,, and with a gapless
macroscopic phases, the tiny gap phdsé & 0.05 meV  behavior have also an ill-defined momentum quasiparticles
- dilute levels of non magnetic disorder, turquoise line andbetween elastic collisions, can be studied using the scattering
region in phase scattering space shaded turquoise in Fig. 8joss-section following the same methodology. The signature
where the energy interval between 0.85 and 1.0 meV is comof the unitary state still corresponds to the resonance at zero
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1.8  oon ey with TB parameters for the dispersion law(k,, k,) given
16F =00 ES— _by ler| = |t| with represents a dispersed quantum mechan-
_ — [20.15 meV ical (QM) electronic behavior, and the case wiith| < |¢|
> 14r —— [*=0.20 meV with a flaty QM sheet behavior.
E 12 — ["=0.25 meV First we found and discuss an interesting feature, the MN
= —— =030 meV tiny gap model at half filling in they sheet disappears, and
£ Lor Lt e converts into a point nodes case in the RPS with) Bym-
+08 [ =040 mev metry, if in the TB first neighbor approximation, we use for
3 an almost flat sheet the parameter valuel = 0.04 meV,
;3 0-6 otherwise islex| = 0.4 meV for quasinodal behavior. In
E 0.4 Figs. 1 and 2 we illustrate and compare the two cases men-
tioned above, using an implicit function scheme for both, the
0.2 dispersion law and gap symmetry equations with the corre-
0.0 sponding TB parameters. In addition in Sec. 2, we briefly in-
- troduced the Edwards-Nambu-Gorkov formalism needed for
w(meV) a TB analysis of the RPS.
FIGURE 4. Evolution of the family of Wigner probabilistic dis- Second, in Fig. 3, we numerically calculate and sketch a

tributions obtained from the imaginary part of the scattering cross-first family of eight Wigner distributions, where the region
section in the unitary limit, for nine values of non magnetic disorder corresponding to optimal levels of disordeg., I't = 0.4
parametef’™ (meV) in the scattering reduced phase space. for ameV, has been shaded gray in the right side of the plot. In
point lines mode with a flat dispersion law and a metallic halffilling 544ition. the regions corresponding to dilute levels of disor-
ground state. der withT'™ = 0.05 meV, has been shaded turquoise in the

frequency in the imaginary part of the scattering cros:s-lreft S'?%Oftthj plot.iI]he(jl\/lllya:;(i—l\:ﬁrtlElyo rt(ljnyrga;: trr:]attc?r- nd
section, as it can be seen from the Wigner distribution prob-eSpO s 10 4 quasi-hoda’ points € order parameter, a

abilities functions, obtained self-consistently in Fig. 4, but ingrgsh'ca”y is showed in Fig. 3 as a turquoise line in the left
this case there is not a tiny gap as in the previous section, as™ " . | . . :

should be, since the superconducting regime is gapless in the 'Th|rd, |'nc§e~c. 4 the_ bfhgwpr of the d.|sordered non mag-
case of point nodes. netic matrIX\y[w](w +¢0%) inside the unitaryd = 0) RPS

. . . .was studied for eight values @f", starting at very diluted
In this case, there is only one macroscopic phase in

Sr,RuO, for both, the dilute levels of non-magnetic disor- disorder, optimal disorder values, and finally an enriched dis-

der composed by Cooper pairs and the normal state quasci)-rd.er concentratioq. In F?g. 4 :[rhe region corresponding to
particles (turquoise line and region in phase scattering spac0 timal Ievelg of d|s<.3rderl..e., = (.)'4 meV, has .b'een'
shaded turquoise in Fig. 4), and where the following iden-> aded gray in the right side of the figure. In addition, in

tity holds: (& [w +i07] # 0) meV, for the whole range of this case the MN tiny gap does not appear in the imaginary

energies from 0 to 4 meV (with a minimum region Shaoleolpart of the scattering cross-sectiom,, it represents the case
turquoise, and maximum region in scattering reduced phas%f the 4 pc_)mt nOdeS with a flat I. Bsheet, which is shaded
I turquoise in Fig. 4 on the left side, and corresponds to the
space shaded gray in Fig. 4. S n
S . oo o turquoise line at valuE T = 0.05 meV.

This is a new class of Wigner probabilistic distributions ) . .

. . . We find according to Fig. 3, that for the case of the MN
family found for S,RuQy in the case of point nodes for the tinv aap. there are two ohases: a phase in the RPS with dob-
~-flat Fermi sheet, and it shows how numerically dependin Y gap, P -ap P

gl . N
on the values of the TB parametegr there can be point nodes qng N Q‘l mey where Fer”?'on drgssed RPS quq&pqrtl
N . . cles are mixed with Cooper pairs. This can be seen in Fig. 3
in this compound as well, and not only a tiny gap family of( ray region). We also found the MN tiny gap phase for
Wigner distribution functions [20]. We wish to point out, that gray region). Yy gap p

i . i ! .
the use of the symmetric point group;Pand the symmetry ™ =0.05 ”.‘eV' in that region only Cooper pairs e.X'St for .

i . . an energy window between 0.85 and 1.0 meV as is seen in
broken state in the case of strontium ruthenate is also su

) F?fig. 3, left side (turquoise line) as noticed previously [20].
ported by recently review works [37-39], and the flat bands Also. we find according to Fig. 4, that for the case point

approach is widely discussed for heavy fermions compounds : ) .
in the monograph [40]. nodes, exists macroscopically only one phase with both,

Cooper pairs and normal state point nodal quasiparticles, re-
flecting a new family of Wigner probabilistic distributions in
5. Conclusions the RPS with doping* > 0.05 meV, for the whole energy
window, i.e., (—4 meV, +4 meV), this can be seen in Fig. 4
This communication was aimed at investigating numerically(turquoise and gray regions). This phase resembles High Tc
the behavior of the non-magnetic disordered imaginary partuprates. In the case, we conclude that there is always a
of the elastic scattering cross-section in the unitary metallieninimum amount of Fermi dressed quasiparticles interacting
limit for two cases in the FS-sheet of SfRUQ,. One case elastically due to a small amount of hon-magnetic disorder
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't = 0.05 meV, the main difference with lines nodes casetalline structures, so far, we have considered 2 of them, re-

[29] is that here A} = 1.0 meV (an smaller RPS window maining several more to be studied.

(—4.0to +4.0 meV [20]) and in the line nodes high case, The existence of a link of our phenomenological TB ap-

A} = 33.9meV (bigger RPS window{33.9t0 +33.9 meV  proach with the quasi-classical approach to the strong cou-

[20,29]) . pling theory in unconventional superconductors proposed in
We end this communication pointing out that the Miyake- Ref. [42] and recently discussed in Ref. [43] could improve

Narikiyo gap expression using a tight binding model is verythe development of the use of Wigner distributions probabil-

useful for setting up numerical studies in triplet superconducities [18,44] in order to study new unconventional supercon-

tors such as SRuQ;,, as we have demonstrated in this andductors with a reduced scattering phase space with dressed

previous studies on the subject [19-20]. This approach useguasiparticles and their quantum DOS states.

a macroscopic Wigner distribution probabilities phenomeno-

logical approach obtained from the analysis of the imaginary

part of the scattering cross-section, helping undoubtedly toAcknowledgements
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