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On the critical behavior of the spin-s ising model
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The spins one dimensional Ising model is studied analytically within the framework of transfer matrix method. Exact results for some
thermodynamical properties such as the internal energy, the entropy, the magnetization and the magnetic susceptibility are obtained fol
general spin-s in the absence (presence) of a magnetic field. The critical behavior of the thermodynamical properties are analysed for som
values of spin-s (1/2, 1 and 3/2) at different temperature and field. The asymptotic behavior of these properties are investigated especially
close to the critical temperatuffe — 0 and wherl” — oo.
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1. Introduction Here, we use the transfer matrix technique to study ana-

_ lytically the critical behavior of the Ising model with arbitrary
During the past several decades, much effort has been dgpin s in the absence and presence of a magnetic field. Al-
voted to investigate the phase transitions and critical pheno””though the critical temperature of the one-dimensional Ising
ena. The various Ising systems, consisting of magnetic spingaodel is7y = 0, it displays non-trivial features in its asymp-
is the simplest systems showing phase transitions and criticgtic critical behavior as the critical point is approached [37-
phenomena at finite temperature. The classical spin-1/2 ON&o]. Our aim will be twofold; first, to study the affect of the
dimensional (1D) Ising model was suggested by Lenz [1]grder of spins on the thermodynamic and the magnetic prop-
The exact solution of the 2D spin-1/2 Ising model in the ab-grties of the model, and second, to investigate the asymptotic
sence of an external field was found by Onsager [2]. To datgyenavior of these properties when the temperafures 0,
the 3D spin-1/2 Ising model remains unsolved exactly, bu§ e close to the critical temperatuf@: and wherl” — oc.
there are approximation solutions were studied using numer- e paper is organized as follows. In Sec. 2, we describe
ical methods like Monto Carlo simulations [3-5]. how the model can be formulated and solved for arbitrary

The spin-1 Ising model (Blume-Capel (BC) model) is spin. Our main results of the internal energy and the entropy
more suitable than spin-1/2 model, so it was used to studyy the absence of a magnetic field are given in Sec. 3. The
the phase transitions occurring in the systems of three statggymptotic behavior of the magnetization and the susceptibil-
[6-8]. The model has been solved exactly on a honeycomby as a function of the temperature and the field is analyzed

lattice [9-14]. The results of the spin-1 Ising model has beenn sec. 4. The paper closes with a short discussion given in
extended to the spin-3/2 Ising model [15-18]. Later, severakgc 5.

works have analysed the critical properties based on the BC
model [19-21].

The quantum Heisenberg model [22,23] is a quantumz- The model
mechanical model analogue to the ising model. It was usecf.

to study the critical properties of magnetic systems, in which 'C |2ind model for otV spins s, i = 1,...., V) with fer-
study 'tical properties gnetic systems, in whi fomagnetic { > 0) coupling between the nearest neighbors

::]:issepr:rtlserar;gg(?ltego?hu%mi?smo??r?glanagi:iﬁmnﬁsli c;]tr;)r?l nd with arbitrary spin is defined in the presence of a mag-
9 ' Y q netic fieldh, by the interaction energy

in its classical counterpart, represents one of the most power-

ful physical models applied to magnetic systems undergoing ) — el — ’

phase transitions [24-27]. E({ei}) ! 21: Ot~ h ZZ: 70 @)
The systems spin-1/2 and spin-1 have been studied ex-

tensively, based on different approaches like mean-field ap¥nereo: € {s,s —1,---,—s 4+ 1,—s} and take2s + 1

proximation (MFA), effective-field theory (EFT), renormal- vglues. As usual, the partition funqt|on qf the Ising model is

ization group (RG) techniques,—expansion series expan- 9ven by the sum over all spin configurations

sions, Monte Carlo simulations [28-31]. However, the trans-

fer matrix method which was developed mainly by Kramers 2(T,h) = Z exp[—BE({oi})], )

and Onsagar [2,32] is the most extended technique due to its los}

wide general use across many physical models [33-36]. Buyhere3 = (k3T")~ (k3 is the Boltzmann constant affdis

there is a lack of works when we take into account models othe absolute temperature).

high order spin values.
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We can solve the model by using the method of Kramers-Wannier transfer method, in which one has to construct transfer-
matrix and obtain the eigenvalues of this matrix. In the periodic case, the transfer matrix takes the form

1
T(0;,0i41) = exp |Koioi41 + iH(Ji +0i41)

6Ks2+Hs 6K5(571)+H(571/2) L. 67K52
6K5(571)+H(571/2) eK(571)2+H(571) L. est(sfl)fH/Q
= : E E : : (3)
67K5(571)+H/2 671((371)2 . eI(s(sfl)fH(sfl/Q)
eff(s2 est(sfl)fH/Z L. 6K527Hs
whereK = 5J andH = (h are the reduced nearest neigh-
bor spin-spin coupling interactions and the reduced magnetic
field, respectively. In this approach, the partition function is
obtained by calculating the trace of the matrix product m(T, H) = — aof _ 1 a)\max’ ®)
2s5+1 0H )\max 0H
N N
Z(T,H) = Te(TN) = > ALY, (4) L) = 2 f _ 0 (1 O ©
j=1 ’ OH? OH \Amax OH /)~

where ), ; denote the eigenvalues of the transfer matrix for

arbitrary spins. As we know, the critical behavior of the In the next section, using the Eq8){(7) we investigate the

model appears in the thermodynamic limit — oo, so the  critical behavior of the internal energy and the entropy for the

bulk free energy is simply given by the largest transfer-matrixcases = 1/2, s = 1 ands = 3/2 in the absence of the mag-

eigenvalue\,ax = max{As 1, As2, + » As 2541} netic field (H = 0). In section 4, we study the behavior of
1 the Eqgs.8)-(9) in the presence of the magnetic field.

f(I H)=—kpT A}gnoo NIHZ(T’ H)=— kgTlnAnax, (5)

In this case all the bulk thermodynamical parameters such - - .
internal energy:, entropy.S, magnetizationn and suscepti- 3. Critical behavior in the absence of the field

bility x can be construct in terms Qf,,...:

5 By direct calculation of the eigenvalues of the transfer matrix,

u(T, H) = —a—ﬁln)\max, (6)  one obtains for = 1/2
0 1 L ik -1K
S(T,H):fa—;::?(u—f), (7) A1ja,; =€ <1j:e ) (10)

| Inthe case of = 1, the eigenvalues are

1
Moz = 56 [1 be K 4 e K L (120K 4 11e72K — 973K 4 6*4")1/2] L s =K1 -e ) 1)

Finally, for s = 3/2, the eigenvalues are given by

1 5
A3/2,5 = 56%{6_%[( +e 2 p (1 +e?F)

s 1/2
+C€—%K [QK 1 43K | K | BK |y 6K 9 TK | 9K _ 2ne§K(1 _ 62K 4 64K)} }’ (12)

where(n, ¢) = (+,4+), (+,-), (—,+),(—, —) for j = 1,2,3, 4. It can be checked by plotting the eigenvalues agdinsitat
)\max = )\5,1-
Using the eigenvalued.()-(12), one easily obtains the following exact expressions

—iJ — (%lnA for s=

=

uw(T,0)=<¢ —J— %IH(B +C) for s=1 | (13)

—4J - &In(D+ E) for 5=

[\GI[9N)
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4. Critical behavior in the presence of the ex-
lnA—ﬁ%lnA for s=1 ternal field

S(T,0)=kp ln%—ﬁ%ln(B +C) for s=1 , (14) The eigenvalue of the transfer matr) (n the presence of
a magnetic field can be obtained analytically for some val-
IHD;E _ﬂa%ln(DJrE) for s:% ues of the spirs. Here, we investigate only the two cases
for order of spin §=1/2 ands=1). The eigenvalues take the

where .
) expressions
A=1+e 2K, B=1+e K 4e2K,
_ -K —2K —3K —4K\1/2 1 H H 1/2
=127+ 11e7% —2e7%% 4 7)Y Arjz =€’ (COSh {2} . {SinhQ {2} i eK] ;
and
D:(1+€—2K+6—3K+8—3K)’ j:1727 (17)
E:e_gK 1_2€2K+463K+64K+65K+466K and
1/2 2 2.
L 9eTR | 9K 98K (1 _ 62K 4 oA)| /\17j:—§+§(a2—3b)1/2008 <9+ 3(]—1)7r> ;
Now, we were able to obtain the asymptotic behavior of the J=12,3, (18)
internal energy and the entropy wh&n— 0 and7" — oo:
—s2J as T —0 where
u(T,0) = , (15)
0 as T — oo. a=—(1+2¢e" cosh(H)),
0 as T —0 K .
b:7[2 h(H (17 )72 th],
S(T,0) = . (16) cosh(H) e sinh(2K)
kpn(2s+1) as T — oo. ¢ = 4sinh(K) — 2sinh(2K),
The changes in the internal energy and the entropy of the 3
. . ) 1 9ab — 2a° — 27¢
model with respect to temperature for different spin (1/2, 1 0 = = arccos | —————7— (19)
3 2(a2 — 3b)3/2

and 3/2) are given in Fig. 1. Results show that the internal en-

ergy converges to the zero at higher temperature values, while
becomes constant2) asT’ — 0. When the temperature in- Using the formula<8)-(9) and 17)-(18) we can calculate the

goes to zero at low temperature. Also, We notice that the in-  In the thermodynamic limifV — oo, we obtain the well-
ternal energy and the entropy are affected by increasing thenown bulk magnetization and susceptibility for the system

order of spins. of spin-1/2 [40]:
- 147 =
F , _

2.0 :— —_— s:; { 120 — SF ; N

r s=1
L s=1 10 3 ]

15 ] r s=—

L 3 . 2 /

. s= 0.8 r / 4

-u
S

04l
05 = o~ 4
[ ] 02+

00 4 00[L.'—

2 r b) r

FIGURE 1. a) Internal energy and b) Entropy as a function of temperature forssgirl /2,1 and3/2 in the absence of magnetic field.
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FIGURE 2. a) Magnetization and b) susceptibility as a function of temperature forssgirl /2 and1 at a magnetic field = 0.5.
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FIGURE 3. The field dependence of a) magnetization and b) susceptibility forsspiri at three values of temperatufe= 1, 3 and5.

is more smooth with the increase of the temperature and be-
— comes a step function in the limit @ — 0 corresponding
m(T, H) = sinh(5) —, (20) toaferromagnetic phase. The susceptibility peaks show that
2 [sinhz(g) + e K] / the maximum ofy (7T, H) is larger for low temperature and
He K diverges atH = 0 asT — 0. We can see by computing the
peosh(5)e (1) susceptibility forH = 0 and lowT’, that
2 [sinh?(4) + e=K]

X(T,H) = 372"

x(H=0,T)a|T-Tc|77, (22)

The exact expressions for the magnetization and the magnetic ) ]

susceptibility for the spii and spin3/2 are very cumber-  Thusy divergence a$ —0 and henge the W?” defined value

some, so we will not bring them out here. For The othery = 1 of the susceptibility exponent is obtained [37].

cases of spiz > 2, it would be very difficult to obtain the

eigenvalues of the transfer matrix analytically. Therefore thes  Conclusions

partition function and the bulk free energy can be calculated

numerically. We have considered the one dimensional Ising model with
The behavior of the magnetization and the magnetic susarbitrary spin in the absence (presence) of a magnetic field.

ceptibility as a function of the temperature for the spir=  The system was solved analytically by the transfer matrix

1/2,1 atfixed fieldh = 0.5 is plotted in Fig. 2. Itis clear that technique. Exact analytical results have obtained for the free

the maximum magnetization value for= 1/2 system i9).5,  energy, the internal energy, the entropy, the magnetization

while the maximum magnetization value for= 1 system and the magnetic susceptibility by computing the maximal

is 1. eigenvalue of the transfer matrix for some values of the order
The field dependence of the magnetization and the magspins.

netic susceptibility is plotted for the spin-1 system in Fig. 3

for some values of’ = 1, 3 and5. We observe that the mag- In the absence of the magnetic field, we have studied the

netization behaviour with the change of the magnetic fieldbehavior of the internal energy and entropy for three values
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of the order spirs (1/2, 1 and 3/2). We have investigated the been analysed as a function of the temperature and the mag-
critical behavior of these properties as a function of tempernetic field and investigated near the critical pdifaf . Our

ature especially whefi® — 0 andT — oo (see IL5),(16)).

results are consistent with the previous results for the one di-

The behavior of the magnetization and the susceptibility hasensional Ising system.
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