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On the critical behavior of the spin-s ising model
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The spin-s one dimensional Ising model is studied analytically within the framework of transfer matrix method. Exact results for some
thermodynamical properties such as the internal energy, the entropy, the magnetization and the magnetic susceptibility are obtained for
general spin-s in the absence (presence) of a magnetic field. The critical behavior of the thermodynamical properties are analysed for some
values of spin-s (1/2, 1 and 3/2) at different temperature and field. The asymptotic behavior of these properties are investigated especially
close to the critical temperatureT → 0 and whenT →∞.
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1. Introduction

During the past several decades, much effort has been de-
voted to investigate the phase transitions and critical phenom-
ena. The various Ising systems, consisting of magnetic spins,
is the simplest systems showing phase transitions and critical
phenomena at finite temperature. The classical spin-1/2 one-
dimensional (1D) Ising model was suggested by Lenz [1].
The exact solution of the 2D spin-1/2 Ising model in the ab-
sence of an external field was found by Onsager [2]. To date,
the 3D spin-1/2 Ising model remains unsolved exactly, but
there are approximation solutions were studied using numer-
ical methods like Monto Carlo simulations [3-5].

The spin-1 Ising model (Blume-Capel (BC) model) is
more suitable than spin-1/2 model, so it was used to study
the phase transitions occurring in the systems of three states
[6-8]. The model has been solved exactly on a honeycomb
lattice [9-14]. The results of the spin-1 Ising model has been
extended to the spin-3/2 Ising model [15-18]. Later, several
works have analysed the critical properties based on the BC
model [19-21].

The quantum Heisenberg model [22, 23] is a quantum
mechanical model analogue to the ising model. It was used
to study the critical properties of magnetic systems, in which
the spins are treated quantum mechanically. The isotropic
Heisenberg model, both in its original quantum version and
in its classical counterpart, represents one of the most power-
ful physical models applied to magnetic systems undergoing
phase transitions [24-27].

The systems spin-1/2 and spin-1 have been studied ex-
tensively, based on different approaches like mean-field ap-
proximation (MFA), effective-field theory (EFT), renormal-
ization group (RG) techniques,ε−expansion series expan-
sions, Monte Carlo simulations [28-31]. However, the trans-
fer matrix method which was developed mainly by Kramers
and Onsagar [2,32] is the most extended technique due to its
wide general use across many physical models [33-36]. But
there is a lack of works when we take into account models of
high order spin values.

Here, we use the transfer matrix technique to study ana-
lytically the critical behavior of the Ising model with arbitrary
spin s in the absence and presence of a magnetic field. Al-
though the critical temperature of the one-dimensional Ising
model isTC = 0, it displays non-trivial features in its asymp-
totic critical behavior as the critical point is approached [37-
39]. Our aim will be twofold; first, to study the affect of the
order of spins on the thermodynamic and the magnetic prop-
erties of the model, and second, to investigate the asymptotic
behavior of these properties when the temperatureT → 0,
i.e, close to the critical temperatureTC and whenT →∞.

The paper is organized as follows. In Sec. 2, we describe
how the model can be formulated and solved for arbitrary
spin. Our main results of the internal energy and the entropy
in the absence of a magnetic field are given in Sec. 3. The
asymptotic behavior of the magnetization and the susceptibil-
ity as a function of the temperature and the field is analyzed
in Sec. 4. The paper closes with a short discussion given in
Sec. 5.

2. The model

The Ising model for ofN spins (σi, i = 1, . . . , N ) with fer-
romagnetic (J > 0) coupling between the nearest neighbors
and with arbitrary spins is defined in the presence of a mag-
netic fieldh, by the interaction energy

E({σi}) = −J
∑

i

σiσi+1 − h
∑

i

σi, (1)

whereσi ∈ {s, s − 1, · · · ,−s + 1,−s} and takes2s + 1
values. As usual, the partition function of the Ising model is
given by the sum over all spin configurations

Z(T, h) =
∑

{σi}
exp[−βE({σi})], (2)

whereβ = (kBT )−1 (kB is the Boltzmann constant andT is
the absolute temperature).
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We can solve the model by using the method of Kramers-Wannier transfer method, in which one has to construct transfer-
matrix and obtain the eigenvalues of this matrix. In the periodic case, the transfer matrix takes the form

T (σi, σi+1) = exp
[
Kσiσi+1 +

1
2
H(σi + σi+1)

]

=




eKs2+Hs eKs(s−1)+H(s−1/2) · · · e−Ks2

eKs(s−1)+H(s−1/2) eK(s−1)2+H(s−1) · · · e−Ks(s−1)−H/2

...
...

...
...

e−Ks(s−1)+H/2 e−K(s−1)2 · · · eKs(s−1)−H(s−1/2)

e−Ks2
e−Ks(s−1)−H/2 · · · eKs2−Hs




, (3)

whereK = βJ andH = βh are the reduced nearest neigh-
bor spin-spin coupling interactions and the reduced magnetic
field, respectively. In this approach, the partition function is
obtained by calculating the trace of the matrix product

Z(T,H) = Tr(TN) =
2s+1∑

j=1

λN
s,j , (4)

whereλs,j denote the eigenvalues of the transfer matrix for
arbitrary spins. As we know, the critical behavior of the
model appears in the thermodynamic limitN → ∞, so the
bulk free energy is simply given by the largest transfer-matrix
eigenvalueλmax = max{λs,1, λs,2, · · · , λs,2s+1}

f(T, H)=− kBT lim
N→∞

1
N

lnZ(T, H)=− kBT lnλmax, (5)

In this case all the bulk thermodynamical parameters such as
internal energyu, entropyS, magnetizationm and suscepti-
bility χ can be construct in terms ofλmax:

u(T, H) = − ∂

∂β
lnλmax, (6)

S(T, H) = − ∂f

∂T
=

1
T

(u− f), (7)

m(T, H) = −β
∂f

∂H
=

1
λmax

∂λmax

∂H
, (8)

χ(T, H) = −β2 ∂2f

∂H2
= β

∂

∂H

(
1

λmax

∂λmax

∂H

)
. (9)

In the next section, using the Eqs. (5)-(7) we investigate the
critical behavior of the internal energy and the entropy for the
casess = 1/2, s = 1 ands = 3/2 in the absence of the mag-
netic field (H = 0). In section 4, we study the behavior of
the Eqs. (8)-(9) in the presence of the magnetic field.

3. Critical behavior in the absence of the field

By direct calculation of the eigenvalues of the transfer matrix,
one obtains fors = 1/2

λ1/2,j = e
1
4 K

(
1± e−

1
2 K

)
. (10)

In the case ofs = 1, the eigenvalues are

λ1,j=1,2 =
1
2
eK

[
1 + e−K + e−2K ± (

1− 2e−K + 11e−2K − 2e−3K + e−4K
)1/2

]
, λ1,3 = eK(1− e−2K). (11)

Finally, for s = 3/2, the eigenvalues are given by

λ3/2,j =
1
2
e

9
4 K

{
e−

9
2 K + e−

5
2 K + η(1 + e−2K)

+ ζe−
9
2 K

[
2K + 4e3K + e4K + e5K + 4e6K − 2e7K + e9K − 2ηe

5
2 K(1− 6e2K + e4K)

]1/2 }
, (12)

where(η, ζ) = (+,+), (+,−), (−, +), (−,−) for j = 1, 2, 3, 4. It can be checked by plotting the eigenvalues againstK that
λmax = λs,1.

Using the eigenvalues (10)-(12), one easily obtains the following exact expressions

u(T, 0) =





− 1
4J − ∂

∂β lnA for s = 1
2

−J − ∂
∂β ln(B + C) for s = 1

− 9
4J − ∂

∂β ln(D + E) for s = 3
2

, (13)
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S(T, 0)=kB





lnA−β ∂
∂β lnA for s= 1

2

lnB+C
2 −β ∂

∂β ln(B + C) for s=1

lnD+E
2 −β ∂

∂β ln(D+E) for s= 3
2

, (14)

where

A = 1 + e−
1
2 K , B = 1 + e−K + e−2K ,

C = (1− 2e−K + 11e−2K − 2e−3K + e−4K)1/2

and

D = (1 + e−2K + e−
5
2 K + e−

9
2 K),

E = e−
9
2 K

[
1− 2e2K + 4e3K + e4K + e5K + 4e6K

− 2e7K + e9K − 2e
5
2 K(1− 6e2K + e4K)

]1/2

.

Now, we were able to obtain the asymptotic behavior of the
internal energy and the entropy whenT → 0 andT →∞:

u(T, 0) =




−s2J as T → 0

0 as T →∞.
, (15)

S(T, 0) =





0 as T → 0

kB ln(2s + 1) as T →∞.
. (16)

The changes in the internal energy and the entropy of the
model with respect to temperature for different spin (1/2, 1
and 3/2) are given in Fig. 1. Results show that the internal en-
ergy converges to the zero at higher temperature values, while
becomes constant (−s2) asT → 0. When the temperature in-
creases, the entropy increases until reaches toln(2s + 1) and
goes to zero at low temperature. Also, We notice that the in-
ternal energy and the entropy are affected by increasing the
order of spins.

4. Critical behavior in the presence of the ex-
ternal field

The eigenvalue of the transfer matrix (3) in the presence of
a magnetic field can be obtained analytically for some val-
ues of the spins. Here, we investigate only the two cases
for order of spin (s=1/2 ands=1). The eigenvalues take the
expressions

λ1/2,j=e
1
4 K

(
cosh

[
H

2

]
±

[
sinh2

{
H

2

}
+ e−K

]1/2
)

;

j = 1, 2, (17)

and

λ1,j = −a

3
+

2
3
(a2 − 3b)1/2 cos

(
θ +

2
3
(j − 1)π

)
;

j = 1, 2, 3, (18)

where

a = − (
1 + 2eK cosh(H)

)
,

b = −
[
2 cosh(H)

(
1− eK

)
− 2 sinh(2K)

]
,

c = 4 sinh(K)− 2 sinh(2K),

θ =
1
3

arccos
[
9ab− 2a3 − 27c

2(a2 − 3b)3/2

]
. (19)

Using the formulas (8)-(9) and (17)-(18) we can calculate the
magnetization and susceptibility as a function ofT andH.

In the thermodynamic limitN →∞, we obtain the well-
known bulk magnetization and susceptibility for the system
of spin-1/2 [40]:

FIGURE 1. a) Internal energy and b) Entropy as a function of temperature for spins = 1/2, 1 and3/2 in the absence of magnetic field.
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FIGURE 2. a) Magnetization and b) susceptibility as a function of temperature for spins = 1/2 and1 at a magnetic fieldh = 0.5.

FIGURE 3. The field dependence of a) magnetization and b) susceptibility for spins = 1 at three values of temperatureT = 1, 3 and5.

m(T, H) =
sinh(H

2 )

2
[
sinh2(H

2 ) + e−K
]1/2

, (20)

χ(T, H) =
β cosh(H

2 )e−K

2
[
sinh2(H

2 ) + e−K
]3/2

. (21)

The exact expressions for the magnetization and the magnetic
susceptibility for the spin1 and spin3/2 are very cumber-
some, so we will not bring them out here. For The other
cases of spins > 2, it would be very difficult to obtain the
eigenvalues of the transfer matrix analytically. Therefore the
partition function and the bulk free energy can be calculated
numerically.

The behavior of the magnetization and the magnetic sus-
ceptibility as a function of the temperature for the spins =
1/2, 1 at fixed fieldh = 0.5 is plotted in Fig. 2. It is clear that
the maximum magnetization value fors = 1/2 system is0.5,
while the maximum magnetization value fors = 1 system
is 1.

The field dependence of the magnetization and the mag-
netic susceptibility is plotted for the spin-1 system in Fig. 3
for some values ofT = 1, 3 and5. We observe that the mag-
netization behaviour with the change of the magnetic field

is more smooth with the increase of the temperature and be-
comes a step function in the limit ofT → 0 corresponding
to a ferromagnetic phase. The susceptibility peaks show that
the maximum ofχ(T, H) is larger for low temperature and
diverges atH = 0 asT → 0. We can see by computing the
susceptibility forH = 0 and lowT , that

χ(H = 0, T ) α |T − TC |−γ , (22)

Thusχ divergence asT → 0 and hence the well defined value
γ = 1 of the susceptibility exponent is obtained [37].

5. Conclusions

We have considered the one dimensional Ising model with
arbitrary spin in the absence (presence) of a magnetic field.
The system was solved analytically by the transfer matrix
technique. Exact analytical results have obtained for the free
energy, the internal energy, the entropy, the magnetization
and the magnetic susceptibility by computing the maximal
eigenvalue of the transfer matrix for some values of the order
spins.

In the absence of the magnetic field, we have studied the
behavior of the internal energy and entropy for three values
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of the order spins (1/2, 1 and 3/2). We have investigated the
critical behavior of these properties as a function of temper-
ature especially whenT → 0 andT → ∞ (see (15),(16)).
The behavior of the magnetization and the susceptibility has

been analysed as a function of the temperature and the mag-
netic field and investigated near the critical pointTC . Our
results are consistent with the previous results for the one di-
mensional Ising system.
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