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1. Introduction

The most illustrative analytical solutions to the field equa-
tions in general relativity, are those where the space has
spherical symmetry. For instance, the Schwarzschild met-
ric for black holes and the Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) metric, that describes the behavior of the
Universe at cosmological distances, have spherical symme-
try (see Refs. [1, 2] and also [3] for generalized models with
extra dimensions). However, it is well known that the de-
scription of a non-trivial space-time cannot be complete with
just one coordinate chart, and usually one has to consider sev-
eral patches, where in each patch a distinct set of coordinates
is valid [2, 4]. In view of this, it can be useful to define new
coordinates that cover more parts of the manifold. Then one
sees that a transformation of space-time coordinates can ful-
fill two purposes: to reveal explicit symmetries of the space-
time, as well as to extend the description of the space-time
to regions that cannot be considered in the original setup.
This allows, in cosmological and black hole models, to ex-
tend the description beyond the event horizons appearing in
both cases [5, 6]. In this article, we explore the relations be-
tween two possible forms of the metric: one where the coor-
dinates associated with the space-time appears as dynamical,
and other where the coordinates takes a static form.

The relation between dynamical type and static forms of
the metric has been a topic of great interest in the litera-
ture [7–12]. For instance, the well known association of de-
Sitter space with the FLRW metric has been used in a deeper
analysis in general relativity [7,8]. However, interpretational
problems between a static and a non-static representation of
the same underlying space have been subject of debate [13].
In this work, one of the main ideas is to find, at a level of

coordinate transformations, a link between spherically sym-
metric spaces (relevant to black hole theory) and cosmology.
But more generally, we develop a general formalism based in
coordinate transformation, that establishes a correspondence
between static/non-static metrics. In particular, starting from
time-dependent metrics we find the corresponding static met-
rics which turn out to be unique solutions.

We argue that our method can be extended to obtain
Kruskal type coordinates in a number of scenarios in black-
hole physics and cosmology. Specifically, assuming a general
metric in the form

dS2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2,

we transform it to coordinates where the metric takes a con-
formally flat form, at hypersurfaces withdΩ2 = 0. We
show that this leads to different possible mappings, includ-
ing the Kruskal type transformations. From there, we dis-
cuss the resulting transformation for several spherically sym-
metric metrics, such as Schwarzschild, Reissner-Nordström,
extremal Reissner-Norsdtröm, de-Sitter and Schwarzschild-
de-Sitter. A relevant aspect of our approach is that we ob-
tain three novel Kruskal transformations that highlights in-
teresting features of Reissner-Norsdtröm and Schwarzschild-
de-Sitter spaces, as well as a type of space described by a
Generalized-de-Sitter metric. For all cases, the appropriate
selection of integration constants assures two things: first,
that the coordinates singularities can be removed; and sec-
ond, that the different regions -for instance, interior and exte-
rior of a black hole- can be distinguished in the Kruskal rep-
resentation. We argue that this may shed some light on the
underlying symmetries of a more general Kruskal formalism.
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The rest of this work is divided as follows: in Sec. 2 we
deal with the FLRW metric transformed to a ‘static’ type met-
ric. We show the way this leads to a Friedmann equation with
cosmological constant and zero matter density. The result is
that for all spherical, hyperbolic and plane geometries, all
converge to the same de-Sitter type metric. For sake of com-
pleteness, we also solve for the scale parametera = a(T ). In
Sec. 3 we review a further generalization and find that the pre-
vious result of a Friedmann equation for vacuum is unique,
as well as the general form for the FLRW metric. In Sec. 4
we show the way this procedure can be applied in general to
spherically symmetric metrics; we find that there exists sev-
eral possibilities for the solutions. One of this possibilities
leads to Kruskal type coordinates, and in Sec. 5 we review
some particular solutions for different static metrics. Finally,
in Sec. 6 we make some final remarks.

2. From FLRW cosmology to static metrics

Consider the gravitational field equations with cosmological
constantΛ:

Rµν − 1
2
gµν(R− 2Λ) = 8πGTµν . (1)

By assuming that the space is maximally symmetric with
commoving coordinates(T, ρ, θ, φ) describing a spherically
symmetric space, one can solve (1) for the metric in the form

dS2
(1) = −dT 2 + a2(T )

(
dρ2

1− kρ2
+ ρ2dΩ2

)
, (2)

wheredΩ2 = dθ2 + sin2 θ dφ2 is the solid angle line ele-
ment. Also,k can take the values1, 0 or−1 denoting space-
like slices at constantT corresponding to spherically, flat and
hyperbolic topologies, respectively. Furthermorea(T ) is the
scale factor, whose evolution is obtained by assuming that the
energy-momentum tensor takes the form

Tµν = (ρf + pf )uµuν + pfgµν . (3)

Hereuµ is the four velocity, whileρf andpf are the density
of energy and pressure describing a perfect fluid. From there,
one obtains the Friedmann equations

ȧ2 + k

a2
=

8πG

3
ρf +

Λ
3

, (4)

and
ä

a
= −4πG

3
(ρf + 3pf ) +

Λ
3

. (5)

Now consider the transformation fromdS2
(1) =

gµνdxµdxν given in (2), to the static spherical symmetric
form dS2

(2) = γαβdx′αdx′β , namely

dS2
(2) = −f(r)dt2 +

dr2

f(r)
+ r2dΩ2. (6)

The solid angle is the same for both cases in such a way that
the angular terms in (2) and (6) imply

r = aρ. (7)

From now on, we will denote partial derivatives respect
to T with an overdot, while prime will mean partial deriva-
tives respect toρ, such aṡt = ∂t/∂T andt′ = ∂t/∂ρ. We
start with the tensor transformation

gµν =
∂yα

∂xµ

∂yβ

∂xν
γαβ . (8)

Forg00, g11 andg01, after rearranging some terms, this leads
to

ṫ2 =
1
f2

(f + ρ2ȧ2), (9)

t′2 =
a2

f2

(
1− f

1− kρ2

)
, (10)

and
f4ṫ2t′2 = ρ2a2ȧ2, (11)

respectively. Substituting (9) and (10) into (11) one obtains

f = 1− ρ2(ȧ2 + k), (12)

wheref is considered to be a function ofρ andT .
By inserting (12) into (9), one obtains

ṫ2 =
1− kρ2

f2
, (13)

while combining Eqs. (10) and (12) one finds that

t′2 =
ρ2a2ȧ2

f2 (1− kρ2)
. (14)

Now we use the fact thatf ′ = −2ρ(ȧ2 + k) and ḟ =
−2ρ2ȧä to take the partial derivatives of (13) respect toρ and
of (14) respect toT , in order to obtain∂2t/∂T∂ρ in both
cases. After equating and performing some simplifications,
the next relation appears:

[
(ȧ2 + k)− aä

] [
1 + ρ2(ȧ2 − k)

]
= 0. (15)

In general, the second factor is nonzero, since then it would
imply that a is a function ofρ and this is incongruent with
a = a(T ); equivalently, the second factor equal to zero would
imply, by (16), thatf can be put as a function ofρ only. It
follows that only

ä

a
=

ȧ2 + k

a2
, (16)

holds. By noticing thatd(ȧ2 +k)/dt = 2ȧä, one can see that
this equation is equivalent to

d(ȧ2 + k)
dt

= 2
ȧ

a
(ȧ2 + k). (17)

As this can be expressed as a total derivative of logarithms,
this leads to

ȧ2 + k

a2
= Γ, (18)
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whereΓ is an integration constant. Then, by (16) we have
also the relation̈a = Γa.

Observe that (18) reduces to the first Friedmann equa-
tion (4) for vacuum (ρf = 0) with cosmological constant
Λ = 3Γ. This identification is validated by the comparison
of ä = Γa with the second Friedmann equation in vacuum,
namelyä/a = Λ/3 in (5). It is interesting to note that the
Friedmann equation emerges from a symmetry transforma-
tion, without invoking any dynamic equation such as the Ein-
stein field equations.

Going back to (18), rewriting it aṡa =
√

Γa2 − k, we
can solve fork = 0, 1 and−1. For the moment we take into
account the casesΓ 6= 0. It turns out that the equality would
describe Minkowski space, as we shall see below.

For k = 0 (Γ > 0), the result isa = e
√

ΓT . For the
closed topology wherek = 1 (here alsoΓ > 0 is forced),
a(T ) becomesa = (1/

√
Γ) cosh

√
ΓT , where we have cho-

senT = 0 as the comoving time whena = 1/
√

Γ. Mean-
while, with k = −1, Γ can be either positive or negative.
For Γ > 0, the solution isa = (1/

√
Γ) sinh

√
ΓT . In this

case, we have chosen the origin of time in such a way that
a = 0 whenT = 0. For k = −1 andΓ < 0, the solution
corresponds toa = (1/

√
|Γ|) sin

√
|Γ|T .

Concerning the functionf , we remember from (7) that
a = r/ρ, that together with (12) and (17) imply that

f = 1− Γr2. (19)

Summarizing this section, forΓ 6= 0 we have the follow-
ing solutions:

Curvature Metric

k=0, Γ > 0 dS2=− dT 2 + e2
√

ΓT
(
dρ2 + ρ2dΩ2

)

k=1, Γ > 0 dS2=− dT 2 +
cosh2(

√
ΓT)

Γ

(
dρ2

1−ρ2 + ρ2dΩ2
)

k=− 1, Γ > 0 dS2=− dT 2 +
sinh2(

√
ΓT)

Γ

(
dρ2

1+ρ2 + ρ2dΩ2
)

k=− 1, Γ < 0 dS2=− dT 2 +
sin2

(√
|Γ|T

)

|Γ|

(
dρ2

1+ρ2 + ρ2dΩ2
)

The first solution is the usual de-Sitter space, while the
second and third ones are the two types of Lanczos universe.
The fourth solution is the only allowed solution withΓ < 0,
and it corresponds to anti-de-Sitter space [12,13].

Finally, choosingΓ = 0 in Eq. (18) implies that the scale
parameter obeys the equationȧ2 + k = 0, and the corre-
sponding solutions forg11 in Eq. (1) areg11 = 1 for k = 0
andg11 = t2/(1 + r2) for k = −1; this last solution is re-
ferred as Milne model. Both get mapped (in a trivial way) to
Minkowski space. These two solutions, as well as the ones
listed in Eq. (20), corresponds to the six possible transforma-
tions to the static form given in Eq. (2) (see Refs. [12, 13]).
The whole set of solutions share the corresponding static
form of the metric

dS2
(2) = − (

1− Γr2
)
dt2 +

dr2

1− Γr2
+ r2dΩ2. (21)

As we shall see in the next section, this static form will be
preserved even when generalizing the line element given in
Eq. (2).

3. A further generalization.

Now, let us consider a more general form of the metric, but
still assuming commoving time and radial symmetry. In this
sense, the ansatz now reads as

dS2
(3) = −dT 2 + a2(T )

(
b2(ρ)dρ2 + ρ2dΩ2

)
. (22)

If this metric is transformed to (6), then the relation (7),
r = aρ, is satisfied again. Even more, transformations (9)
and (11) hold again. However, instead of (10) we have

t′2 =
a2

f2
(1− b2f). (23)

Substituting (9) and (23) into (11) leads after simplifica-
tion to

f =
1
b2
− ρ2ȧ2. (24)

Insertion in Eq. (9) and (23) leads to the succinct expres-
sions ṫ = 1/bf and t′ = ρaȧb/f . As in the previous
section, we derive this relations with respect toρ and with
respect toT , respectively. By usingḟ = −2ρ2ȧä and
f ′ = −2(b′b−3 + ρȧ2), and equating∂ṫ/∂ρ with ∂t′/∂T ,
we see that after some algebra the next relation holds:

b′ = ρb3
(
aä− ȧ2

)
. (25)

Sincea = a(T ) andb = b(ρ), (25) implies that

aä− ȧ2 =
b′

ρb3
= κ, (26)

whereκ is a constant. Note that the values ofκ can be iden-
tified with those ofk (1, 0 or −1), by rescaling adequately
the parametera(T ). With this identification, the previous
relation fora(T ) is just equation (16) [1, 2]. Furthermore,
integration ofb′b−3 = κρ leads to

1
b2

= B − κρ2, (27)

with B another integration constant. Assuming local flatness
at slices withT constant,B can be set equal to1. Hence,
even by considering a more general metric in our formalism,
namelydS2

(3) in Eq. (22), a transformation to the static form
given by (6) restricts the metric to the form given by (2), and
with same solutions listed at the end of Sec. 2.
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4. Extending the formalism to include Kruskal
type coordinates

It turns out that the same formalism can lead to Kruskal
type coordinates. Let us assume that the metric can take a
form that is conformally flat in the space-time slices with
dθ = dφ = 0:

dS2
(4) = N2(T, ρ)(−dT 2 + dρ2) + ϕ2(T, ρ)dΩ2. (28)

The transformation (8) of the metric components given in
Eq. (28) to the static form (6),dS2

(2) = −fdt2 + f−1dr2 +
r2dΩ2, leads to

(∂tT )2 = (∂tρ)2 + fN−2, (29)

(∂rT )2 = (∂rρ)2 − f−1N−2, (30)

and
∂tT∂rT = ∂tρ∂rρ. (31)

Substitution of (29) and (30) into (31) gives, after clearing,
the next relation:

N−2 = (∂rρ)2 f − (∂tρ)2 f−1. (32)

This allows to simplify (29) and (30) as

∂tT = f∂rρ (33)

and
∂rT = f−1∂tρ, (34)

respectively. The form of these two expressions suggests to
takeT (t, r) = Θ(t)Φ(r) andρ(t, r) = ξ(t)χ(r). Then those
two relations leads to

1
ξ

dΘ
dt

=
f

Φ
dχ

dr
= α, (35)

and
1
Θ

dξ

dt
=

f

χ

dΦ
dr

= β, (36)

whereα andβ are constants. Both expressions imply vari-
ous relations. First, from (35) we derivedΘ/dt = αξ with
respect tot and use (36). It results in

d2Θ
dt2

− αβΘ = 0. (37)

On the other hand, dividing (36) by (35) we have that
αΦdΦ = βχdχ, giving the function relation

αΦ2 − βχ2 = σ, (38)

with σ another integration constant. There are several rele-
vant possibilities for the productαβ in Eq. (37):

Caseαβ = 0. Assuming thatα = 0, then (35) implies
that Θ is a constant, in such a way that∂tT = 0; this in
turn leads to∂rρ = 0 due to (33), and also thatχ is con-
stant. By (36), rescaling and shifting the origin of time,ξ

can be set equal tot. Then, settingΘ = 1 andχ = β−1,
from the same relation (36), it resultsdT = dΦ = f−1dr,
while dρ = dt. From (30) and (34) one learns thatN2 =
−f/ (∂tρ)2 = −f . Inserting all this into the form of the
metric (28) we obtain the same metric given in Eq. (6). A
similar argument holds for the caseβ = 0. Thus, with
αβ = 0 the transformation maps onto itself andN2 is pro-
portional tof , a reminiscence of what occurs with the use of
tortoise coordinates, wheredr∗ = (1 − rs/r)−1dr in such a
way that− (1− rs/r) dt2 +(1−rs/r)−1dr2 transforms into
− (1− rs/r)

(
dt2 + dr∗2

)
, wherers is the Schwarzschild

radius [1,2].

Caseαβ < 0

By (37) we have thatΘ ∝ sin(
√
|αβ|t + φ0) and conse-

quently -by (36)- thatξ ∝ cos(
√
|αβ|t + φ0). We can fix the

phase angle to zero in such a way thatT = 0 coincides with
t = 0. Also, without loss of generality we takeα > 0 and
β < 0, that implies thatσ > 0 in Eq. (38). Then the solutions
are given by

Θ(t) = B1 sin
(√

−αβt
)

, (39)

and
ξ(t) = B2 cos

(√
−αβt

)
, (40)

where the relationB2 =
√
−β/αB1 holds in such a way that

dΘ/dt = αξ in Eq. (36), is still satisfied.
From (36) we have thatχ = (f/β)dΦ/dr, that together

with (38) leads to

dΦ
dr

=
√−β

√
σ − αΦ2

f
, (41)

which can be integrated, yielding

Φ =
√

σ

α
sin

(√
−αβ

∫
dr

f

)
. (42)

Inserting this result in (38), we have that

χ =
√

σ

−β
cos

(√
−αβ

∫
dr

f

)
. (43)

Remembering thatT (t, r) = Θ(t)Φ(r) and ρ(t, r) =
ξ(t)χ(r), in this case we have

T (t, r) = sin
(√

−αβ

∫
dr

f

)
sin

(√
−αβt

)
, (44)

and

ρ(t, r) = cos
(√

−αβ

∫
dr

f

)
cos

(√
−αβt

)
. (45)

Here we have setB1

√
σ/α = 1 (justified by rescaling coor-

dinates). By using Eq. (45) in Eq. (32) for differentf in the
metric, the factorN2 appearing in (30) can be obtained. The
result is

N2=
f

−αβ
[
cos

(
2
√−αβt

)− cos
(
2
√−αβ

∫
dr
f

)] . (46)
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Caseαβ > 0

Equation (37) leads toΘ(t) = C1 sinh(
√

αβt+φ0). In order
to gett = 0 whenT = 0, we chooseφ0 = 0 and then we
have the solutions

Θ(t) = C1 sinh
(√

αβt
)

, (47)

and

ξ(t) = C2 cosh
(√

αβt
)

, (48)

whereC2 =
√

β/αC1. Clearly, this two relations lead to
αξ2 − βΘ2 = βC2

1 , obtained also by using (35) and (36).
Now take into account that (38) impliesχ = ±

√
α/βΦ,

with σ = 0. Inserting this in (35), we obtain

1
Φ

dΦ
dr

= ±
√

αβf−1. (49)

By integrating this expression, we see that

Φ(r) = Ae±
√

αβ
∫

dr
f , (50)

and consequently (38) implies that

χ(r) = ±A

√
α

β
e±
√

αβ
∫

dr
f , (51)

with A constant. Thus, forαβ > 0, the coordinatesT (t, r) =
Θ(t)Φ(r) andρ(t, r) = ξ(t)χ(r) are

T (t, r) = Φ(r) sinh
(√

αβt
)

, (52)

and

ρ(t, r) = Φ(r) cosh
(√

αβt
)

. (53)

Here,Φ(r) is given in Eq. (50) and we setA = C1 = 1. Also,
we have omitted a possible minus sign inρ(t, r), since it just
plays the role of an inversion of coordinates in the analysis of
the regions considered.

The function N(T, ρ) can be obtained by inserting
Eqs. (33), (52) and (53) in Eq. (32). The result is:

N2 =
fΦ−2

αβ
. (54)

Observe that the functionf(r) determines all possible trans-
formations, and the relations (52) and (53) determine Kruskal
type coordinates for a givenf . In the next section we obtain
the explicit form for several cases of interest.

5. Kruskal type solutions

For simplicity, we defineγ = ±√αβ and proceed to obtain
the Kruskal type solution for different cases, by changingf
in dS2

(2) = −fdt2 + f−1dr2 + r2dΩ2.

5.1. Schwarzschild

In this case we havef = 1 − rs/r, wherers = 2M is
the Schwarzschild radius. This leads to

∫
dr/ (1− [rs/r]) =

r+rs ln (r/rs − 1), for r > rS . Thus, substituting this result
into (50), yields

ΦSchw = e
r

2rs

√
r

rs
− 1, (55)

where we have setγ = 1/(2rs). Then (52) and (53) become

TSchw = e
r

2rs

√
r

rs
− 1 sinh

t

2rs
, (56)

and

ρSchw = e
r

2rs

√
r

rs
− 1 cosh

t

2rs
, (57)

respectively. Further, from (28) and (54) we find that the the
metric is given by

dS2
Schw =

4r3
s

r
e−

r
rs (−dT 2 + dρ2) + r2dΩ2. (58)

We recognize in Eqs. (56)-(58) the Kruskal transforma-
tion associated with the Schwarzschild metric [14, 15]. As
usual, the relationρ2

Schw−T 2
Schw = er/rs (r/rs − 1) is useful

to verify the properties of this space-time, and in particular
to extend the analysis to the regionr < rS (See [1, 2] and
also [16] and references therein for recent developments).

Moreover, it is worth mentioning that our formalism is
more direct and general than the usually given in textbooks,
since we just need to specifyf and then solve forΦ in order
to obtain the full set of coordinate transformations forT , ρ
andN(T, ρ).

5.2. Reissner-Nordstr̈om

For the electric charged static black hole we havef =
1 − rs/r + Q2/r2 = (r − r+)(r − r−)/r2, wherer± =
M ±

√
M2 −Q2. The solution to

∫
f−1dr (again region

with r > r+) is given by
∫

dr

f
= r +

1

2
√

M2 −Q2

× [
r2
+ ln (r − r+)− r2

− ln(r − r−)
]
+ const. (59)

By setting the integration constant to
(
r2
− ln r− − r2

+ ln r+

)
(
2
√

M2 −Q2
) ,

and following the same steps as in the Schwarzschild
case, the Reissner-Nordström metric is transformed into the
Kruskal form by means of

ΦR-N(r) = eγr

(
r

r+
− 1

)ζr2
+

(
r

r−
− 1

)ζr2
−

,
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where ζ = γ (r+ − r−) . The corresponding coordinate
transformations acquire the form

TR-N(t, r) = eγr

(
r

r+
− 1

)ζr2
+

(
r

r−
− 1

)ζr2
−

sinh γt,

ρR-N(t, r) = eγr

(
r

r+
− 1

)ζr2
+

(
r

r−
− 1

)ζr2
−

cosh γt.

(60)

Then the Kruskal type solution for the charged static black
hole is

dS2
R-N =

1
γ2r2

e−2γr

(
r

r+
− 1

)2ζr2
−+1

(
r

r−
− 1

)2ζr2
+−1

× (−dT 2 + dρ2
)

+ r2dΩ2. (61)

Thus, the different regions of this space can be visualized
from

ρ2
R-N − T 2

R-N = e2γr

(
r

r+
− 1

)2ζr2
+

(
r

r−
− 1

)2ζr2
−

.

(For comparison setγ = (r+ − r−) /r2
+ and see for instance

Refs. [17] and [18]).

5.3. Reissner-Nordstr̈om (Extremal)

The Reissner-Nordström extremal metric is of theoretical
interest in several contexts. This solution is obtained from
r± = M ±

√
M2 −Q2 whenM2 = Q2, which means that

r± = M . In such a case the metric takes the formdS2 =
− (1−M/r)2 dt2+(1−M/r)−2

dr2+r2dΩ2. So, our task
is to determine the integral

∫
f−1dr =

∫
r2(r−M)−2dr. We

obtain
∫

f−1dr = r−M2 (r −M)+2M ln(r−M)+const.
and hence one may write the radial functionΦ asΦEx(r) =
(r/r+ − 1) exp{(r/r+ − ϕ1) (r/r+ − ϕ2) / [2 (r/r+ − 1)]},
whereϕ1 = (1 +

√
5)/2 andϕ2 = (1 − √5)/2 . Also, we

have setγ = (4M)−1 and the integration constant equal to
−2M ln M . With this at hand, the coordinates (in the patch
wherer > r+) are given by

TEx(t, r) = e

(
r

r+
−ϕ1

)(
r

r+
−ϕ2

)

4
(

r
r+

−1
) √

r

r+
− 1 sinh

t

4r+
, (1)

ρEx(t, r) = e

(
r

r+
−ϕ1

)(
r

r+
−ϕ2

)

4
(

r
r+

−1
) √

r

r+
− 1 cosh

t

4r+
. (62)

Now the metric would be specified by usingN2 =
fΦ−2γ−2, that yields

dS2
Ex =

16r4
+

r2

(
r

r+
− 1

)
e

−
(

r
r+

−ϕ1

)(
r

r+
−ϕ2

)

(
r

r+
−1

)

× (−dT 2 + dρ2) + r2dΩ2. (63)

Also,

ρ2
Ex − T 2

Ex=(r/r+ − 1) exp
{

(r/r+ − ϕ1) (r/r+ − ϕ2)
[2 (r/r+ − 1)]

}
.

It is interesting to observe that the golden ratiosϕ1 andϕ2

emerge in this extremal case (see Refs. [19, 20] and refer-
ences therein).

5.4. De-Sitter space

In this case, for (17) we havef = 1 − Γr2, whereΓ >
0 leads to de-Sitter space. Now we have

∫
f−1dr =

Γ−1/2arctanh(
√

Γr) + const. This leads to the radial

function ΦdS(r) =
√

(1−√Γr)/(1 +
√

Γr) = (1 −√
Γr)/

√
1− Γr2 for r < 1/

√
Γ. We have chosenγ = −√Γ

and the integration constant equal to zero. The Kruskal coor-
dinates are then

TdS(t, r) =
1−√Γr√
1− Γr2

sinh
(√

Γt
)

,

ρdS(t, r) =
1−√Γr√
1− Γr2

cosh
(√

Γt
)

. (64)

Thus, in this case the metric takes the simple form

dS2
dS =

1
Γ

(
1−

√
Γr

)2

(−dT 2 + dρ2) + r2dΩ2. (65)

The coordinates (64) yield ρ2
dS − T 2

dS =(
1−√Γr

)
/

(
1 +

√
Γr

)
. Note that the negative sign cho-

sen inγ = −√Γ makes sense: with this selection the region
0 ≤ r ≤ 1/

√
Γ would be described, in the(T, ρ) system, by

hyperbolas starting fromρ2
dS − T 2

dS = 1 until reaching the
asymptotesT = ±ρ. Observe that this is valid in the two
quadrants whereρ > 0. On the other hand,γ > 0 would
result in unbounded hyperbolas, since thenρ2

dS− T 2
dS → ∞

whenr → 1/
√

Γ. Compare this solution with Refs. [21–23].

5.5. Schwarzschild-de-Sitter metric

As we mentioned before, the solution for black hole with
cosmological constant comes from taking the radial func-
tion asf = 1 − rs/r − Γr2. The three roots of the cu-
bic equationr − rs − Γr3 = 0, namely (λ1, λ2, λ3), are
real and distinct ifM < 1/3

√
3Γ (see [24] and references

therein). In this case we setλ1 > λ2 > λ3, in such
a way that the first root corresponds to the cosmological
horizon r = λ1, the second root to the black hole event
horizon r = λ2, and the third one is a negative (unphys-
ical) root. It is worthwhile to mention that the two hori-

zons atλ1 andλ2 coincide whenM =
(
3
√

3Γ
)−1

. Then
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∫

f−1dr = ln [(r − λ1)
σ1 (r − λ2)

σ2 (r − λ3)
σ3 ] + const.,

whereσi = λi/(1 − 3Γλ2
i ), wherei = 1, 2, 3. By (50) we

have

ΦS-dS(r)=
(

r

λ1
− 1

)γσ1
(

r

λ2
− 1

)γσ2
(

1− r

λ3

)γσ3

.

(66)

Here, we have chosen the integration constant equal to
−σ1 ln λ1 − σ2 ln λ2 − σ3 ln(−λ3). From (52) and (53), it
results

TS-dS(t, r) =
(

r

λ1
− 1

)γσ1
(

r

λ2
− 1

)γσ2

×
(

1− r

λ3

)γσ3

sinh γt,

ρS-dS(t, r) =
(

r

λ1
− 1

)γσ1
(

r

λ2
− 1

)γσ2

×
(

1− r

λ3

)γσ3

cosh γt, (67)

where we have taken into account thatλ3 < 0.
From (28) and (54) we find

dS2
S-dS =

Γλ1λ2λ3

γ2r

(
r

λ1
− 1

)1−2γσ1

×
(

r

λ2
− 1

)1−γσ2
(

1− r

λ3

)1−2γσ3

× (−dT 2 + dρ2) + r2(T, ρ)dΩ2. (68)

5.6. A generalized de-Sitter metric

In Ref. [25] a generalization of de-Sitter space is considered,
where the metric is of the type (6), withf = 1−h2r2 +q4r4.
Here two cosmological horizons arise, given byr2

± = (h2 ±√
h4 − 4q4)/(2q4). In order to calculateΦ(r), we perform

the integral
∫

dr

f
=

1
q4(r2

+ − r2−)

×
(

1
r+

tanh−1

[
r

r+

]
− 1

r−
tan−1

[
r

r−

])
. (69)

By choosingγ = −q4(r2
+ − r2

−)r+, we have from (50) that

ΦGdS(r) =
√

r+ − r

r+ + r
e
− r+

r− tan−1
(

r
r−

)
, (70)

for the region with r < r−, where “GdS” stands for
Generalized-de-Sitter space. The corresponding Kruskal
type coordinates are given by

TGdS(t, r) =
√

r+ − r

r+ + r
e
− r+

r− tan−1
(

r
r−

)
sinh (γt) ,

ρGdS(t, r) =
√

r+ − r

r+ + r
e
− r+

r− tan−1
(

r
r−

)
cosh (γt) . (71)

Also, the relation

ρ2
GdS− T 2

GdS =
r+ − r

r+ + r
e
− 2r+

r− tan−1
(

r
r−

)

holds, confirming that the qualitative behavior of the space in
these coordinates is very similar to that of the de-Sitter space
analyzed before, in the patch wherer < r−.

6. Final remarks

In this work we have analyzed the relationship between some
spherical symmetric metrics for two cases: cosmological
FLRW and Kruskal type metrics. In the first case, we have
shown that, by imposing that the FLRW metric to be trans-
formed into the form

dS2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2, (72)

leads tof = 1 − Γr2 with solutions summarized at the end
of Sec. 2. In fact, the only possibilities resulting from this
symmetry transformation are the spaces known as: de-Sitter,
anti-de-Sitter, Lanczos, Milne, and Minkowski. It is remark-
able that as a by-product of the symmetry transformation, the
Friedmann equation with cosmological constant emerges.

Next we moved in the reverse order: starting from the
general metric (72), we applied a transformation to obtain a
metric which is conformally flat in hypersurfaces withdθ =
dφ = 0. This led to two non-trivial possibilities, one in which
the coordinates are proportional to sines and cosines; and a
second solution in terms of hyperbolic trigonometric func-
tions, that resembles the Kruskal solution for Schwarzschild
space.

In Sec. 5 we used the method to explicitly obtain the coor-
dinate(T, ρ) for several well known spaces: Schwarzschild,
Reissner-Nordström, extremal Reissner-Norsdtröm, de-Sitter
and Schwarzschild-de-Sitter. Here, the analysis was not ex-
haustive, in the sense that the main purpose was to show how
the method of two-metric transformation correctly works.
For instance, we only solved for the exterior regions in the
case of black holes, and for the region inside the cosmo-
logical horizon in the de-Sitter case. Meanwhile, we found
that choosing properly the integration constantγ in Φ(r) =
A exp

(
γ

∫
[dr/f ]

)
, given in Eq. (50), one preserves desir-

able properties of the Kruskal extended space. Specifically,
in the extremal Reissner-Norsdström case we have chosenγ
in such a way that the interior and the exterior regions of the
black hole get uniquely represented in the Kruskal(T, ρ)-
coordinates framework. Furthermore, in the de-Sitter case
we favored a negative sign inγ, since this ensures that in
the limit r → 1/

√
Γ, the hyperbolas representing the space

do not open to infinity. It is worthwhile to remark that
we have obtained three novel Kruskal transformations: for
the Reissner-Norsdtröm (where interestingly thegolden ratio
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arises), Schwarzschild-de-Sitter space and the mentioned as
Generalized-de-Sitter space.

Further interesting prospects of our work could emerge
as follows. Clearly, one can find other Kruskal type solutions
by considering other functionsf(r) in the metric (2) (for in-
stance the space analyzed in Ref. [26]). In this sense, the for-
mulation of Secs. 4 and 5 complements other works that con-
sider the properties of static metrics in whichg11 = −1/g00

[27–30].
Another interesting aspect is that the formulation of this

two-metric transformation can be generalized in a straight-
forward manner to higher dimensions. First, notice that the
angular termr2dΩ2 is a passive term in all the development.
Then one may readily generalize it to higher dimensions. Of
course, in this case one must modify also the functionf(r).
For instance, in the Schwarzschild type metric in arbitrary
D-dimensions one has

f = 1− rs

rD−3
. (73)

There is at least one possible scenario in which such a gen-
eralization may have important and interesting consequences,
namely black holes associated with parallelizable spheres. As
it is known, the only parallelizable spheres areS1, S3 and
S7, which corresponds to the existence of normed division
algebras: real numbers, complex numbers, quaternions and
octonions, respectively [31, 32]. In this way, from the point
of view of parallelizable spheres, the event horizon of black
holes associated with the spheresS1, S3 andS7 seems even
more interesting that the traditionalS2-event/horizon.

Also, for further research it may be interesting to consider
the connection between the transformations corresponding
to negative and positive values ofαβ in Sec. 4. Since for
αβ < 0 the coordinate transformations are related to the
trigonometric functions sine and cosine, while forαβ > 0
corresponds to hyperbolic trigonometric functions, one may
expect a connection between these two scenarios. This may
be analogue to the transformation between spheres and hy-
perbolas. In fact, one finds such example in complex vari-
able, where the mappingf = b

(
2a2z−2 − 1

)
transforms the

complex variablez′ = u + iv to z = x + iy connecting the
circumferenceu2+v2 = b2 with the hyperbolax2−y2 = a2.
Moreover, we argue that this transformation admits a confor-
mal mapping interpretation.

Appendix

A. Coordinate transformations from metric
with scale parameter to its static form

For sake of completeness, we derive the explicit relation be-
tween the systems(t, r) and(T, ρ) listed in (16). First, we
combine (8) and (10) to obtain

∂t

∂ρ
=

ρaȧ√
1− kρ2[1− ρ2(ȧ2 + k)]

. (A.1)

Thus, the idea is to integrate (A.1) for the different cases.

Casek = 0

Consideringa = e
√

ΓT [see (16) fork = 0], (A.1) yields

∂t/∂ρ = ∂/∂ρ

[
−

(
2
√

Γ
)−1

ln(1− Γe2
√

ΓT ρ2)
]
. Hence,

we can write

t = − 1
2
√

Γ
ln(1− Γe2

√
ΓT ρ2) + g(T ). (A.2)

Note that inserting (8) and (19) in (9) yields∂t/∂T =
1/

(
1− Γe2

√
ΓT ρ2

)
. Comparing with∂t/∂T obtained from

(A.2), results inġ = 1, and then

t = T − 1
2
√

Γ
ln

(
1− Γe2

√
ΓT ρ2

)
, (A.3)

where we have choseng(T ) = T . This result, withr =
e
√

ΓT ρ, leads to [10,13]

T =
1

2
√

Γ
ln

(
1− Γr2

)
+ t, (A.4)

and

ρ =
r√

1− Γr2
e−
√

Γt. (A.5)

Casek = 1

Now we have thata = cosh(
√

ΓT )/
√

Γ. Then (A.1) implies

∂t

∂ρ
=

ρ sinh(
√

ΓT ) cosh(
√

ΓT )√
Γ
√

1− ρ2[1− ρ2 cosh2(
√

ΓT )]
. (A.6)

Integration of this expression yields

t =
1√
Γ

tanh−1

[ √
1− ρ2

tanh(
√

ΓT )

]
+ g(T ). (A.7)

Now, by using a and f in Eq. (9) gives ∂t/∂T =√
1− ρ2/

(
1− ρ2 cosh2(

√
ΓT )

)
. Comparing with∂t/∂T

from (A.7) setsġ = 0. By choosingg = 0, (A.7) is

tanh
(√

Γt
)

tanh
(√

ΓT
)

=
√

1− ρ2. (A.8)

Meanwhile, asa = cosh(
√

ΓT )/
√

Γ, from (3) we have

r =
ρ cosh(

√
ΓT )√

Γ
. (A.9)

Note that (A.8) must be used fortanh(
√

ΓT ) >√
1− ρ2. But if tanh(

√
ΓT ) <

√
1− ρ2, one needs to use

the transformation given in Refs. [11,13].
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Casek = −1, Γ > 0

In this casea = sinh(
√

ΓT )/
√

Γ, and (A.1) leads to

∂t

∂ρ
=

ρ sinh(
√

ΓT ) cosh(
√

ΓT )√
Γ
√

1 + ρ2[1− ρ2 sinh2(
√

ΓT )]
. (A.10)

Following the same steps as before, this implies

t =
1√
Γ

tanh−1
[√

1 + ρ2 tanh(
√

ΓT )
]

+ g(T ). (A.11)

Again, we derive with respect toT , that setṡg = 0 and then
we obtain

tanh
(√

Γt
)

=
√

1 + ρ2 tanh
(√

ΓT
)

, (A.12)

where we choseg = 0. Furthermore, we also have that

r =
ρ sinh(

√
ΓT )√

Γ
. (A.13)

Here, we have used the scale parameter and (3). We
note again that (A.12) is valid whenevertanh

(√
ΓT

)
>

1/
√

1 + ρ2, while tanh
(√

ΓT
)

< 1/
√

1 + ρ2 would

lead to the transformationtanh
(√

Γt
)

tanh
(√

ΓT
)

=

1/
√

1 + ρ2.

Casek = −1, Γ < 0

Here,a = sin(
√
|Γ|T )/

√
|Γ|. Then (A.1) yields

∂t

∂ρ
=

ρ sin(
√
|Γ|T ) cos(

√
|Γ|T )√

|Γ|
√

1 + ρ2[1 + ρ2 sin2(
√
|Γ|T )]

. (A.14)

We can integrate the previous equation respect toρ to obtain

t =
1√
|Γ| tan−1

[√
1 + ρ2 tan(

√
|Γ|T )

]
+ g(T ). (A.15)

Following the same steps as before, the coordinate transfor-
mation is

tan
(√

Γt
)

=
√

1 + ρ2 tan
(√

ΓT
)

. (A.16)

Additionally, in this case the coordinater is

r =
ρ sin(

√
|Γ|T )√
|Γ| , (A.17)

which completes all possible cases.
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