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We develop a formalism which provides a new view for the transformation of spherically symmetric metrics, regarding cosmological and
Kruskal type metrics. Our analysis begins with some general relevant dynamically metrics in cosmology, and prove that they all can be
transformed to a unique static form. We extend the formalism to obtain generalized Kruskal type coordinates in cosmology and black hole
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1. Introduction coordinate transformations, a link between spherically sym-

metric spaces (relevant to black hole theory) and cosmology.
The most illustrative analytical solutions to the field equa-But more generally, we develop a general formalism based in
tions in general relativity, are those where the space hasoordinate transformation, that establishes a correspondence
spherical symmetry. For instance, the Schwarzschild metbetween static/non-static metrics. In particular, starting from
ric for black holes and the Friedmann-Léitna-Robertson-  time-dependent metrics we find the corresponding static met-
Walker (FLRW) metric, that describes the behavior of therics which turn out to be unique solutions.

Universe at cosmological distances, have spherical symme- e argue that our method can be extended to obtain
try (see Refs. [1, 2] and also [3] for generalized models withi ryskal type coordinates in a number of scenarios in black-

extra dimensions). However, it is well known that the de-pole physics and cosmology. Specifically, assuming a general
scription of a non-trivial space-time cannot be complete withmetric in the form

just one coordinate chart, and usually one has to consider sev-
eral patches, where in each patch a distinct set of coordinates 9 5  dr? 2 32
is valid [2, 4]. In view of this, it can be useful to define new dS” = —f(r)dt” + ) +ridr’,
coordinates that cover more parts of the manifold. Then one
sees that a transformation of space-time coordinates can fulye transform it to coordinates where the metric takes a con-
fill two purposes: to reveal explicit symmetries of the spaceformally flat form, at hypersurfaces withQ?> = 0. We
time, as well as to extend the description of the space-timghow that this leads to different possible mappings, includ-
to regions that cannot be considered in the original setuping the Kruskal type transformations. From there, we dis-
This allows, in cosmological and black hole models, to ex-cuss the resulting transformation for several spherically sym-
tend the description beyond the event horizons appearing imetric metrics, such as Schwarzschild, Reissner-Namstr
both cases [5, 6]. In this article, we explore the relations beextremal Reissner-Norsdtm, de-Sitter and Schwarzschild-
tween two possible forms of the metric: one where the coorde-Sitter. A relevant aspect of our approach is that we ob-
dinates associated with the space-time appears as dynamicglin three novel Kruskal transformations that highlights in-
and other where the coordinates takes a static form. teresting features of Reissner-Norguitrand Schwarzschild-
The relation between dynamical type and static forms ofde-Sitter spaces, as well as a type of space described by a
the metric has been a topic of great interest in the literaGeneralized-de-Sitter metric. For all cases, the appropriate
ture [7-12]. For instance, the well known association of deselection of integration constants assures two things: first,
Sitter space with the FLRW metric has been used in a deepéhat the coordinates singularities can be removed; and sec-
analysis in general relativity [7, 8]. However, interpretationalond, that the different regions -for instance, interior and exte-
problems between a static and a non-static representation abr of a black hole- can be distinguished in the Kruskal rep-
the same underlying space have been subject of debate [13gsentation. We argue that this may shed some light on the
In this work, one of the main ideas is to find, at a level of underlying symmetries of a more general Kruskal formalism.
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The rest of this work is divided as follows: in Sec. 2 we From now on, we will denote partial derivatives respect
deal with the FLRW metric transformed to a ‘static’ type met-to 7" with an overdot, while prime will mean partial deriva-
ric. We show the way this leads to a Friedmann equation withives respect t@, such ag = 9t/0T andt’ = 0t/dp. We
cosmological constant and zero matter density. The result istart with the tensor transformation
that for all spherical, hyperbolic and plane geometries, all 90 G
converge to the same de-Sitter type metric. For sake of com- G = LL% 5. (8)
pleteness, we also solve for the scale parameter (7). In Qut v
Sec. 3we review a further generalization and find that the pregor ¢, g1, andg;, after rearranging some terms, this leads
vious result of a Friedmann equation for vacuum is uniquegq

as well as the general form for the FLRW metric. In Sec. 4 )

we show the way this procedure can be applied in general to 2 = —(f + pa?), 9)
spherically symmetric metrics; we find that there exists sev- f?
eral possibilities for the solutions. One of this possibilities a2 f
leads to Kruskal type coordinates, and in Sec. 5 we review t? = F ( 1 % 2) 5 (10)
some patrticular solutions for different static metrics. Finally, P
in Sec. 6 we make some final remarks. and

f4t'2t/2 _ p2012d27 (11)

2. From FLRW cosmology to static metrics respectively. Substituting (9) and (10) into (11) one obtains

Consider the gravitational field equations with cosmological

1 2052
constanth: f=1=p7a"+k), (12)
R, — lgW(R —2A) = 87GT,,. (1) wheref is cqnsidereq tobe a function_pfandT.
2 By inserting (12) into (9), one obtains
By assuming that the space is maximally symmetric with
commoving coordinate§T’, p, 6, ¢) describing a spherically 1= kp? (13)
symmetric space, one can solve (1) for the metric in the form R
2 . .. .
dS(21) — —dT? + a*(T) (1 fpk;ﬂ 4 p2dQ2> @ while combining Egs. (10) and (12) one finds that
. : . 2 pra*a?
wheredQ? = d#? + sin’ 0 d¢? is the solid angle line ele- te = A=) (14)

ment. Alsok can take the valuel 0 or —1 denoting space-
like slices at constanrit corresponding to spherically, flat and Now we use the fact that’ = —2p(a? + k) and f =

hyperbolic topologies, respectively. Furtherma(@’) isthe  _ p?ad to take the partial derivatives of (13) respecptand
scale factor, whose evolution is obtained by assuming that thg; (14) respect tdl’, in order to obtaind?t/dTdp in both

energy-momentum tensor takes the form cases. After equating and performing some simplifications,
TH = (py + py)uu” +prgh”. 3) the next relation appears:

Hereu* is the four velocity, whilep; andp; are the density [(@® + k) —ad] [1+ p*(a*> — k)] = 0. (15)

of energy and pressure describing a perfect fluid. From there,

one obtains the Friedmann equations In general, the second factor is nonzero, since then it would

Q2ak  8iC A imply thata is a function ofp and this is incongruent with

5 —pr+ =, (4) a=a(T); equivalently, the second factor equal to zero would
a 3 3 imply, by (16), thatf can be put as a function @fonly. It
and i 1 A follows that only
a 3 (ps + pf>+3 (5) i_a —Hs, (16)

a a?

Now consider the transformation fromiS?, = o
guwdzidz” given in (2), to the static spherical symmetric holds. By noticing thail(a* + k) /dt = 2ai, one can see that

form d5(22) = Yopdz'*dz’®, namely this equation is equivalent to
d’f’2 d(a2 + k) a .
2 240 42402, — L =2-(a® +k). 17
dS(y f(r)dt® + o) + r2dQ (6) o a(a +k) 17)
The solid angle is the same for both cases in such a way th&s this can be expressed as a total derivative of logarithms,
the angular terms in (2) and (6) imply this leads to )
a*+k
r = ap. (7 —— =1, (18)

a
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whereT is an integration constant. Then, by (16) we haveAs we shall see in the next section, this static form will be

also the relatio@ = I'a. preserved even when generalizing the line element given in
Observe that (18) reduces to the first Friedmann equakq. (2).

tion (4) for vacuum gy = 0) with cosmological constant

A = 3T". This identification is validated by the comparison

of & = T'a with the second Friedmann equation in vacuum, o

namelya/a = A/3 in (5). Itis interesting to note that the 3. Afurther generalization.

Friedmann equation emerges from a symmetry transforma- ) )

tion, without invoking any dynamic equation such as the Ein-Now, let us consider a more general form of the metric, but

stein field equations. still assuming commoving time and radial symmetry. In this
Going back to (18), rewriting it a8 = vTa? — k, we  S€Nse, the ansatz now reads as

can solve fork = 0, 1 and—1. For the moment we take into

account the casds # 0. It turns out that the equality would Sty = —dT? + a*(T) (b*(p)dp” + p?dQ%) . (22)

describe Minkowski space, as we shall see below.
Fork = 0 (I' > 0), the result isa = eVIT . For the If this metric is transformed to (6), then the relation (7),

closed topology wheré = 1 (here alsd’ > 0 is forced), r = qp, is satisfied again. Even more, transformations (9)

a(T) becomes: = (1/VT) cosh vI'T, where we have cho- and (11) hold again. However, instead of (10) we have

senT = 0 as the comoving time whem = 1/v/T. Mean-

while, with & = —1, T’ can be either positive or negative. a2

ForT > 0, the solution isa = (1/+/T)sinhvT'T. In this t% = I2

case, we have chosen the origin of time in such a way that

a = 0whenT = 0. Fork = —1 andI" < 0, the solution

corresponds te = (1/4/[T]) sin /|T|T".

(1—02%f). (23)

Substituting (9) and (23) into (11) leads after simplifica-

Concerning the functiorf, we remember from (7) that tionto
a = r/p, that together with (12) and (17) imply that Fe bl2 _ a2, (24)
f=1-TIr% (19)
o . ] Insertion in Eq. (9) and (23) leads to the succinct expres-
Summarizing this section, fdf # 0 we have the follow-  sjonsi¢ = 1/bf andt' = paab/f. As in the previous
ing solutions: section, we derive this relations with respectptand with
respect toT, respectively. By usingf = —2p%ad and
Curvature Metric = —2(b'b=2 + pa?), and equatingt/dp with ot' /0T,
k=0,T' >0 dS%= — dT? + 2VIT (dp* + p2dQ?) we see that after some algebra the next relation holds:
cos 2
F=1,T >0  d§*=—dr? 4+ <207 (% + p2dﬂ2) b = pb® (aii — a?) . (25)
I 2 _ 2 M dp? 2 10)2
k=-1I>0 d5=-dI" + r (HPQ sy ) Sincea = a(T') andb = b(p), (25) implies that
sin? p
k= — 1T <0 ds?=—ar? + 22 0/07) (2 + p2a0?) ¥
. 2 ai—a®> = — =k, (26)
pb?

The first solution is the usual de-Sitter space, while the

second and third ones are the two types of Lanczos universgsherex is a constant. Note that the valuessofan be iden-
The _fourth solution is the_only a_lllowed solution with< 0, tified with those ofk (1, 0 or —1), by rescaling adequately
and it corresponds to anti-de-Sitter space [12, 13]. the parameter (7). With this identification, the previous

Finally, choosind™ = 0 in Eq. (18) implies that the scale relation fora(T') is just equation (16) [1,2]. Furthermore,
parameter obeys the equatiah + k¥ = 0, and the corre- integration oft’b=3 = kp leads to

sponding solutions fog; in Eq. (1) areg;; = 1fork =0

andg;; = t2/(1 + r?) for k = —1; this last solution is re- )

ferred as Milne model. Both get mapped (in a trivial way) to 2 B —rp”, (27)

Minkowski space. These two solutions, as well as the ones

listed in Eq. (20), corresponds to the six possible transformawith B another integration constant. Assuming local flatness

tions to the static form given in Eq. (2) (see Refs. [12, 13]).at slices withT constant,B can be set equal tb. Hence,

The whole set of solutions share the corresponding statieven by considering a more general metric in our formalism,

form of the metric namelde23) in Eq. (22), a transformation to the static form
dr? given by (é) restricts the metric to the form given by (2), and

Sty = — (1 =Tr?) dt* + T2t r?dQ®  (21)  with same solutions listed at the end of Sec. 2.
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4. Extending the formalismto include Kruskal can be set equal to Then, setting® = 1 andyx = 71,

type coordinates from the same relation (36), it resuld” = d® = f~'dr,
while dp = dt. From (30) and (34) one learns that? =
It turns out that the same formalism can lead to Kruskal—f/ (9,p)> = —f. Inserting all this into the form of the

type coordinates. Let us assume that the metric can take etric (28) we obtain the same metric given in Eq. (6). A
form that is conformally flat in the space-time slices with similar argument holds for the cage = 0. Thus, with
df =d¢ = 0: a3 = 0 the transformation maps onto itself ape is pro-
) ) ) ) ) ) portional tof, a reminiscence of what occurs with the use of
Sty = N°(T, p)(=dT" +dp”) + (T, p)d¥°. (28)  tortoise coordinates, whete™ = (1 — r,/r)~Ldr in such a
way that— (1 — rs/r) dt> + (1 —rs/r)~tdr? transforms into

The transformation (8) of the metric components given in (1= ry/r) (dtg ¥ dr*Q), wherer. is the Schwarzschild

Eq. (28) to the static form (6)S7,) = —fdt* + f~'dr? +

r2dQ?, leads to radius [1,2].
C
(OT)? = (Dup)? + [N"2, (o) CAeI<0
© T)z _ (ap)g _ N (30) By (37) we have tha® « sin(y/|af|t + ¢¢) and conse-

quently -by (36)- that o cos(+/|a8|t + ¢o). We can fix the
phase angle to zero in such a way tifiat 0 coincides with
8, TO.T = dypdyp. (31) t = 0. Also, without loss of generality we take > 0 and

6 < 0, thatimplies that > 0 in Eq. (38). Then the solutions
Substitution of (29) and (30) into (31) gives, after clearing, are given by

the next relation:

and

) ) O(t) = B sin ( —af ) : (39)
N=2=(0,p)" f = (Oep)” f7". (32)
and
This allows to simplify (29) and (30) as §(t) = Bz cos ( —af3 ) ; (40)
8T = fo,p (33) where the relatioB,; = /—3/aB; holds in such a way that
dO/dt = af in Eq. (36), is still satisfied.
and From (36) we have that = (f/5)d®/dr, that together
0,T = f~19,p, (34) with (38) leads to
respectively. The form of these two expressions suggests to de _V —BVo — ad? (41)
takeT'(t,r) = O(t)®(r) andp(t,r) = £(t)x(r). Then those dr ! ’
two relations leads to which can be integrated, yielding
1d0  fdx o dr
cdt Sar - © (35) q):\/;sin (x/—aﬁ/f>. (42)
and L de fdo Inserting this result in (38), we have that
6(7:*?:5; (36) o dr
t o xdr xz,/cos<\/—aﬁ/>. (43)
wherea and 3 are constants. Both expressions imply vari- —B f
ous relations. First, from (35) we deriv®/dt = o with  Remembering thaf'(¢t,7) = ©O(t)®(r) and p(t,7) =
respect ta and use (36). It results in &(t)x(r), in this case we have
2 . dr .
@ — B0 =0. (37) T(t,r) =sin (x/—aﬁ/ ) sin ( —af3 ) , (44)
dt? f
On the other hand, dividing (36) by (35) we have that2d
a®d®d = Bxdy, giving the function relation p(t.7) = cos <\/jqﬁ/ 6?) cos ( —o ) )
ad? — Bx? =0, (38)

Here we have seB, /o /a = 1 (justified by rescaling coor-

with o another integration constant. There are several reledinates). By using Eq. (45) in Eq. (32) for differefiin the

vant possibilities for the produet3 in Eq. (37): metric, the factorV2 appearing in (30) can be obtained. The
Caseaf3 = 0. Assuming thaty = 0, then (35) implies resultis

that © is a constant, in such a way tha{T'" = 0; this in

turn leads tod,.p = 0 due to (33), and also that is con-

stant. By (36), rescaling and shifting the origin of tinge,

f
—af [cos (2v/~apt) —cos (2\/T“ﬁf %)} |

N?=

(46)
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Caseaf >0

Equation (37) leads t&(t) = C sinh(y/aBt+¢g). In order
to gett = 0 whenT = 0, we choosepy = 0 and then we
have the solutions

O(t) = C; sinh (@t) : (47)
and
£(t) = Cs cosh (@t) , (48)

whereCy = +/(/aC;. Clearly, this two relations lead to

ag? — 302 = BC?%, obtained also by using (35) and (36).
Now take into account that (38) impligs= ++/«a/3®,
with ¢ = 0. Inserting this in (35), we obtain

1d®

_ -1
P dr =Vl

(49)
By integrating this expression, we see that
o(r) = Ae*VoP ¥ (50)

and consequently (38) implies that
x(r) = :I:A\/geimf %,

with A constant. Thus, farg > 0, the coordinate®'(¢,r) =
(1)@ (r) andp(t, r) = &(t)x(r) are

(51)

T(t,r) = (r) sinh (@t) : (52)
and
p(t,r) = ®(r) cosh (\/@t) . (53)

Here,®(r) is givenin Eg. (50) and we set = C, = 1. Also,
we have omitted a possible minus sigrpift, ), since it just

5.1. Schwarzschild

In this case we havg = 1 — r;/r, wherer, = 2M is
the Schwarzschild radius. This leadsftdr/ (1 — [rs/7]) =
r+rsln(r/rs — 1), forr > rg. Thus, substituting this result
into (50), yields

_r_ r
Pschw = €77 ([ — — 1,
Ts

where we have set = 1/(2r). Then (52) and (53) become

(55)

T T t
Tschw= €2%rs | — — 1sinh , (56)
T 2rg
and
_r_ T t
Pschw = €% . | — — 1 cosh , (57)
T 27,

respectively. Further, from (28) and (54) we find that the the
metric is given by
2 ary - 2 2 2 702
dS5chw = —>€ 75 (—=dT* + dp*) + r=dQ°. (58)

We recognize in Eqgs. (56)-(58) the Kruskal transforma-
tion associated with the Schwarzschild metric [14, 15]. As
usual, the relatiop2 ., — T2, = €'/" (r/rs — 1) is useful
to verify the properties of this space-time, and in particular
to extend the analysis to the region< rg (See [1, 2] and
also [16] and references therein for recent developments).

Moreover, it is worth mentioning that our formalism is
more direct and general than the usually given in textbooks,
since we just need to specifyand then solve fo in order
to obtain the full set of coordinate transformations Tgrp
andN (T, p).

5.2. Reissner-Nordstdm

For the electric charged static black hole we hgve=
1—rg/r+Q*/r? = (r —ry)(r —r_)/r? wherery =

plays the role of an inversion of coordinates in the analysis ofjt , ~ r.) is given by

the regions considered.

The function N(T,p) can be obtained by inserting

Egs. (33), (52) and (53) in Eq. (32). The result is:

N? .
af

(54)

Observe that the functiofi(r) determines all possible trans-
formations, and the relations (52) and (53) determine Kruskal
type coordinates for a giveft In the next section we obtain

the explicit form for several cases of interest.

5. Kruskal type solutions

For simplicity, we definey = ++/a and proceed to obtain
the Kruskal type solution for different cases, by changing

in dS?

& = —fdt?® + f~ldr? + r2dQ2.

M + /M? — Q2. The solution tof f~'dr (again region
dr 1
B A R —
! 2/ M? — Q?

X [7’3_ In(r—ry)—r2ln(r— r_)] +const (59)
By setting the integration constant to
(r2Inr_ —rilnry)
(=)

and following the same steps as in the Schwarzschild
case, the Reissner-Nordstn metric is transformed into the
Kruskal form by means of

ro oy
Prn(r) = ewri(ﬁ 1)

Rev. Mex. Fis68040701
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where ( = ~(r, —r_). The corresponding coordinate Now the metric would be specified by usiny? =
transformations acquire the form f®2~72, that yields
- o ~(F-e) (5 -w2)
(F-1) AS% = Z+<7’—1)e (%)
Trn(t,r) = A sinh ~t, r Ty
<r — 1) x (=dT? + dp?) + r2dQ?. (63)
- (60)
¢ri Also,
PR N(t r) =" (ﬁ _ 1> cosh~t 2 T2 1 (7“/7“_,_ - S01) (T/T+ - 902)
- 9 r2 . — = — .
<7» . ¢rz PEX Ex= (/74 )exp{ 2(r/rs — 1] }
r_ It is interesting to observe that the golden ratjgsand ¢,

emerge in this extremal case (see Refs. [19, 20] and refer-
Then the Kruskal type solution for the charged static blackences therein).

hole is
5.4. De-Sitter space
- 2¢r2 +1
4S2 . — Le%w (H - ) In this case, for (17) we havg = 1 — I'r?, wherel' >
RN ™ 2,2 . 2¢r? -1 0 leads to de-Sitter space. Now we hayef'dr =
(E _1) I~!/2arganh(vTr) + const. This leads to the radial
< (—dT? + dp?) + r2dQ2, (61) function dus(r) = \/(1—vVIr)/(1+vIr) = (1 -

VTr)/v/1—=Tr2forr < 1/y/T. We have chose = —T

Thus, the different regions of this space can be visualize@nd the integration constant equal to zero. The Kruskal coor-

from dinates are then
207} 1—vVTr . (
o Tys(t,r) = ——=-sinh \/ft),
R . N
PR-N R e 2012 JF

T 1) 1-VTr
(T— t,r) = ————cosh (ﬁt) i 64
pas(t,T) ioTe (64)

(For comparison set = (r,. —r_) /r% and see for instance Thus, in this case the metric takes the simple form
Refs. [17] and [18]). 1 2
aS%s = T (1= VTr) (~dT? + dp?) + r2a®. (65)

The coordinates (64) vyield pis — Tk =
(1 — \/fr) / (1 + \/fr). Note that the negative sign cho-

The Reissner-Nordgim extremal metric is of theoretical sen iny = —+/I" makes sense: with this selection the region
interest in several contexts. This solution is obtained fromp < » < 1//T would be described, in th@’, p) system, by
ry = M +/M? — Q? whenM? = Q?, which means that hyperbolas starting from3s — T3 = 1 until reaching the
r+ = M. In such a case the metric takes the fal§¥ =  asymptotes’ = +p. Observe that this is valid in the two
— (1= M/r)*dt>+(1 — M/r) > dr2+1r2d02. So, ourtask quadrants wherp > 0. On the other handy > 0 would

is to determine the integrgl f~'dr = [ r?(r—M)~2dr. We  result in unbounded hyperbolas, since thg— T35 — oo
obtain| f~'dr = r—M? (r — M)+2M In(r—M)+const  whenr — 1/4/T. Compare this solution with Refs. [21-23].
and hence one may write the radial functidras ®e«(r) =

(r/ry — Vexp{(r/ry — 1) (r/ry —2) /[2(r/ry —1)]}, 5.5. Schwarzschild-de-Sitter metric

\év:\?eresilty :(} 4—;4\)/—52 / zfniinti?inteéiatiofgézs‘tgts%q\:lvsl to As we mentioned before, the solution for black hole with
—2M In M. With this at hand, the coordinates (in the patchcosmologlcal constant comes from taking the radial func-

5.3. Reissner-Nordstbm (Extremal)

wherer > r,) are given by tionasf = 1 — ry/r — I'r?2. The three roots of the cu-
bic equationr — r, — I'r® = 0, namely @1, X2, A3), are
<%7w1>(%7¢2) real and distinct ifM/ < 1/3+/3T (see [24] and references
+ ) Lj) m ‘ therein). In this case we se; > A > s, in such
Tex(t,7) = e + o —1sinho—, (1)  a way that the first root corresponds to the cosmological
"+ T+ horizonr = )\;, the second root to the black hole event
(£ —e1)(F-v2) horizonr = \,, and the third one is a negative (unphys-
pex(t,r) = € 4(ﬁ71) T 1coshi. (62) ical) root. It is wor_thvx_/hlle to mention that th_eltwo hori-
Ty dry zons at\; and ), coincide whenM = (3\/371“) . Then
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S dr =In[(r —Xp)7" (r = X2)7% (r — A3)7®] + const.,  Also, the relation
wheres; = \;/(1 — 3T'\%), wherei = 1,2,3. By (50) we

Ty — 72,T—+ tan” (=
have Peas — Tdas = T++T€ - <’)
o r Y01 r Yo2 r Yo3 +
- =|—-1 — -1 1—-— . _ o . .
saslr) </\1 ) (Az ) ( )\3> holds, confirming that the qualitative behavior of the space in

(66)  these coordinates is very similar to that of the de-Sitter space

Here, we have chosen the integration constant equal tgnalyzed before, in the patch wherec r_.

—o1In; —ogln Ay — 03 1n(—>\5) From (52) and (53), it

results
Tadt.r) = (T B 1) e (T B 1) o 6. Final remarks
A1 A2
~og In this work we have analyzed the relationship between some
« (1 _ 7’) sinh ¢, spherical symmetric metrics for two cases: cosmological
A3 FLRW and Kruskal type metrics. In the first case, we have
r VoL Yoz shown that, by imposing that the FLRW metric to be trans-
ps-as(t, ) = ()\ - 1) ()\ - 1) formed into the form
1 2
Yo3 2
(12 2) coshnt, ©7) 4S? = —f(r)de? + S 202, (72)
A3 f(r)
where we have taken into account thgt< 0. leads tof = 1 — I'r? with solutions summarized at the end
From (28) and (54) we find of Sec. 2. In fact, the only possibilities resulting from this
TAdods [ 7 1-2v0q symmetry transformation are the spaces known as: de-Sitter,
dS3 4= — ( - 1) anti-de-Sitter, Lanczos, Milne, and Minkowski. It is remark-
v A able that as a by-product of the symmetry transformation, the
r 1=yo2 r \ 172708 Friedmann equation with cosmological constant emerges.
X </\2 - 1) (1 - )\3) Next we moved in the reverse order: starting from the
general metric (72), we applied a transformation to obtain a
X (=dT? + dp?) + r*(T, p)dQ°. (68)  metric which is conformally flat in hypersurfaces withh =
i ) i d¢ = 0. This led to two non-trivial possibilities, one in which
5.6. Ageneralized de-Sitter metric the coordinates are proportional to sines and cosines; and a

econd solution in terms of hyperbolic trigonometric func-
ons, that resembles the Kruskal solution for Schwarzschild
space.

In Sec. 5 we used the method to explicitly obtain the coor-
dinate(T, p) for several well known spaces: Schwarzschild,

In Ref. [25] a generalization of de-Sitter space is consideret{?
where the metric is of the type (6), with= 1 — h2r2 4 ¢*r?. !
Here two cosmological horizons arise, givenily = (h? +
VRt —4gY)/(2¢*). In order to calculatéd(r), we perform

the integral Reissner-Nordstim, extremal Reissner-Norsdin, de-Sitter
dr 1 and Schwarzschild-de-Sitter. Here, the analysis was not ex-
f q*(ri —r?) haustive, in the sense that the main purpose was to show how

1 1 the method of two-metric transformation correctly works.
> ( tanh ! {r} — — tan~! [TD . (69) For instance, we only solved for the exterior regions in the
T+ T+ r— case of black holes, and for the region inside the cosmo-
By choosingy = —¢*(r2 — r2)r., we have from (50) that logical horizon in the de-Sitter case. Meanwhile, we found
that choosing properly the integration constanh ®(r) =
Poas(r) = re =T - tan ! () (70) Aexp (v [[dr/f]), given in Eq. (50), one preserves desir-
cas re 4T ’ able properties of the Kruskal extended space. Specifically,
in the extremal Reissner-Norsdatn case we have chosen
in such a way that the interior and the exterior regions of the
black hole get uniquely represented in the Krusial p)-
coordinates framework. Furthermore, in the de-Sitter case

—r _Tt tan—t( we favored a negative sign i, since this ensures that in
Teas(t,r) = ) ——¢ ™ (=) sinh (yt) , g gn m
Ty +r 7

for the region withr < r_, where “GdS” stands for
Generalized-de-Sitter space The corresponding Kruskal
type coordinates are given by

the limit» — 1/+/T, the hyperbolas representing the space
do not open to infinity. It is worthwhile to remark that

_ T pan— 1 . . .
poas(t, ) = /7j+ fe i tan () cosh(yt). (71) Wwe ha\_/e obtained three nove! Kruskz_;d transformatlong. for
L the Reissner-Norsdim (where interestingly thgolden ratio
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arises), Schwarzschild-de-Sitter space and the mentioned &asek = 0
Generalized-de-Sitter space.

Further interesting prospects of our work could emergeConsideringa = ¢VT7 [see (16) fork = 0], (A.1) yields
as follows. Clearly, one can find other Kruskal type solutions . -1 oV/TT 2
by considering other functiong(r) in the metric (2) (for in- 0t/op = ?/ap B (2ﬁ> In(1 - Te P )]' Hence,
stance the space analyzed in Ref. [26]). In this sense, the foy/€ can write
mulation of Secs. 4 and 5 complements other works that con- 1
sider the properties of static metrics in whigh = —1/goo t = ———1In(1 —Te>VTTp?) 4 ¢(T). (A.2)
[27-30]. 2vT

Another interesting aspect is that the formulation of this
two-metric transformation can be generalized in a straight- Note that inserting (8) and (19) in (9) yield& /0T =
forward manner to higher dimensions. First, notice that thel/ gl —Te2VTT p2) . Comparing withdt/dT obtained from
angular term2dQ? is a passive term in all the development. (A.2), results ing = 1, and then
Then one may readily generalize it to higher dimensions. Of

course, in this case one must modify also the funcfion. f—T_ 1 In (1 B FeQﬁTp2> (A3)
For instance, in the Schwarzschild type metric in arbitrary 2vT ’ '
D-dimensions one has

Fo1- s (73) where we have chosef(T’) = T. This result, withr =

rD=3" eVTTp, leads to [10,13]

There is at least one possible scenario in which such a gen-
eralization may have important and interesting consequences, T — 1 In (1 _ Fr2) +t (A.4)
namely black holes associated with parallelizable spheres. As 2T ’
it is known, the only parallelizable spheres &€, S® and
S7, which corresponds to the existence of normed divisiorahd
algebras: real numbers, complex numbers, quaternions and r ~VTt. (A.5)

= e
octonions, respectively [31, 32]. In this way, from the point P V1-—Tr?
of view of parallelizable spheres, the event horizon of black
holes associated with the sphef®s 52 andS” seems even Caselk — 1
more interesting that the tradition&f-event/horizon. o

Also, for further research it may be interesting to consider, _ o
the connection between the transformations correspondin'g\;IOW we have that = cosh(vT'T)/vT. Then (A.1) implies

to negative and positive values of3 in Sec. 4. Since for

a3 < 0 the coordinate transformations are related to the ot _ psinh(vVTT) cosh(vTT) ) (A.6)
trigonometric functions sine and cosine, while fo8 > 0 dp  VT\/1—p2[1 — p?cosh®(VTT)]
corresponds to hyperbolic trigonometric functions, one may

expect a connection between these two scenarios. This magtegration of this expression yields

be analogue to the transformation between spheres and hy-

perbolas. In fact, one finds such example in complex vari- 1 ! 1—p2? T A7
able, where the mappinfy= b (2a>2~2 — 1) transforms the VA tan tanh(VIT) +9(T). (A7)

complex variable’ = u + iv to z = z + iy connecting the

i 2 2 _ 12\ 2_,2 _ 52
circumference.® +v* = b* with the hyperbola:® —y* = a“. Now, by usinga and f in Eq. (9) givesdt/dT —

Moreover, we argue that this transformation admits a confor- ) 5 , ,
mal mapping interpretation. V1-—p2/ (1 — p? cosh (\ET)). Comparing Wlthat/o”'T
from (A.7) setsj = 0. By choosingg = 0, (A.7) is
Appendix
PP tanh (\/ft) tanh (\/fT) =+/1—p2 (A.8)
A. Coordinate transformations from metric
with scale parameter to its static form Meanwhile, as; = cosh(vT'T) /T, from (3) we have
For sake of completeness, we derive the explicit relation be- MW(VTT
tween the system@, ) and (T, p) listed in (16). First, we = pcos\(}m. (A.9)
combine (8) and (10) to obtain I
ot = 22 (A.1) Note that (A.8) must be used foranh(vI'T) >

Op /1 —kp?[1 = p*(a? + k)] /1= p2. Butif tanh(VTT) < /1 — p2, one needs to use

Thus, the idea is to integrate (A.1) for the different cases. the transformation given in Refs. [11,13].
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Casek=-1,I'>0

In this case: = sinh(vT'T)/vT, and (A.1) leads to
ot psinh(vVTT) cosh(vTT)
5/0 VT 1+p%1—p 2 sinh? fT)]
Following the same steps as before, this implies
1
——tanh™!

v [\/1 ¥ 02 tanh@/fT)} +g(T). (A1)

Again, we derive with respect t6, that setg; = 0 and then
we obtain

tanh (frt) = \/1+ p?tanh (\/fT) , (A.12)
where we chose = 0. Furthermore, we also have that

B psinh(vTT)

= T

Here, we have used the scale parameter and (3).

note again that (A.12) is valid wheneveinh (\/fT> >

1/4/1+ p?, while tanh(ﬁT) < 1/4/14 p? would

lead to the transformatiomanh (ﬁt) tanh (ﬁT)
1/4/14 p2.

Casek=-1,I'<0

Here,a = sin(y/|T'|T)/+/|T|. Then (A.1) yields

(A.10)

t =

(A.13)

ot psin(+/|T|T) cos( |I‘T) (A14)
dp  /IT|V/1+ p2[1 + p2sin(y/|T|T)] '

We can integrate the previous equation respegptttoobtain

fan~! [ 1+ p? tan( |F|T)] +g(T). (A.15)

1
VT
Following the same steps as before, the coordinate transfor-
mation is

tan (\/ﬁ) =4/1+ p?tan (\/fT) . (A.16)
Additionally, in this case the coordinatds
_ psin(\/[T[7) ALT)
VIT

We

which completes all possible cases.
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