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Radiation from a dipole perpendicular to the interface
between two planar semi-infinite magnetoelectric media
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We consider two semi-infinite magnetoelectric media with constant dielectric permittivity separated by a planar interface, whose electro-
magnetic response is described by non-dynamical axion electrodynamics and investigate the radiation of a point-like electric dipole located
perpendicularly to the interface. We start from the exact Green’s function for the electromagnetic potential, whose far-field approximation
is obtained using a modified steepest descent approximation. We compute the angular distribution of the radiation and the total radiatec
power finding different interference patterns, depending on the relative position dipole-observer, and polarization mixing effects which are
all absent in the standard dipole radiation. They are a manifestation of the magnetoelectric effect induced by axion electrodynamics. We
illustrate our findings with some numerical estimations employing realistic media as well as some hypothetical choices in order to illuminate
the effects of the magnetoelectric coupling which is usually very small.
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1. Introduction (MEP) [19]. The recent discovery of three-dimensional topo-
logical insulators (TIs) has boosted the interest in this topic
The radiation produced by an electric dipole near a planar inpy providing new materials where this effect is predicted to
terface has been well studied over the years and has remainggcyr [20-25]. Generally speaking, Tls belong to a novel
a relevant subject of research for physicists and engineeigate of matter in which the characterization of their quantum
due its relevance in a wide range of phenomena like pracstates does not fit into the standard paradigm of condensed
tical applications in radio communications [1], THz Zenneckmatter physics whereby the phases of the material are clas-
wave propagation [2], near-field optics [3], plasmonics [4]sified according to order parameters arising from the sponta-
and nanophotonics [5], just to mention a few examples. Imheous symmetry breaking of the corresponding Hamiltonian
1909, Sommerfeld [6] published a theory for a radiating ver-according to the phenomenological Ginzburg-Landau theory.
tically oriented dipole above a planar and lossy ground whichp, distinguished example of this classification are normal su-
formed the basis for subsequent investigations [7-11]. Proljerconductors, where gauge invariance is spontaneously bro-
ably, by the fact that the early theory of dipole emission neaken. Instead, these states are classified according to topo-
planar interfaces was written in German, although there wagygical invariants that arise in the Hilbert space generated by
an English version summarized in Sommerfeld’s lectures ofhe corresponding Hamiltonians in the reciprocal space of the
theoretical physics [12], many aspects of the theory werrystal lattice. They are protected by time-reversal-symmetry
reinvented and clarified over the years [13-16]. (TRS) and admit an insulating bulk together with conduct-
Here we consider planar interfaces constructed with lining surface (edge) states. The imposition of this symmetry
ear homogeneous and isotropic magnetoelectric (ME) medigields two classes of materials: standard insulators labeled
giving rise to the so called magnetoelectric effect (MEE),pby a zero MEP and Tls characterized by a MEP equal to
whereby electric (magnetic) fields are able to induce addix. These new materials host a number of exceptional elec-
tional magnetization (polarization) in the material. This ef-tromagnetic properties. Among them we have: (i) they can
fect, which was predicted [17] and discovered [18] in an-carry currents along the edge channels without dissipation,
tiferromagnets, has been widely studied along the years ifjj) their MEP is quantized, (jii) the conducting edge states

multiferroic materials and it is codified in an additional pa- can be interpreted as quasi-particles being massless Dirac
rameter of the material: the magnetoelectric polarizability
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fermions. This by itself is an important feature that makesmethod, which is appropriate to the situation where the inte-
contact with high energy physics and which provides the opgrand is not a smooth function in the vicinity of the stationary
portunity to investigate the existence of unseen particles likphase due to the appearance of poles in the steepest descent
Majorana fermions, for example. (iv) they are predicted topath at this point.
exhibit the quantized photogalvanic effect in which light can ~ This approximation,which heavily relies upon Ref. [13]
induce a quantized current. For an extensive review of thés explained in detail and carefully carried out in the Ap-
properties of Tls see for example [26—28]. All these new feapendix B. These results are summarized in the Subsec. 3.1.
tures provide additional motivation to reconsider the problem  As a consequence of the presence of the pole we find that
of radiation in magnetolectric media. the 4-potential acquires a contribution from axially symmet-
The effective theoretical framework to deal with magne-ric cylindrical waves (denoted also as surface waves) besides
toelectric media is motivated by axion electrodynamics [29]the standard spherically symmetric ones. A detailed analysis
which consists of adding the terl, = g4+~ a(t,x)F,“,FW on the former kind of waves allows us to introduce what we
to the Maxwell Lagrangian densit,.,, plus a kinetic and a  call the discarding anglé,, which permits us to divide the
mass terms for the pseudoscalar field, x). The so called space in two regionsl; where the cylindrical wave contri-
axion field a(t,x) was introduced in Ref. [30] to propose bution can be neglected aid where this contribution has to
a solution for the strong CP problem in strong interactiongoe considered within a certain range of parameters in what is
[31,32]. In the original formulation [29], the coupling con- called the intermediate zone in the literature [13]. To charac-
stantg,-~, arised from a specific grand unification model of terize the relevance of these cylindrical waves we introduce
the strong and electroweak interactions. Alg9,, is the a rapidly decreasing function measuring their amplitude and
electromagnetic tensor anb*” = (1/2)e"**AF,5 is the  realize that for observation distances further away from the
dual tensor. The well known relatiofi,, F'** = —4E - B intermediate zone in the regian, they turn out to be very
allows to rewritel, in terms of the electri® and magnetic much suppressed with respect to the spherical ones. This sit-
B fields. As we will show in the following the coupling uation is quantitatively explained in detail also in the Sub-
L, encapsulates the MEE which characterizes the electrgsec. 3.1. In Subsec. 3.2, the far-field expression&fand
magnetic response of the materials we consider in this workl3 are calculated for each region. In Sec. 4 we consider the
Thus we restrict ourselves to a non-dynamical axion fielgangular distribution, the total radiated power and the energy
a(t,x) — 9(x), to be called the magnetoelectric polariz- transport of the dipolar radiation. In the Subsec. 4.1 we estab-
ability (MEP), which we consider as an additional electro-lish the numerical parameters to be used in the subsequent ap-
magnetic property of the medium, in the same footing aglications. Subsection 4.2 comprises a detailed examination
its permittivity and permeability [23, 33, 34]. Following a of the angular distribution spectruiP/dS2 in the regionV; .
standard convention we now consider the interaction ternin Subsec. 4.3, we calculate the power radiated into the region
Ly = —(a/4m?)9(x)E - B, wherea is the fine structure Vi. Subsection 4.4 is devoted to the energy transport of the
constant characteristic of the electromagnetic interaction bgadiation in the regioV,. Here we also give some numerical
tween fermions and photons in the material, which producegstimations considering the media already discussed in Sub-
this effective term. We calb-Electrodynamics«{-ED) this  secs. 4.2 and 4.3, plus some additional hypothetical choices.
restriction of axion electrodynamics and our purpose is td=inally, Sec. 5 provides a concluding summary and the con-
study the radiation produced by a dipole oriented verticallyclusions from our results. In the Appendix A we derive the
with respect to the interface between two semi-infinite pla-exact expressions for the potentid), required to calculate
nar magnetoelectric media, having different constant MEPghe electromagnetic fields. The far-field approximation is car-
Excluding important differences in their microscopic struc-ried out in the Appendix B using a modified steepest descent
ture, we will refer to the medium as a magnetoelectric, ormethod. The final Appendix C includes a brief review of the
av-medium, as long as its macroscopic electromagnetic reFaddeeva plasma dispersion function which arises in the dis-
sponse can be described in the framework oftHeD. cussion of the cylindrical waves. Throughout this paper we
The paper is organized as follows. In Sec. 2, we preseri#Se Gaussian units with = ¢ = 1, the metric signature is
a review ofy-ED which also contains a summary of the cal- (+, —, —, —) and<’'** = 1. We follow the conventions of
culation of the time-dependent Green'’s function (GF) for theRef. [35].
4-potential A* in our setup. As the source of the electro-
magnetic fields, in Sec. 3 we introduce an oscillating verti-2 - y-Electrodynamics
cally oriented point-like electric dipole located at a distance
zo > 0, on thez-axis perpendicular to the interface betweenLet us consider two semi-infinité-media separated by a pla-
the two media. The convolution of this source with the GFnar interface located at = 0, filling the regiong4;,z < 0
is carried out in the Subsec. 3.1 and yields the correspondindifs, z > 0 of the space. We take both media to be non-
ing electromagnetic potentialg* in terms of closed integrals magnetic,j.e. u; = pus = 1 and with the same permittivity
which are calculated in the Appendix A. The next step istoe; = €2 = €. This condition is motivated by the results
obtain the far-field approximation of those integrals. This isof Ref. [36], which show that the effects of the MEE are
performed using a modified version of the steepest descesubstantially enhanced with respect to the optical contribu-
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tions when both)-media have the same dielectric constant  The Eqgs. 4) and ) explicitly show that there are no

and permeability. Additionally we assume the paramétier ~ modifications to the dynamics in the bulk ¢ 0) with re-

be piecewise constant so that it takes the values¥; inthe  spect to standard electrodynamics. Nevertheless, as it is well

regionl/; andd = ¥, in the regioriss. This is expressed as  known, the solution of a system of differential equations de-
pends crucially upon de boundary conditions. In this way, the

D(x) = O(2)0; + O(=2)0h, 1) new physics induced by, arises from the interface between

whereQ(z) is the standard Heaviside function with(z) = the ”?‘?diaf = 0)and Wi!l be a consequence of the boundary

conditions there. Physically, this is a consequence that TIs

1, z>0 andO(z) = 0, =z < 0. The dynamics is ! .
governed by the standard Maxwell equations in a materialPehave as normal insulators in the bulk, but possess conduct-

medium [35, 37] ing properties at |n.terfa9es, as |nd|cated .by thg MEE. Even
though we are dealing with a continuous dielectrig, £ ¢5),
oD i i i -
V-D = 4rp, VxH- 22 = 473, th_e qllfferent MEP _of both _m_ed|a generate effectlv_e trans
ot mission and reflection coefficients for electromagnetic waves
oB across the interface. Mathematically, this feature is under-
V-B=0, V-E= T (@) stood becausE - B in L, is a total derivative, so the only al-

lowed modifications to the standard Maxwell equations arise

which require to specify additional constitutive relations . . .
T . . X hen th s hich pre-
characterizing the medium under consideration. In the cas\év en the integration by parts produ 7 0, which pre

. . L . Cisely define the interface in our problem.
of the magnetoelectric media the constitutive relations are : ) o , .
Assuming that the time derivatives of the fields are finite

D=¢E- 29(z)B, H=B+ 29(z)E. (3)  in the vicinity of the surface: = 0, the modified Maxwell
™ 7T equations/4) and 6) imply the following boundary condi-
Here« is the fine-structure constant,andj are the exter- tions (BCs)
nal sources given by the charge and current densities respec-

; - it ; ; _ 20t ~ 2=0T ~
tively. Substltutmg.the constltu.twe relatior3) (nto the inho ¢ [Ez]zzg_ = {B.|._o, [B”] 78 )
mogeneous equatiori2)@nd using the MEP given in EdL) z
yields our final equations [Bz]zigt =0, [EH]th =0, ©)
eV-E=4mp+05(2)B -1, 4) o
OE for vanishing e>+<ternal sources on the surface 0. The no-
V XxB—e— =471j+ 05(2)E x (5) tation is[V]jzg, =V(iz=0")-V(z=0), V‘z:() =

ot V(z = 0), wherez = 0% indicates the limits: = 0 + 7,

wheret is the outward unit normal to the regidfy and with n — 0, respectively. The continuous terms in the right-

hand side of the first and second equations in B)ygpresent
self-induced surface charge and surface current densities, re-
In the case of a Tl located in the regioh (9, — ) in spectively, which clearly demonstrate the MEE localized just

front of a regular insulatord = 0) in regiont/;, we have &t the interface between the two media.
0 = «(2m + 1), with 72 being an integer depending on the A convenient way to deal with the fields produced by ar-
details of the TRS breaking at the interface between the tw@itrary sources in electrodynamics, in particulam#D, is
materials. by using the corresponding G, (z, z’), which we briefly

The homogeneous Maxwell equations still enable us tdevise below [38-42]. Before going into the details we com-
define the electromagnetic fielsandB in terms the elec- Mentupon the advantages provided by the use of GF methods

0=y —10,)/m. (6)

tromagnetic potentialé andA as over different alternatives in electrodynamics: the knowledge
of the GF of a given physical system allows a direct calcula-
E= _oa Vd, B=VxA, A'=(d®,A). (7) tion of the corresponding electromagnetic fields for arbitrary
ot sources either analytically or numerically just by direct sub-
We observe that Eqs4) and 6), together with the constitu- stitution. This clearly avoids the guesswork required when
tive relations8), can also be derived from the action using the image method, which by the way works only in
1 highly symmetrical cases. Also, it saves a lot of work when

S[®,A] = /dt d%{— (eE2 — BQ) one needs to consider different sources in a given system

8 by avoiding to solve the equations for each source. This

_ %ﬁ(x)E B-ob+J. A], @ Ve usefu! technique extends to many branphes of physics

4 like scattering theory, condensed matter physics and quantum

which clearly incorporates the modified axion teriyp dis-  field theory, for example.

cussed in the Introduction. As usual, the electric and mag- In what follows we restrict ourselves to contributions of
netic fields in Eq.[8) are written in terms of the potentials free sources’* = (p, j) located outside the interface, and to
according to Eq/4). systems without BCs imposed on additional surfaces, except

Rev. Mex. Fis68060701
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for those at infinity. A compact formulation of the problem The detailed calculation of the GF is reported in Sec. 3 of

is given in terms of the potentialg) expressed in their four
dimensional form(®, A) together with the GF

At (z) = /d4x’G“l,(x,x’)J”($’) , (10)
which satisfies the equation
[(}“V — éé(z)eg“o‘yﬁa} G (z,2")
= 4y (x —a'), (1)

in the modified Lorenz gaug&®/dt + V - A = 0, together

with the appropriate BCs. The operatpt,, is
Or, = (%, O0%Y), O*=ed} —V>. (12)

Ref. [42]. Here we only recall the results that are written
in terms of G*,, which differs fromG*, only in the term
G°, = G%/e. Since the GF is time-translational-invariant
it is convenient to introduce the corresponding Fourier trans-
form such that

oo

Gﬁ(xa X/7t - t/) = /

— 00

do
%e*“"“*t ) G (x,x;w) . (13)

'I:he final result is Qresented as the sum of three terms,
G (x,xw) = Gpp,(xxiw) + G (x,xjw) +
G, (x,x';w), whose explicitly form are

c i T2 K2 e
d2kJ_ ik, Ry ietVki—ki|z 2|

2\/k2 — K2

Gy (x,xw) = ieh, 4 /d‘lkl aeom,, €VRELIHED a
~ X, X W) =1¢", = € =~ )
o 4n? 402 ) (27)° CoR-K
5 im0 [ d’ko e g, €VRIEUHED
G oxi) = e / (27)2 [k = (0, + ') BT et T —— 3/2
T 2 (i3 -13)

HereR, = (x — '), =

(x—2',y — '), ki = (ks ky) is the momentum parallel to the interfade’, = (w, k) and

ko = nw wheren = /¢ is the refraction index. We observe that in the static limit£ 0), the result/14) reduces to the one

reported in Ref. [38].

3. Electric Dipole perpendicular to the interface

In this section we determine the electric field of an oscillating point-like electric dipotep 2 located at a distance) > 0
on thez-axis and perpendicular to the interface. We restrict ourselves to the far-field approxinigtias- (1) starting from

the GF given by Eqsi14).

3.1. The Electromagnetic Potential4*

The charge and current density for this dipole are

o(x';w) = —pd(2')d(y')d' (' — 20),

J(x'sw) = —iwpd(2")d(y)o (2" — 20)2,

(15)

respectively, wheré’ (u) = dé(u)/du. After convoluting the sourced§) with the GF ((4) we find the following components

of A*
B 7:;30(7"—20 cos 0) 1 92
0 N D e p .

A (x;w) = ——iko cos 6 . By 92H(x, Z0;w) (16)
20 . _ab,.b 92 jwr®

Ad(xw) = —— P T QI(X, 20iw) + ——b 22 3~7(X»ZOW) ; (17)

an2+62 p Op dn2 4602 p Op

eifco(r—zo cos 0)

A3 (x;w) = —iwp————— (18)

r
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wherep = [|x1 || = Va2 + 92, r = Va2 + 92 + 22, a,b € {1,2}, e®® = —¢be ¢!2 = 41, and{z?} = {2}, 2%} with

2! =z, 22 = y. We also have the functions

%) 3 _
H(x, 20;w) = / ”k;ldkt Jo (k1 p) eV RE=FLUel+=0) (19)
J K
o / hudhs g0 /B () (20)
T (%, 205w) = / lj;ldljj Jo (kLp) eVE KLUzl +20) 1)
0 ML

The derivation of the above results can be found in the Appendix A.

The next step is to calculate the integral®)¢(21) in the far-field approximation. To begin with, we recap the main
ingredients of the calculation carried out in full detail for the functignin Appendix B. We employ the steepest descent
method [44-46] and incorporate some modifications based on Refs. [13,47]. These modifications are required because th
current integralsX9)-(21) have poles coinciding with their stationary poiit, )s = kosind atd = m/2, as can be seen in
Eq. B.13 of the Appendix B. This means that the factor of the exponential is not a smooth function around the stationary
point now, which will prevent a direct application of the method. The main idea to overcome this difficulty is to subtract and
add the conflicting pole, as shown in E¢B.15) and B.25) of the Appendix B. Thereby, we obtain two integrals: one with
the divergence removed in the vicinity of the stationary point and another containing the singularity, which can be directly
evaluated. The first integral leads to the ordinary stationary phase contributions and the second one gives contributions that ar
identified as axially symmetric cylindrical waves [13]. The final results for the integtalsand.7, obtained in full detail in
the Appendix B, are

N ikor 2 I} il;ozo\ cos 0| 1
H(Xa ZOW) = k‘oe - S e ) -
i | cos 0] 2 (sin 0 — sin? )
2 kO 'Llc rsin® T -7, :
+ 4 —— 0 —erfc ikor (1 —sin@)| , (22)
mikorsin@ i 2
eilzzor eifcozo| cos 0| 1
j(XVZO;w) = 7 -
ikor | cos 0] 2 (sin 0 — sin® 9)
) ﬂeifcorsine =
+ = - erfc | —iv/ikor (1 —sinf)| , 23
\| mwikor sin 6 21 [ or ( )} 23)
e’il;oT L~
T(x, 205) = el 24)

wr

whereerfc(z) denotes the complementary error function. The contributions in curly brackets arise from the terms including
the subtracted pole, they are are well behavet-atd, /2, = and describe the standard spherical waves.

On the other hand, the terms from the erfc function in square brackets arise from the pole itself and describe wave propaga
tion corresponding to the amplitudg (r sin 8)"/? expl[iko(r sin )] x exp (—ikot) = 1/21/2 explikoz] x exp (—ikot). This
is clearly a solution of the Helmholtz equation in cylindrical coordinates in the far-zone, thus giving the name of cylindrical
waves to this contribution.

The crucial point is that the amplitude of the cylindrical waves is modulated byrfhéunction, with argument

iViy/ kor (1 —sin@) = iA = iVis, (25)

which will provide us with a quantitative way of appraising the relevance of the cylindrical waves. To this end, we now discuss
the behavior of the function

1 .- ‘ ,
erfc(iA) — %ezkor(l—sm G)Z(em-/48), (26)
f

I\ T
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that we rewrite in terms of the the Faddeeva plasma dispes = 0. Let us emphasize that can be arbitrarily chosen
sion functionZ (A) discussed in some detail in the Appendix much larger than one, which will provide a more stringent
C. Up to an irrelevant normalization constant, we define thecutoff.

function In other words, for a fixedy and a choser, = 1, the
/a2 discarding angle8, define two regions, as shown in Fig. 1.
F(s)=1Z(e"""s)|"/(2m) , (27)  The regionV,, wheref € [0,60YH) U (8L 7], is such

. . . ... thats > 1, while in its complement, the regiovi, where
which controls the amplitude of the electromagnetic fleldsa € [0YH,6LH), we haves < 1.

of the cylindrical waves and can be readily calculated from To fix ideas let us consider now the UH and examine what

Eq. C.4. As can be seen from the following numerical val- happens when we fix the angle and explore the consequences
uesf(0) = 0.5, F(1) = 0.112, F(3) = 0.0174, ... and changing the observation distance to a larger value- 7,

Il;(fhi>s>v3; sz’ellsgsﬁrﬁpédInynﬂfizga;;]vgefgg,f;?bnuﬁ;n i.e., we go farther into the radiation zone. Suppose that in
Y, y the regionV; we consider the anglé, < 5%, where we

can be neglected, whereas for- 0 the functionF'(s) con- -
tributes maximally and the cylindrical waves should be taker'aves1 = 4/ koro(1 —sin ;) > 1 according to our choices.
into account. Then, keepind fixed and going to a larger distance > rg

If we recall thatp = rsin6, s*> can be rewritten as would only increase the value 6f. = {/kor~ (1 — sin6;)

s? = ko(r—p) and can be interpreted as a measure of how fasuch thats. > s; > sy = 1. That is to say, all observa-
the observer with coordinatés, 6, ¢) is from the interface. tion points inV; with » > 7 will have s > so = 1 and the
In other wordss? determines how far is the spherical radius cylidrical waves will not be relevant there.
r from the cylindrical radiug at the observation point. This On the other hand, the regidia shows a mixed behavior.
property enables us to define what we call the discarding amagain, let us consider an angle > 67 where we have
gle 6y, which provides a condition to estimate when we can
neglect or not the cylindrical wave contribution, according to
the magnitude of'(s). We proceed as follows.

For a given observation distaneg, such thatkorg is
large enough to describe the far-field regime, we choose
an arbitrary cutoff point the value = sq. At the cutoff we
define the discarding angtg such that

So = \/ %07“0(1 — sin@o). (28)

More precisely, we can distinguish the upper hemisphere
(UH) ¢ € [0,7/2] from the lower hemisphere (LH) €
[w/2, w] by writing

s2
0" = arcsin <1 0 ),

s5 = 1/koro(1 — sinfy) < 1 by construction. Nevertheless,
an increase in the observation distance-3ocan revert the
situation yielding a value-. > 1. To this end it is enough to
takers. > rg/ss. Thatis to say, the regioh, contains the
Ahtermediate region where the cylindrical waves are relevant,

k’oT’O
2
= T + arccos (1 2 > , (29)
2 070
respectively. Let us observe that both discarding angles are ~ \>

=
very close to the interfacd (= 7/2) in the far-field regime.

For a given observation distaneg, the rapidly decreas- / \ V
ing behavior ofF'(s) allows us to adopt the following crite- ,’9 \4 _\ 1
rion for estimating the relative weight of the spherical versus ’
the cylindrical waves:

UH LH FIGURE 1. Diagram showing the regions, and). determined
For s>s0, (0<0<65"” andfy” <0 <m) through the discarding anglé§ ” anddf* . The regionV;, where
only the spherical waves (undulated pink arrows) are taken into ac-
count is defined by € [0,057) U (657, ]. The regionV, (white
For s<so, (097 <6 <6lH) hatched region), defined isye [05 ", 65 '], contains the interme-
diate region § < so = 1) where both cylindrical waves (undulated
cylindrical waves are taken into account (30)  black waves) and spherical waves have to be taken into account.
Nevertheless, going further into the radiation zone for each obser-
In our case we take, = 1, where the functiorF'(s) has  vation point in the intermediate region one can make so = 1,
decreased about five times with respect to its maximum athus making the cylindrical waves unobservable.

cylindrical waves are neglected.

Rev. Mex. Fis68060701



RADIATION FROM A DIPOLE PERPENDICULAR TO THE INTERFACE BETWEEN TWO PLANAR SEMI-INFINITE. .. 7

but going further into the radiation zone these waves can be safely neglected. A similar situation occurs in the LH, which we
do not discuss in detail here.

From the function erfg—iy/ikor(1 — sin Q)J appearing in the Eqs2P) and 23) we identify the analogous of the Sommer-

feld numerical distanc# in the standard dipole radiation, which is determined by rewriting the complementary error function
as erf¢—iv/S) [13]. Thus we have

S = ikor(1 — sin ) = is?, (31)

which varies with the anglé for a fixed observation distanee This quantity is closely related to the discarding arfyle
according to

1—sinf

|81 = 1 —sinfy’

(32)

Going back to the calculation of the electromagnetic field in the far-field approximation, we now write the corresponding
expressions for the electromagnetic potentials obtained from plugging the r22-®4) (nto the Eqs.16-18). In the case of
the regionV; we have

N iko (r—z0 cos 0) 1 52 _ Qin? 0 iko (r+z0| cos ])
A(x;w) = —ﬁiko cosf— T~ P 0 S Y e - , (33)
n? r n24n2 4+ 02 | cosd| i
o ab.b _ ; a iko(r+20| cos 6])
Axw) = —L |2k () 42 ()| (34)
An? + 62 r |cos] \ r r
. eifco(rfzo cos 0)
Ad(xw) = —iwp————, (35)

r

where we dropped terms of higher order. On the other hand, in the intermediate Yggien< 1) the contribution of the
cylindrical waves near the interface is apparent. The electromagnetic potential now is

_ eiko(rFz06) 1 62 _ oikor 7 _

p .y L€ P e . 3
A(cw) = F Lkt L TP _j, Fozo — 2
(x3w) :Fn22 o T n? 4n2 + 62 O ir (Z 0% 8)

1 6%p - 2 7 ™ mikor
o _ k‘2 - ezkor — 4+ , 36
n2 4n? + 02" \/ mikor 2i 2 ¢ (36)

__ ~ab,.b il%o(r—&-zog) _ a ikor _
Av(ciw) = — P | oy T T G2, T (e — &
4n? + 62 p r p T 8
~ = x¢ 2 7 T m’lzzor
—0%wky— ——ethor [ — 37
N wigr . | 2 5 ¢ (37)
. ei];:o(’l“:FZog)

Ad(x;w) = —ipr, (38)

where we again dropped terms of higher order. The minus (plus) sign in the first term of the right-hand sid36) &ayré-
sponds to the UH (LH), respectively. We have also performed a first order power expansionafduméhe complementary
error function arising from Eqsi2@) and 23) in terms of the variablé < 1 given by

¢UVH = /o — gUH ¢ — gtH 7/, (39)
for the UH and LH, respectively. Let us observe that for both hemispheres we haveand also thatl — sin 6) = ¢2/2. In
analogous way it is convenient to introduce the corresponding vagabdated to the discarding anglg just by replacing

¢ — & andf — 6y in Eq. (39). Using also Eq./29) we obtainé, = \/2/(nwrop). In this way|S| = ¢2/¢2 < 1 for both
hemispheres. The expansion in powerg & only valid in the intermediate zone where we hgve &,.
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8 0. J. FRANCA AND L. F. URRUTIA
3.2. The electric field

Since Faraday law yieldB = /eii x E in the far-field approximation we need to calculate only the electric &l w)
to get a complete description of the radiation regime, whierd3 = 0 is satisfied. The components of the electric field are
calculated through

E(x;w) = —ikonA® (x;w) + iwA(x;w) . (40)
3.2.1. The region,

Substituting in Eq.l40) the previous expressions fd (x; w) in the regionV; we obtain the following electric field:

al. _ zx® 29~n ikoz | cos 0|5abxb 2 ei%or
FE (X,w)— l_fL(67Z(]’w)ﬂ+W 0%0 T w?p —
. ei’:?(ﬂ’
E‘S(X7 W) = |: Sin2 0 fL(ov 20, w)] w2p ) (41)
T
with
= P -
F1(0, 20, w) = e 020080 | gom (cos ) ————etkozolcos bl (42)

4n? + 02

Heresgn denotes the sign function with the additional conditign(0) = 0. It is possible to verify thafi - E = 0 as required
for the electric field in the far-zone regime. The main feature in the components of the electrid fjeisl the presence of
two different phases in the exponential related to the source varigblesz, z, which are specified byos # and| cos 6| as
shown in Eq. 42). The first exponential contributes with the tersep | ik (r — 2z cos 9)] having the characteristic phase
of dipole radiation in standard electrodynamics [35, 37]. On the other hand, the contributions arising from the new terms
involving the MEP, which are proportional tband 6?2, yield the exponentiatxp |ikq (r + zo| cos 0\)}. As we will show in
the next subsection, the modifications in the power spectrum of the dipolar radiation in our setting arise precisely due to the
contributionzo| cos 0| in the phase of the electric field. The dependence on the sigosdf enforces two cases, which we
denote as Casg-) and Casd+). The former case occurs wheénos | = —cos , i.e. whend € (95 7] is in the LH.
In this situation the three components of the electric field will have the same phase and we do not expect significant changes
with respect to the usual angular dependence of the dipolar radiation because the phase of the electric field is that of standard
electrodynamics. By contrast, the Cdse) takes place whefcos §| = cos #, which is realized fop € [0,67) in the UH.
In this case the electric field presents two different phases which will interfere yielding new effects different from those in the
usual dipolar radiation.

Finally, we analyze the functiofi, (6, zo,w) given by Eq. 42), which codifies the different phases of the electric field
(42). For the Casé+), f, takes the following form

—ikozo cos 92 ikozo cos
FE0,20,0) = F1(0, 20, @)l = e Ror0e? 4 =gl (43)
On the other hand, for the Caée), the functionf, is
_ 4n2 —ikozo cos
n (0, z0,w) = f1L(0,20,w)|LH = 74712 +§26 kozo cosd (44)

In the following we show that the factof8/(4n2 +62), 4n?/(4n?+62) and26/(4n? +62) correspond to some reflection and
transmission coefficients at the interface. Let us start with the radiation fields in the UH by considering the general expression
for the reflected electric field discussed in the Appendix B of Ref. [48], where the authors calculate the GF of a planar interface
separating two semi-infinite Tls. The reflective part of such GF is written as

2
GV xsw) = [ TR RO k). (@5)

which connects the electric field componeftsdirectly with the current density* through the equation

Fi(x;w) = —47m'w/d%{’Ciik()(7 X w) i (xw) . (46)
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RADIATION FROM A DIPOLE PERPENDICULAR TO THE INTERFACE BETWEEN TWO PLANAR SEMI-INFINITE. .. 9

In our case onlyj® = —iwpd(x')d(y')d(z" — 2o) is different from zero so that the only contributionsR&’ come fromR 3,
which can be read from Egs. (B8), (B10) and (B12) of Ref. [48] for an incident TM polarized plane wave, and which we
rewrite here

jetk=(Hz0) Tk k
RlB(kL7 kZ7 2, ZO) = ok - Z2ZRTM,TM + kyRTE,TJﬂil ) (47)
ieth=(zH20) [k kq
R (k1 ks, 2,20) = . - ZQ Rryvrm — kRTE,TJVI:| , (48)
. jetk= (z+20) [ k2
Rgd(kl,kz,Z,ZO) = T k_JQ_RTM,TM:| . (49)

Incidentally, the above equations show that the TM and TE polarizations are mixed as a consequence of the MEE. The explicit
expressions for the reflection coefficients are given in Eqs. (44)-(46) of Ref. [48]. The notation in Refk[48]%.} is

equivalent to ourgfco, |k |, l}g — k? }, respectively. In this way, the components of the electric field are

) A’k €20 [ kuk, k . .
E'(x;w) = —4miw’p / (27r)l2 ok | 2 Rryvrm + ]jRTE,TM:| el Rogibzz, (50)
d?k | etk=z0 [k k . .
2 . _ .2 1 yhvz xT k, ‘R ks,
B (x;w) = —4miw p /(%)2 ok, | K2 Rryvrrm — kRTE,TM] et et R, (51)
) d2k eikzzo 'k2 . ' ks
B3 (x;w) = —4miw’p /ﬁ? ICJQ‘RTM,TM} elkL R giksz (52)

To compute the far-field approximation of the electric field written above, which is necessary to compare with our expressions
(41) and @2), we make use of the angular spectrum representation method which we briefly review [49]. For fields satisfying
the Helmholtz equatiofivV? + x?)E = 0, with k? = ew?, which can be written as

Fi(a,y,2) = / Pk B (ky, by, 2)e™ s (53)
one can show that
Ei(ky, ky, 2) = E'(ky, ky, 2 = 0)etk== k,=1/k2—k % TIm(k.) >0, (54)

choosing thet, — signs according ta > 0 or z < 0, respectively. Substituting Eq54) into Eq.63) yields the so-called
angular spectrum representation of the electric field. One of the notable consequences of this approach is that the far-fielc
approximation of the electric field is given in terms of the functid(k,, k,, z = 0). According to Ref. [49] we have

T y z o~ N - - i]:}oT
Ei oo (;, o ;) = fZWzkoszE(kx =kosz, ky = kosy, 2= O) > (55)
Sy = sin 6 cos ¢, sy = sinfsin p, s, = cosf, k, = kos, = kg cosf.

Our next step is to identify the respective functiai§k,, ky,z = 0) in each of the component§Q)-(52), so that we can
apply the relation35). Making the required substitutions we find that

i Wwp oy, 20 ‘
E (kx7ky7z = 0) = —ZRG |: :| 5 (56)

where each square brackel’ denotes the corresponding one in E&){(52). Substituting in Eq.85) yields

- Z-I;?(]T’ ~
xz Y e ;

1 2 iko cos 0z

For—oo = | 2 TMTM — ;RTE,TM] pw”—— eI, (57)
- 7;’:?07” ~

2 Yz z 2€ iko cos 0z

for—oo = ﬁRTM,TM + ;RTE,TM pw”——e? ’ (58)
r 2 ikor . 2

3 _ |XJ-| 2€ ik cos 0zg |XJ-| 2

for—oo = 2 Rrvra | pw e , 2 =sin 0. (59)
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10 0. J. FRANCA AND L. F. URRUTIA

Comparing the above results with our expressia@i} 4nd 42) for fi“ yields the identifications

62 20n
Rrvrm = PRCRY Rrerm = I (60)
Carrying the analogous calculation for the LH with, we read the transmission coefficients
T _ A T - R (61)
TM,TM an? 4+ 2R TE,TM TE,TM -

We immediately verify thaf?rys 7ar + Trar,rr = 1 as expected. Let us observe that the expressions for the transmission
and reflection coefficients obtained from our calculation can be verified from the general expressions (43)-(46) in Ref. [48],
after the following restrictions are madg: = e; = € = n2, u; = o = 1, ko1 = kyo = k., andA =6,

3.2.2. The intermdiate zone in the regivn

Let us recall that for any observation pointi with s < s = 1 we can go farther into the radiation zone and find> 1,
thus eliminating the cylindrical waves. In this subsection we deal only with the region havings, = 1. This region
corresponds to what is normally called the intermediate region in the literature [13] and is characterized by the condition that
the Sommerfeld numerical distanSe= is? satisfiegS| < 1, in spite ofkor being large. Clearly this is possible because we
are in the limitd — 7/2, (£ — 0), i.e. very close to the interface.

A precise characterization of the intermediate zone in the UH is provided as follows: According to our ciB€)javhich
is written there for an arbitrary,, we choose, = 1 as the specific value for this parameter. Thenyfon the radiation zone

(koro > 1) the discarding anglé, is determined such that = \/l%oro(l —sin 0y H). For angle®§# < 8 < 7/2 we have

0<s3= \/1507"0(1 —sin 8) < so. Within this angular range we still can move further into the radiation zomg tavithin
the intervalrg < rg < 1o (s0/s3), where cylindrical waves are still present and which define the intermediate zone.
So, in this region the electric field is

a ~ ) ab,.b _ ikor
E*(x;w) = :Fgﬂ ¢ Fikozof | ﬂﬁeik020§ pw? etko |
4n? +02 p r
ejFiEoZoE 92 B iz - 9 -
E3 X,w) = + —k — 4+ — — pw2ezk0r’ 62
() [ T 4n? + 62 05( r o 2\ wikor (62)

where we have dropped terr@5¢?2). The variablet was previously defined in Ed39) for each hemisphere. Also we verified
thatin - E = 0 using the approximationsnf ~ 1 andcos§ ~ &, which are adequate for the regidh. From Eq. [62) we
observe the presence of cylindrical waves, codified in the term proportiondbtg /7 [6], where we notice that ~ p close
to the interface. They are also present in the standard case of dipolar radiation when two different electromagnetic media are
separated by a planar interface. Nevertheless, in our case they only contribute when at least one of the media is magnetoeletric,
i.e. whend +# 0 defines the interface. This is because we have chosen two non-magnetic media with the the same permittivity
e, which means that settij= 0 yields an infinite media with no interface at all. The subject of cylindrical waves in dipole
radiation has been exhaustively discussed in the literature been a highly controversial topic. An authoritative discussion of this
case, including an historical perspective, can be found in Subsec.4.10 of Ref. [13].

We finalize this section by presenting plots for the real part of the electric fiéljisid 62) in their corresponding regions
V1 andV,. These plots will provide a quantitative behavior of the electromagnetic field and reinforce the space splitting exposed
in Fig. 1. Figures 2a) and 2b) show th@ndy components, respectively, and Figs. 2c) and 2d) are devoted tactmponent.
All the figures represent the real part of the electric field (equivalent to the time dependent fietdoatin the x — z plane.
Here the interface is constituted by a normal insulator with4 and?; = 0 in the UH and a medium with= 4 and¢, = 5
in the LH to make evident the new effects. The dipole has a strangt2.71 x 10° eV ™!, a frequencyw = 1.5 eV and
is located atzy = 25 eV~ (an explanation of this parameters choice will be given in the Subsec. 4.1 immediately below).
The field patterns for the andz components in Figs. 2a), 2c) and 2d) show different behaviors at both sides of the interface.
Indeed, in the upper semi-space the effect of the interference between the two phases of the electric field associated to the
Case(+) is quite appreciable. Regarding the lower semi-infinite space, the features of the-Gawe visible, because one
observes clearly the absence of an interference pattern and the same behavior of an electric dipole field. Remaykably the
component in Fig. 2b), which is different from zero in comparison with the usual electric dipole radiation, results proportional
to 6 and does not exhibit an interference pattern due the vanishing of the first term dflqt thez — = plane.
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FIGURE 2. The electric field pattern (real part) in the— z plane for a vertically oriented point dipole with single frequency= 1.5
eV, strengthp = 2.71 x 10% eV~! and located aty = 25 eV~! close to a magnetoelectric interface, for the regiarwhere only the
spherical waves are significant. Here the UH is a normal insulatorewitht andd, = 0 and the LH is a medium with = 4 and¥; = 5.
The plots a) and b) are theandy components respectively. The plots ¢) and d) areztltemponents in the UH with discarding angle
A5 ~ 1.53918 ~ 88.19° and in the LH with discarding ang®f ' ~ 1.60241 ~ 91.81° respectively.

Recalling from Eq./62) that only thez component of the electric field contributes to the cylindrical waves, we need to
employ the discarding angles given by Ec&9)(to split the space into the regioivs and), of Fig. 1. Figure 2c) illustrates
this splitting for thez component in the UH for angles in the ramgye [0, 5) with 5 ~ 1.53918 ~ 88.19° and Fig. 2d)
shows the same but in the LH for angles in the raf@e’, 7] with 657 ~ 1.60241 ~ 91.81°. Conversely, Figs. 3a) and 3b)
show the behavior of the component in the UH for angles in the range [05*, 7/2) and in the LH for angles in the range
0 € [r/2,0{], respectively. Here the appearance of the axially symmetric cylindrical waves is clear, although our plots show
that they are confined to a finite distance range and decay rapidly for large distances parallel to the interface. The discarding
angles are not to scale for the purpose of making evident the appearance of cylindrical waves. Our approximation yields zerg
for thex andy components of the electric field in the regids.
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FIGURE 3. The electric field pattern (real part) in the— z plane for a vertically oriented point dipole with single frequency= 1.5 eV,
strengthp = 2.71 x 10® eV~! and located at, = 25 eV~! close to a magnetoelectric interface, for the regibrwhere the spherical
waves and the cylindrical waves are significant. Here the UH is a normal insulatoe witd and¥., = 0 and the LH is a medium with
e = 4 andd; = 5. The plots a) and b) are thecomponents in the UH and in the LH respectively. The discarding angleé &e= 88.19°
and9i = 91.81°, which are not to scale for the purpose of making evident the presence of cylindrical waves.

4. Angular distribution, total radiated power  dominance of the modified dipolar radiation [52]. These ef-

and energy transport fects have been already demonstrated in experiments [53,54].
4.1. The parameters 4.2. Angular distribution for the radiation in the region
Vi

With the purpose of illustrating our results with some numer-

ical estimations we need to fix the parameters defining oufy this subsection we obtain the angular distribution of the
setup. Our choice is motivated by the fact that current magragiated power associated to the electric field given by Egs.
netoelectric media are of great interest in atomic physics an('m) for the regionV;. Recalling that the electromagnetic
optics, therefore we think as a dipolar source an atom withjg|qs satisfyi - E = 0 andB = /e x E we obtain the

a given dipolar momenp, whose emission spectrum goes standard Poynting vector in a material media itk 1,

from the near infrared to the near ultraviolet. Furthermore,

the magnetoelectric coupling is usually very small (of the or- 1 Ve 94

der of the fine structure constant for TIs), so that appreciable 8= EE < H = EHEH 1, (63)
effects will appear near the interface. In this way we have o ) . )
chosen the distance between the dipole and the observer Ygi€réit coincides with the direction of the phase velocity

be lesser than 1 mm. For all cases in the following numericaP! the outgoing wave. ACCOfdi”Q to Refs. [35, 37_]' the time-
estimations, with the exception of Fig. 6, we take the fre_averaged power radiated per unit solid angle solid by a local-

quencyw = 1.5 eV (362.7 THz or\ = 826.6 nm) in the near 1280 source is

infrared, the observer distanee= 667 eV~' (0.131 mm), dP 72 E(x;w) x H*(x; w)

and the dipole location aty, = 25 eV~! (4.94 um). The a0 - ERe { In

far-field condition is well satisfied withwr ~ 1000n. The )

remaining free parameters a@_eand n, WhICh chgracterlze _ _ ﬂE(x;w) E*(x;w) (64)
the medium. This setup provides a microscopic antenna in 8

front of a magnetoelectric medium. The additional boundar
conditions at the interface drastically modify the dominan
dipolar radiation. These changes can be directly observed gp  puip2 )

by measuring the angular distribution of the radiation, which 75 = —g——sin 9{1 + T sgn” (cos ) + 2T sgn
looks feasible having in mind similar techniques developed in

Refs. [50,51]. Another possibility is to observe the modified % (cos 8) cos {,;OzO (| cos 8] + cos 9)} } (65)
radiative lifetime of the atom, which must change due to the '

}[/The result for our dipole is
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FIGURE 4. Angular distribution of the radiated powdiP1)/d). a) Polar plot withd = 0.22, n = 1.87, b) Polar plot withd = 0.5,
n = 2. c¢) Polar plot withd = 1, n = 2. The scale is normalized by multiplyingP ., /d2 by 47 /w*p®. The remaining parameters
w=15eV,r=667eV"!, 2 =25eV ! are common to this and all subsequent figures.

whereT = 62/(4n? + 6%). Some comments regarding this On the other hand, for the Caée ), when the electric
angular distribution are now in order. The expressi6E) ( field includes two different phases, we obtain the angular dis-
is an even function of the MEP as well as of the anglé.  tribution
Furthermore, the last term in Eq\65) arises from the in- 49
. . APy nw'p
terference between the two different phases exhibited by the =
electric field in Eq. [41) and could or could not contribute ds2 8
depending on the sign abs 0. X [1 + T + 27 cos (2/::020 cos 9)] , (67)

At this stage it is important to emphasize that our result N o o
in Eq. (65) shows thatY sets the scale in the magnitude which present additional contributions to the angular distri-
of the pbwer radiated in the region. This parameter has bution with respect to those in SED. They arise from the last
the relevant property of being bounded within the intervalt®™ in Eq. 67). Furthermore, as opposed to the previous
0 < T < 1, independently of the values whichandn €8S the angular distribution now depends explicitly on the
might take. This will severely constrain the response of theliPole positionz,. Let us observe that the minimum value
9-medium with respect to the output produced by an electric™ ! Of cos(2kozo cos #) produces the factofl — T) in the
dipole in an infinite media with refraction index. We refer ~ Sauare bracket, which was discussed above. .
to the latter reference setup as the standard electrodynamics 1he behavior of the angular distributic7) is shown in

(SED) case, which is obtained settifig- 0 in Eq. 65) yield- Fig. 4. Ip each case, the electric dipqle is Iocatedoab. 0
ing the well known dipolar angular distribution [35]. and the interface corresponds to the liBe (2 — 7/2) defin-
ing z = 0. The Fig. 4a) is plotted for thé-medium TbPQ

Now, we analyze the angular distribution of the radiatedyith ,, — 1.87 [55] andd = 0.22 [56]. After comparing
power 65) for the Casg(—) discussed in Sec3.2.1, when  yith the SED case we appreciate only weak signals of inter-
the electric field has a single phase. Making this choice ifgrence. The Fig. 4b) corresponds to an hypothetical mate-
Eq. (65), we obtain rial with = 0.5 andn = 2. Finally, in Fig. 4c) we see a

clear enhancement in the interference pattern for our electric
APy  nw'p® dipolg radiating in front o_f an anpther hypothetical material
0~ g s 0(1 - T). (66) W|_th 9. =landn = 2. An increasing value of the parameter
0 in Fig. 4 makes evident the interference effects, which are
expected to be more pronounced in the vicinityyof /2
Notice that the factofl — T) = 4n2/(4n® + 62) is al-  where the last term in Eq/67) oscillates maximally. This
ways positive which confirms a basic property of the radi-interference effect agrees with our results plotted in Figs. 2a)
ated power. We observe that the angular dependence of tland 2c).
radiated power remains unchanged with respect to the SED Even though the method of images does not generalize to
case, confirming what we found at the level of the electricthe time dependent case, a qualitative interpretation for the
field in Figs. 2a) and 2d). Nevertheless, the magnitude ofadiation patterns described above can be given by extend-
the radiation turns out to be smaller for a fixed angle, whiching to the quasi-static approximation the characterization of
provides a fundamental difference with respect to this refera point charge located in front of a magnetoelectric medium
ence setup. Surprisingly, in the highly hypothetical situationin terms of electric and magnetic images presented in detail
whereYT — 1, the radiation in the LH would be completely in Ref. [57]. In this way, the full description of the MEE of a
canceled.e. the setup would behave as a perfect mirror. dipole located in front of a planar medium includes electric

sin®
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generated by the image objects, and the direct signal from the
dipole source and generates a different angular dependence in
the UH when compared with the electric dipolar radiation of
SED. Both cases are schematically illustrated in Figs. 5a) and
5b), respectively.

4.3. Power radiated in the region};

In order to compare the magnitude of the radiation indhe
medium with respect to the SED case it is convenient to in-
troduce what we call the enhancement fa@®oy ) defined as
@ R(+) = 2P1)/ Py, whereP, = nw'p?/3 is the total power
= a) b) radiated by an electric dipole in the SED case [35].
Next we calculate the power radiated for the angular dis-
FIGURE 5. a) lllustration of the Case—{), where the radiation  t/iputions 66) and 67) in the regionV;. Let us begin with

(black thick arrows) has a single phase, which is the one of stan-  tpilg .

dard ED, when the observé?; is in a different semi-space with the ang_ular distribution (.)f the Cage') given szEq' 69).
. . Integrating over the solid angl@ for § € (65", n] and

respect to the dipolp atzo. b) In the Case{) (observei©- in the 0.9 find th diated

same semi-space of the dipole) the radiation see@pyncludes ¢ € [0, 27], we find the radiated power

two different phases: the one arising frgnat zo and the other that P 9 1

comes from the imaggs’ andm at —z. Recall that we have two p(_):i (17“{) [1+ CoS ggH — Zcos 395H] . (68)

non-magnetic media with, = ¢, which yield no refraction at the 2 8 8

interface.

A good estimation of the enhancement factor is obtained

and magnetic image dipoles. Let us first deal with the Cas@/iting 0, = 7/2 + & and recalling thag, < 1. We ob-
(=), which corresponds to the situation when the electrid@in

dipole and the observer are in different semi-spacesthe 3¢

dipole is located at, = (0,0, z9) with zo > 0 and the ob- Ry = (1 — T) (1 + 2) . (69)
server's angle is in the LH. The MEE is mimicked by in-

troducing an image dipolp’ and an image magnetic dipole \yhich can be larger (smaller) than one accordingrto<

m both located at, i.e. in the same semi-space and in the 3&0/2 (T > 3&/2), respectively. In the hypothetical limit
same position of the electric dipote So, the observer will g 5, 9, we haveY = 1 and there is no radiated power in the
measure the same phase of the radiation fparp” andm, | i \which tells us that the setup behaves like a perfect mirror
which is given by choosingcos | = —cos6 in the phase 4 giscussed in the previous section.

of the electric field41). This sign choice affects the angu- Now, we repeat the calculation for the angular distribu-
lar distribution 65) by canceling the interference term, as iion of the Case(+) given by Eq. 167), which is more

Eq. (66) shows. Therefore, the angular dependence of theeresting.  After integrating over the solid angfk for
radiation that the observer detects will not present a substa@—e [0,05H), the power radiated . is

tial difference from that of SED, as Figs. 2a) and 2d) can

also confirm. Let us recall that we have chosen the two non- P, 9 | vH
magnetic media having the same permittivity, which elimi-  F(+) = =~ (1 + T) [1 — g oosfp " + 2 cos3b, }
nates the optical refraction and reflection phenomena when

passing from one magnetoelectric medium to the other. On L Dogy {SiH(Q%) _ cos(2)

the other hand, the Cage-) can be understood in a similar 2 4¢3 2522

way. Here both objects, electric dipole and observer, are in UH UH

the same semi-space and the observer’s ahiglén the UH. L8 % 008(22% cos g ")

Again we emulate the MEE by inserting an image dipple 22

and the same image magnetic dipate[57], both localized [1+ 3% — 52 cos (205 )] sin(25¢ cos 65 1) }
at —ro. In this way, the observer will detect radiation with o 4503 ’
two different phases: one from the source electric dipole and

another from the image objegt$ andm, which corresponds 3 = kozo. (70)

to the choice cos | = + cos@ in the phase of the electric

field (41). The plus sign selection impacts significantly the The main difference with respect to the power radiated in the
angular distributiong5) because the interference termis now LH is that now Py depends on the position of the dipole
non-zero and contributes to observable quantities as shown through the variables. The power radiated ) is positive

Eq. (67) together with Figs. 2a), 2c) and 2d). This interfer- definite and due to the term in braces we expect to find new
ence arises between the radiation coming from bottom to topeffects in comparison with the previous Cdse. Moreover,
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FIGURE 6. Plot of Py / P, as a function o« for different choices
of Y. The enhancement factor#® ) = 2P/ Po.

from Eq. (70) and retaining: andw fixed we find the follow-
ing interesting limits forz,

Py
P(+)(ZOHOO):7

X (1+T) (1— 200806]H+écos396]H), (71)

Py (20 — 0) = %(1+3T)

9 1
X (1 — gcosegH + SCOSSHgH)

Py 2
—&—?0 3T %2(500839(()]H—3COS596]H —2),

2 < 1. (72)

The Eq. [72) tells us that there are no divergences in I78) (
when the electric dipole is very close to the interface. Sinc
for all practical purposéy  is very close tor/2, we obtain a
very good approximation aP . in the intricate Eq.70) by
settingdy*! = /2, which yields the simplified expression

P, 3sin (2s) 3 (cos2x)
P(+):?° (1+T {H o 2.0 . (73)

As we can calculate from Eq/78), the enhancement factor
R(4) = 2P/ Py has the following properties. The maxi-
mum occurs when the dipole is at the interfage=€ 0) and
yields Ry = (1 +37Y). Also we found an absolute mini-
mum located at ~ 2.88 whereR{}} = (1+0.83 7). The
limit for very large s is Rfj) = (14 7T). Inthe Fig. 6 we
plot the ratioP )/ P, in the approximation of Eq[7@), as a
function of s for different choices of the paramet€r which
provides a qualitative confirmation of the behavior7f,,
discussed above.

4.4. Energy transport in the intermediate region of),

In this subsection we discuss the energy flux in the regjion
whens > sg = 1 and the spherical and cylindrical waves
coexist as shown in Eq6P). This region was fully charac-
terized previously in the paragraph before E&R)(

they do not constitute independent solutions of Maxwell
equations. Recalling Eg68) for the time-averaged Poynting
vector(S) we obtain

2, .4 1 4@2 2
(S)YH = a LY { [1+ "

(4n2 + 62)2

to first order in¢. In the above linear expansion we require
nwzpf < 1. (76)

We observe that these fluxes are independent of the position
of the dipole. In Eqgs.[14) and [75) we encounter two differ-
ent terms: one modulated by 2 which contains the energy
flux coming from the spherical wave contribution, and an-
other one proportional to~—3/2 that encodes the interference
between the spherical and cylindrical waves. The contribu-
tion of the cylindrical wave itself is of ordef> which we
have consistently neglected in our approximation.

Two remarks are now in order: (i) For a fixed set of pa-
rameters, Eqs(76) and [75) yields (S)§," — (S)5H > 0. (i)
The full expression for the energy flux must be positive def-
inite, but we are dealing only with a linear approximation in
§q. (75). This forces us to establish an additional bound for
the validity of our results. The dangerous contribution is in
(S)5H, where the relative minus sign might produce a neg-
ative value. Recalling thay = /2/(nwry), defined after
Eqg. (39), we rewrite the resulting condition from E®5) as

i3 _ (4n2 + 0%)% 4 4n26? (@)1/2
o V2 0%2(4n? +62)
1 147177

Vor T

sincer > rg in the intermediate zone. Recalling that<

T < 1, the functionQ(Y) is a decreasing function having
its minimum value@(Y = 1) = 0.40. This means that for
any valuet /&, < 0.40, the energy fluxes are always positive
in the whole range of since the inequalityld7) is always
satisfied.

On the contrary, whef.40 < £/&, = ¢ < 1 we have
to determine the maximum allowed val(g,,x by solving
Q(Tmax) = ¢, so that the energy fluxes are positive only in
therangd < T < T.x. Letus notice that the lowest values
observed fow are of the order of the fine structure constant
a = 1/137, which effectively replaces the theoretical lower

r

=Q(Y), 640,  (77)

As pointed out in Ref. [47], the separation of the electricjimit T = 0 by the more realistic o, = 1.3x 10~ /n2.
field (62) in these two components is not significant since
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TABLE |. The energy flux very close to the interface<£ 10~%) between a normal insulaton (= 2 (1.87),d = 0, . = 1) and different
magnetoelectrics with the sameandy. The radiating dipole has = 2.71 x 10°> eV ™!, w = 1.5 eV andzy = 25 eV~'. The observer
distance is" = 667V ",

9-medium n 6 T (SYUH [eV?] (SYEH eV (S)SEP [eV4]
TIBiSe, 2 1la 4.0x107* 6.64 6.64 6.63
ThPO, 1.87 0.22 3.5%1073 6.21 6.21 6.18
Hyp. | 2 0.5 1.5¢1072 6.74 6.73 6.63
Hyp. Il 2 1 5.9x1072 7.03 6.97 6.63
Hyp. Il 2 5 6.1x107! 8.53 7.89 6.63

Next we perform some numerical estimations of &) ( The analysis of the cylindrical waves leads us to introduce
shown in Table I. There we refer to the setup described in théwo discarding angle8y” and¢i ¥, defined in Eq.29) and
beginning of Sec. 2, for the case where medium 1 is a regshown in Fig. 1, which allow to distinguish two separate
ular insulator withn = 2 (1.87), p = 1 andd = 0, while  regimes: i) the regio,, (0 < 6 < 6y, 057 < 6 < 1),
medium 2 corresponds to different magnetoelectric mediavhere only the spherical waves are relevant and ii) the region
with the same refraction index and permeability and whos&’,, (5% < 6 < 65H), where both the cylindrical and the
value ofd is indicated in the third column. Since we are spherical waves must be taken into account. The behavior of
interested only in the magnetoelectric response of the redhe electric field in region; and)s is illustrated in Figs. 2
materials listed in Table | it is enough to say that TQR®  and 3, respectively.
an antiferromagnet exhibiting a linear MEE, whose relevant  Due to the presence of thlemedia we find modifications
properties have been extensively studied in Ref. [55,56]. Oin the angular distribution of the radiation given by EG5X
the other hand TIBiSghas been experimentally identified as and illustrated in Fig. 4. Noticeable interference effects are
a Tl admitting MEPs given by = (2n 4+ 1)7 [58-60]. Its  manifest in the upper hemisphere when the observer is in the
electronic properties are presented in [61]. The remaining ersame region of the dipole. On the contrary, no interference
tries correspond to hypothetical materials aiming to illustrateoccurs when the observer and the dipole are not in the same
the effects of increasing the strength of the MEE. For this rearegion, in which case the angular distribution looks similar
son we take them with the same refraction index 2. We  to that of a dipole in a homogeneous media, except for im-
compare these fluxes with the magnitude(8§°=% writ- portant changes in its magnitude. Such different interference
ten in the last column. We recall the dipole characteris-effects say that the system distinguishes whether the electric
ticsp = 2.71 x 10°eV™" (102! C-cm), w = 1.5 eV, dipole and the observer are in the same semi-space or not,
2o = 25 eV~! and the observer distanee= 667e¢V~'.  corresponding to the Cas¢s-) and (—) respectively, dis-

In this caset, = 3.2 x 10~2. We present the magnitude of cussed at the end of Subsec. 4.2.

the Poynting vecto(S),,, for both hemispheres evaluated at Starting from the far-field approximation of the electric

¢ = 1073, which we choose as a representative value satisfyfield we have correctly identified the Fresnel coefficients at
ing the condition[76) with nwzy¢é = 7.5 x 1072, as well as  the interface by making use of the angular spectrum repre-
£/& = 3.1 x 1072, for n =~ 2. This latter number indicates sentation [49] together with the results of Ref. [48] dealing
that the condition{5) is fulfilled for all values of Y in this  with wave propagation in layered topological insulators.
case. The modifications of the angular distribution in the re-
gionV; produce new expressions for the total radiated power
Py, which were calculated in Eqgs.68) and 70). The
result P_ for the lower hemisphere is independent of the
We discuss the radiation produced by a point-like electricdipole’s locationz, and shows a behavior similar to the stan-
dipole oriented perpendicular to and at a distangdrom dard electrodynamics configuration, but modulated by two
the interface which separates two planar semi-infinite nonamP“tUdeS The amplitude depending on the discarding an-
magnetic magnetoelectric media with the same permittivitygle o™ IS very close to one, because for all practical pur-
whose electromagnetic response obeys the modified Maxwelosesfy“” = /2. The second amplitude depends %n
equations4) and ) of ¥-electrodynamics. The choiege = and mduces an unexpected behavior yielding an enhancement
¢» is made to highlight and isolate the purely magnetoelecfactor R(_) that can be less than one in some cases. Fur-
tric effects on the radiation, which depend on the parametether, in the limiting case wheff — 1 the radiation in the
/- oy —191) /7. As a consequence of a careful calculationlower hemisphere would be completely canceled, such that
of the far-field approximation in the electric field we discover the setup behaves as a perfect mirror. The resultfos is

the additional generation of axially symmetric cylindrical more intricate since the dependence uppnow survives in
(surface) waves close to the interface, as shown in B85. (  the angular distribution of Eq6E). Again, the discarding

5. Summary and conclusions
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angle is very close ta/2 and we take this approximation to obtain some general features of the enhancement factor. We find
the maximum valu&k ) = 1 + 37, when the dipole is located at the interfaeg & 0). In the limit >« = nwzo very large we
haveR ) — 1+ 1. Also we find an absolute minimum at~ 2.88 whereR ;) = 1+ 0.83 Y. Thus, in this case we have an
enhancement factor larger than one, which nevertheless is limited to the maximum \/ﬂ@g"oﬁ 4, independently of our

choice of the parametefsandn of the medium. In Fig. 6 we plot the ratig )/ P as a function ofe, for different choices of
T, whereP, stands for the total power radiated by the dipole in standard electrodynamics.

Regarding the regiol,, we have carefully characterized along the text the conditions under which the cylindrical waves
arise. The cylindrical waves are present in the whole intefvat ¢ < &, |s| < 1 so that|S| = ¢2/¢2 < 1 for both
hemispheres in this region. Our linear approximatio#,icarried out in Eqs.44) and [75), is only valid when¢ <« &, and
the effect of thal-medium is again codified in the paramelerAs expected, the effects of the magnetoelectric become more
evident for large). The fluxes in both hemispheres are larger than in the standard electrodynamics configuration and the excess
of radiation in the upper hemisphere with respect to the lower hemisphere is evident in Table I.

In order to stress their similarities and differences we give some comparison between the dipolar radiation studied in this
work which includes a magnetoelectric medium, and that produced in the presence of two standard insulators with a planar
interface and different permittivitiegx) = ©(z)ex + O(—z)e; With €1 # €3 and; = ¥2 = 0. In the latter case the radiation
of a vertically oriented dipole picks up only the TM polarization as shown in Refs. [44,49]. In our case we have identified these
contributions to the electric field through the corresponding transmi§sign:, and reflectionRr s, s coefficients in Egs.

(60) and B1). However, due to the magnetoelectric effect, the electric field gets an additional input arising from the mixing
of TM and TE modes described by the reflection coefficiBatz i in Eq. 60). While in purely dielectric configuration

these coefficients have an angular dependence, in our case they turn out to be constants depending only on the paramete
of the media. This is a consequence of our cheaice= ¢5, which forbids the existence of reflection and refraction at the
interface. On the other hand, both configurations share the generation of axially symmetric cylindrical waves at the interface of
the two media, as shown in Subsec. 3.2.2 and particularly in Fig. 3. Again, in our case the physical origin of such cylindrical
waves relies on the change in the magnetoelectric polarizability across the two media and not because of a difference in the
permittivity constant as it happens in the purely dielectric configuration.

Let us emphasize once again that our methods can be applied to study the radiation in all materials whose macroscopi
electromagnetic response is described/siectrodynamics. This includes any magnetoelectric medium, which can be found
among a wide range of ferromagnetic, ferroelectric, multiferroic materials and topological insulators, for example. Our results
contribute to the list of uncovered consequences of the magnetolelectric effect, which still remains far from experimental
confirmation. Generally speaking, the paramétex /7 (in Gaussian units) which sets the scale for the magnetoelectric
effect via the constitutive relation8)(is very small. Then is is clear that to enhance such effects, materials with much higher
magnetoelectric polarizabilities are required. Besides those values previously mentioned in the text, some typical values are
2.8 x 10~2 for MgO/Fe [62] and7.2 for Gd,Os/Co [63]. Nonetheless, the search for a giant magnetoelectric polarizability
continues recently in composite materials reaching values as higpag0? for BaTiOs;/CogoFeyg, for example [64]. Among
the numerous technological applications envisaged as a consequence of the magnetoelectric effects we mention just a fev
electric field control of magnetism, low-energy-consumption non-volatile magnetoelectronic memory devices, high sensitivity
magnetometers, microwave frequency transducers and spintronics for future photonic devices [65-67]. Nevertheless, all thes
possibilities crucially depend on finding materials with higher and higher magnetoelectric polarizabilities.

Appendix

A. The electromagnetic potential and the integralsH, Z and 7

In this appendix we derive the electromagnetic potemigldue to the vertically oriented dipole, together with the integrals

in Egs. 9), (20) and R21) of Sec. 3.1. The procedure is based on the Appendix of Ref. [42]. To this aim we begin from the

expression10) in the frequency-space and from the current defined in/Eg). (Let us start with the componert®(x; w),
which takes the form

) k k ; 1.2 2 /
AO(X;w) — W /dZ// 1dky p)e“/ko_kﬂz_z \6/(zl _ ZO)
€

N k2

k3 dk | T (Ll
—g4n2+92/ / = S/QJ(]CJ_p)e VERLU=H1 D5 (o — 2), (A1)
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after making the convolution of the GE4) with the current/15). In obtaining the above relation we have expressed the area
elementd?’k, = k, dk, dy in polar coordinates and we have chosenithg axis in the direction of the vector, = (z,y,0).

This defines the coordinate syste$nto be repeatedly used in the following. Next we write - x; = k) pcos¢ with

p = |x.]| = 2?4+ y? and recall that the angular integralefp(ikp cos ¢) provides a representation of the Bessel function
Jo(kLp) [68]. The firstintegral in Eq.A.1) can be carried out by recalling the Sommerfeld identity [6, 8, 43]

ez’fcoR

i/MJo(kLRL)eim‘z_zl‘ T (A-2)
0

whereR = /p? + (z — 2’)2. Then, we impose the coordinate conditions appropriate to the far-field approximation
x> %I, Ro=I[l(x-x)_[|~|xcll=p |z2=2|=], (A3)
which yields the well-known result of standard E@’%OR/R — ei’%("'—ﬁ'x’)/r, with i being a unit vector in the direction of

x and wherég|x|| = r [35, 37]. Substituting this approximation into the first integral of E&.1j and integrating’(z' — zo)
we obtain

5 il;o(rfAzO cos 0) 1 52 k3 e
A(x;w) = —Biko cos < - P = 1dkL Jo(ky p)eVE—FL(zl+20) (A.4)
€ r ean? +02 ) K2 — K2

Therefore, after making? = ¢ and identifying the integrak{ defined in Eq./19) we find the expressioii).
For convenience we proceed now to calculate simultaneously the compeiénrtss) and A2 (x; w), which can be written
together as

26 62
A(x;w) = I aObSIb(x 20;w) — b

_— X, 203 W), A.5
An? + 62 4n2—|—02Qa( 0i) (A-5)
where we define the integrals
T Kdk o
Ia(x, 20;w) = —/Nil ko=KL (214+20) Jo (k1 p) va, (A.6)
k2 — k2
0 0 RFL
T Kdky o
Qa(x, 20;w) = / b VR TR 0) gy (kL p) v, (A7)
) kK2

with v, = (cos ¢, sin ¢, 0). Herea, b = 1,2 andk, = (k,0). Choosing the coordinate systeéhwe findI, = 0 andQ@, = 0,
which tells us that both vectoisandQ point in the direction ok, . Thus we can write

I(x, 20) = X1 - = / f& e VR, (A8)
pop k2 — k2

Q(x, z0;w) = —x1. o / e Jo (kL p) VRS FLzl+20) (A.9)
pop .

where we identify the integrals and 7 previously introduced in Eqs20) and 21). Plugging the latter forms of and.7 into
Eq. (A.5) we find the expressioilf). Finally, we find

Ad(x;w) = wp/ MJQ([CLRL)GZ-V kg —kilz—zol (A.10)
0

After employing the Sommerfeld identitA(2) together with the far-field approximatioA3) we obtain Eq./18).
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Im () a — plane

Bisi e | k), — plane
CR",L —_ :
-t ]ZZD
_]};x DX‘ ? Re (kj_)
a) b)

FIGURE 7. a) The Sommerfeld path of integrati@r. , in the k. -plane showing the branch cuts originating from the branch polits
and0. b) A permissible deformatiod', of the path of integration obtained by the transformation= ko sin a. The branch points in the
a-plane arex+ (+ko) = +7/2 anda(0) = 0.

B. Evaluation of the integrals (19)-(21) by the modified steepest descent method

In this appendix we closely follow Ref. [13] and apply a modified steepest descent method to find the far-field approximation
of the integralsH, Z and .7 whose results are given in Eq®22J-(24). This Appendix is divided in two sections. In the first

one, we present in full detail the method by solving the integfalefined in Eq./19). In the second section we only indicate

a summary of the method leading to the integralandZ, respectively.

B.1 The integral H

It will prove convenient to rewrité{ in terms of Hankel functions. We start from
1

Jolw) = 5 |H" (@) + B @) (B.1)

whereHél)(x) and Hé”(a:) are the Hankel functions, together with the reflection fornﬂﬁ)(e”x) = —HO(Q)(JZ) [69],
which allows us to extend the integration interval in Et9)(to —oco. The result is

1 k3 dk . Tr e
Hx,20i0) = 5§ TS H (hyp) V) (B.2)

whereCy,, is the so-called Sommerfeld path of integration defined in Fig. 7a), which avoids the branch cuts dictated by the
Hankel functionHél) and by the square rogf k2 — k2 . Atthis point is worth mentioning that henceforth we will retain some
dissipation in the medium (> Im[fco] > 0) for convergence purposes and to avoid troublesome questions of convergence that

arise wherim[l%o} = 0. This guarantees th&te i\//;g — k% | <0, i.e, the exponential argument will be negative implying

the rapidly exponential decay that assures the convergence of the irfie[jra).
First, we apply the conformal transformatién = kg sin « obtaining [13,47]

B s i oo
H(x, zo;w) = % ‘7{ da%H&l) (kopsin a) ko cos allz|+z0) (B.3)
Ca

whereC,, is given in Fig. 7b). Following Ref. [47], now it is convenient to use the asymptotic expansion of the Hankel

function [68]
1) (3 . 2 ikopsina—i %
H, (kopsma)w —e E (B.4)
wkopsin
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« — plane

a) T b)

FIGURE 8. a) The path of integratio,, with the steepest descent conditi@ () in the a-plane. The path of steepest descent has the
asymptoteRe(a) = —7/2 + 0, 7/2 + 0, and crosses the real axis of theplane at the saddle-poiat; = 6. The previous pati®’,, of

Fig. 7b) is sketched here in the blue dotted line. b) The path of integr&tioim thew-plane obtained by the shift = oo — 6. The resulting
path of steepest descent now has the asympibéés) = +m/2 and crosses the real axis of theplane atw = 0.

which is allowed because we are focusing on the far-field approximation required for the analysis of radiation. In this way, we

have
ind/? - .
H(X Zo'w) _ ]}2 ;e*iﬂ'/‘lfdaweikopsma+ikoCOSQ(\Z\JrZo) ) (BS)
o N\ orkoR, y cos

For the moment we restrict ourselves only to the Wbk > 0). The calculation for the LH is sketched after EB.22). So,
we write|z| = rcosf andp = rsinf, i.e., r = \/p? + 22. Thereby, we find

:05/2
H(X, Zo;u)) — 15(2) %e_iﬂﬂl f daweikgr cos(a—8)+ikozo cos a ) (86)
2mkqgr sin 6 p COoS (v

Next we determine the saddle-point &.6) by choosing the stationary phase as aplity) = ikor cos (o — 6), according to
Ref. [13]. The saddle-point, is determined through’ (as) = 0, which givesa, = 6. This yields the full stationary phase to
beikyr cos . At this stage, the steepest descent path is specified enpiene by demanding the condition

Im [p (@)] = Im [p (as)] = Im [i/:;or cos (o — 9)} =Im {z’feor} (B.7)

overC,, as sketched in Fig. 8a).
Now we shift the origin to coincide with the saddle point by setting- « — 6 in H, which yields

125/2 - -
H(X, Z();w) _ ];,(2) %e—iﬂ'/él f dwweikm‘ cos w+ikozo cos(f+w) ) (BS)
2mkor sin 0 J cos (0 + w)

The reparametrized pathi,,, shown in Fig. 8b), now satisfies the following steepest descent condition
Im [ifcor cos w} =1Im [i/%or} . (B.9)

The next step is to introduce the conformal transformation [13]

2

5 =¢ (0) — ¢ (w) = ikor (1 — cosw) , (B.10)
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Im (u) u — plane

+
- > Re (u)

FIGURE 9. The path of integratior”,, obtained by the conformal transformation given in E®.10) when=/2 > 6 > 0. The path
of steepest descent is mapped into the real axis ofithtane. Here the branch points arg: = u(r/2 — 0) = +/2ikor (1 — sin6),

ut1 = u(—7/2 — 0) = +4/2ikor (1 + sin @) anduss = u(—0) = +4/2ikor (1 — cos#). The branch cuts convergeat x e'™/2 and

oo x e~ "/2, Whend ~ 0 the branch cuts lie over the blue dotted line of slage and converge at the pointe x ¢'™/* andoo x 7/,

whose purpose is to map the path of steepest descent into the real axis. This requires the change ofcwariabies —
u?/2ikor in Eq. (B.8), after which we obtain

7. 1 ikor :5/2 ikozo cos[0+w(u)]
H(x, z0;w) = k—_ow S %duFl(u)e_uz/Q, Fi(u) = sin? [0+ ww)]e . (B.11)
i V 27wsinf r J cos [0+ w(u)] /1 — u?

4i1~co'r'

The pathC,, is sketched in Fig. 9. Then we look at the behavioFpfu) and find that it has poles in theplane located atg

given by
u2
1-—2 =0, cos [0 +w(ug)] =0. (B.12)
4ik0’f’

We will consider only those poles in the second equation above, because the poles from the first equations will only matter
when seeking for correction terms of higher order than, which we will not pursue here. Recalling the last change of
variablesw — u we find that the poles are

ugs = £/ 2ikor (1 —sinh) = +V2A, A = \/ikor (1 —sin#). (B.13)

Since our integration path is in the upper-half plane we require @fly

From Eq. B.11) we realize that; (u) is not a smooth function around the stationary phase, cos[f + w(u)] precisely
due to the pole contribution, which prevents a direct application of the method. The main idea to overcome this difficulty
is to subtract and add the conflicting pole as we will do next [1, 13]. This extraction procedure was mathematically justified
by van der Waerden [70]. Due to the symmetry of the conformal transformatinriEg. (B.1C) we will focus on the upper
u-semi-plane. For this extraction, we need the residug, ¢f) atuq, which is

ko’l“
Res (Fy;u = B.14
( 1 ()+) Z\/{ ( )
Then, we introduce the function

Res (F7y; Res (F7;

) = Fy() - 2 FLivoy) | Res(Fiiuoy) (B.15)
U — Up+ U — up+
1 (u) 2 (u)
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In this way,; (u) is analytic atug, so that we can apply the standard steepest descent method. Meagmwfhileyill contain
the simple pole contribution that will be analyzed later. At this stage we refiriteEq. (B.11) as

k 1 6“2’07"
H(x, 20:0) = 2\ 5= = [Msp(x, 20w) + Hp(x, 205w)] (B.16)
where we define
Hsp(x,z0;w) = ]{du wl(u)e_“z/Q, Hp(x,z0;w) = %du wg(u)e_“2/2. (B.17)
Cu Cy

The first contribution provides the standard steepest descent integral, and the second term results from the integration of the
simple pole. For simplicity, we omit the explicit dependencéf, and p in what follows. For the moment, let us focus
onHsp, whose detailed form is

sin/2 [0+ w(u)] e?Foz0 coslo-tu(w)] kor 2
Hop = ¢ d — —u/2 B.18
SD 7§ u { cos [0 + w(u)] Vil — ugr) e ( )

Cu

As we mentioned previously, thetransformation has already mapped the path of steepest descent into the real axig-on the
plane. Thus, we are able to approximatep with standard calculus techniques. Since we are interested only in the dominant
term of Hsp, itis enough to consider the zeroth order term in the expansign(af) in its Taylor series around = 0 (w = 0),
because most of the contribution arises from its vicinity due to the presence of the Gaussian ﬁJﬁéﬁ%nPerforming this,

we obtain

Sin5/2 Heifcozo cos @ 1
Hsp = — V2, B.19
P { cos 6 2(1 —sinf) (B.19)

where we have already introduced the expressiam effrom Eq. B.13). Substituting back this result in EB(16), we find

- ikor 02 0 ikozo cos 0 1 ]Nf 1 ikor
H:koe. s ve 0 — +£\/ﬁLHP (B.20)
r COS ) (Sin@ o Sin2 0) 1 T SIn T

We observe that the first term inside the curly brackets is just the same term without the contribution of the simple pole that
we reported in Ref. [42]. The second contribution appears to introduce divergentes atr, due to the terml /+/sin 6.

However, these singularities are artificial and arise from the insertion of the Hankel fuﬂfﬁ&ﬂn Eqg. B.1) [13]. One can

trace back these artificial divergences to the branch cuts represented by the ray that starts at the origin of Figs. 7a) and 7b), by
the ray that begins at6 in Fig. 8b) in thew-plane and by the ray that startsun in Fig. 9 in theu-plane, after the successive
transformations are performed. Nevertheless, one can prove that these divergences are apparent as long as we work within the
far-field approximatiorkqr — oco. It only remains to determin& ». As mentioned above, thetransformation maps the path

of steepest descent to the real axis orutkane. So, we only need to computg- along that axis. Explicitly, we have that

™ 1207" 1 ]O e—v /2 s l::or ~ \/7rl~€or
Hp = — du = W(ugy) = Z(N), B.21
P ﬂ i U — Uos \ﬁ ( 0+) Z\/% ( ) ( )

recalling thatug, = V2A is given by Eq. B.13). We discuss some basic properties of the Faddeeva fungtian and the
function in the Appendix C.
Substituting Eqs/B.21) and IC.2) in Eq. (B.20) yields our final expression fdt

N ikor 2 ikozo cos O 1 ) 2 ) -
sz‘oe , sin” fe - +4 liﬁem”rsmgzerfc [—i\/ ikor (1—sin 0)} , (B.22)
ir cosf ) T 2

2 (sin 60— sin? 0 ikorsin @ i

where the second term shows the presence of cylindrical waves that arise directly from the simple pole contribution as Refs.
[1,13] establish. The expression ¢ is given in Eq.[C.2). Analogously, we obtain the form @1 in the LH, which indicates
that the whole expression valid for both hemispheres is obtained by reptasifgvith | cos 6| in Eq. (B.22), yielding Eq. 22).
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For the sake of completeness we show that 28) ¢onverges around/2. To deal withd = 7 /2 we find it convenient to set
6 = /2 — £ in the UH and expan®@) in a power series of around¢ = 0. We obtain

- eikor [ £ 2 -5 s mikor 9
—_— : ; _—— ? OT‘ —_— B.2
H(E = 0) > ko— {Zk‘ozo 8}+’/mkzork 5 T 5 & +OE) (B.23)

where we observe that the divergence disappeared. Lack of space prevent us to write down the praofsthaj = 0 =
H(O =m).

B.2 The integrals 7 and 7

After introducing the Hankel funcuoﬁ{(l)(klp) in Eq. (21) we observe thal7 has almost the same form #@.2) except for
thek? extra factor in the integrand. Performing the same chain of transformations from tpkane to theu-plane as done in
the Appendix B.1 we obtain

zkor s 1/2 0 ikozo cos[0+w(u)]
T (X, z0;w) = ——1/ ]{ duFy(u u?/2 , Fa(u) = sin /= [0 +w(u)] e 2 7 (B.24)
Z]€07" 27T sin ¢ cos [0 +w(u)] /1 — %

4i’€0T

where again we restrict ourselves to the UH. Notice thatu) differs form F3(u) only in the exponent of the function
sin[@ + w(w)], which is a consequence of the distinct powers: ofin the definitions ofH and 7. Since the singularities
are the same, the separation of the pole yields

C(u) = Fy(u) — Res (Fy; up4) n Res (Fa;uo4) 7 (8.25)

U — U+ U — Ug+
¢ (w) C2(u)

with ug4 given by Eqg. [B.13). Since(;(u) is already analytic, we approximate its integral through the standard steepest
descent method. Meanwhilé,(«) will contain the contribution of the simple pole. In this way, we rewiteas

eu@\/f
j(x, anw) = W m [jSD(Xa Zoyw) + jP(Xa Zva)] ) (8-26)
where

Tsp(x, z0;w %du(l e JIp (X, z0;w) = Hp(X, z0;w %du@ e (B.27)

The equality betweegfr and™H p follows becaus®es (F»; uo+) = Res (F1; ugs ). The remaining calculation Qfs , follows
the same steps as thatkkp (B.1€) in the Appendix B.1 and leads finally to E@®3}, which can be shown to be convergent
atd = 0,7/2, 7. The expansion off in the UH near the interface yields

eikor (- f) 2 7r mikor
JE—=0)=—= ikozo — = | + 4| ——eFom | — 4+ + O£ . B.28
€—0) pra (Z 0%0 — g ——— 5 5 ¢ (&) (B.28)

The calculation ofZ, defined in Eq.20) follows similar steps. After introducing the Hankel functiﬂél) (k. p) and perform-
ing the chain of transformations from tle -plane to theu-plane previously described we obtain

eil%gr 1 5 sin1/2 [9 + w(u)] eiféozo cos[0+w(u)]
. — —u”/2 —
I(x,20;w) = e \/ 5o fdqu(u)e , F3(u) = " , (B.29)
Cy

4’L‘];,‘07‘

in the UH. Then, we realize that the only poles remainingifu) are those arising from the square root in the denominator.
Nevertheless we neglect them since, as previously mentioned in the Appendix B.1, these poles will only matter when we seek
for correction terms of higher order than', which is not intended in this work. Therefore, this integral does not need a pole
extraction in contrast with the former integratéand 7. Following the same steps previously carried outfyp in the
Appendix B.1 we obtain Eg24). The expansion df in the UH near the interface is given by

ikoT

‘ . (1 +ikoz0€ + O(£2)). (B.30)

(¢ —0)=
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C. Some properties of the functionZ(A)

The functionZ(A) is known as the Faddeeva (plasma dispersion) function [1, 71] and has been much studied in the literature
[14,15,72-74]. Let us recall the definition

+0o0 2
_ 1 et —A2? .
Z(A) = NG / dxx_A = iyv/me Y erfe(—iA), (C.1)

where the last relation in EQC(1) in terms of the complementary error function is taken from Refs. [1, 68], and yields

W(ugy) = %Z(A) = ime~tRor(1=sin0) gy |:i\/i/~€0T (1 —sin 0)] . (C.2)

The function(uy), already introduced in EqIB(21), can be written in terms of the alternative expressions for the plasma
dispersion functionw(A) defined in Ref. [68] and (A) defined in Ref. [71], as follows

W(uoy) = W(V2A) = w(A) = %Z(A), A = \/ikor (1 — sin6), (C.3)

whereA = z + iy is a complex variable, with, y being real numbers. .
The functionZ(A) satisfies the useful expressigiA*) = — [Z (—A))} , together with

Z(A) =i e — AN 7VA(=AY)(n+1/2)), Al -0, (C.4)
n=0
Z(A) = in' 2o (A)e A — % A2 (0 — 1/2)0)/x2, |A] - oo, (C.5)
n=0

Hereo(A) = 0,1,2 wheny > 0,y = 0,y < 0, respectively. From Eq./Q.3) we write A = is = ¢™/%s, 5 =
\/kor (1 — sin #) , and we require to calculaté(e’™/*s) which we could read from Ref. [71]. However we find a misprint in
the expression foZ (e~*"/*5s) given there. The correct result is

Z(se~ /) = ixl/2eis” [1 +V2e BT [O(t) — Z'S(t)]} . t=+2/ms, (C.6)
whereC'(t) andS(t) are the Fresnel functions and with the identificatios p. Finally we obtain

Z(se'™/ ) = 21 B +C2(t) + S%(t) — O(t) — S(t)} . (C.7)
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