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RESUMEN

It is shown that the analytic properties that Nigner
found for the R-matrix are egquivalent with the properties of

the S-matrix that can be deduced from the causality conditsion.

I. Introduction.

The preszent -note deals with elastic scattering of non-
relativistic Schrodinger particles by a fixed centre. The
scattering centre is supposed to be of finite size, so that

it can be enclosed in a sphere with radius a. For simplicity

we assume spherical symmetry and consider only S-waves. The

scattering can then be completely described either by the
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“S-matrix” (which in this case reduces to a scalar function of
p), or by the "R-matrix”, which is related to S by

2
g21ierp S(p) = | +1ip R(pz)
i~=ip R(p")

(1)

P 18 the magnituae of the momentum of the incident particie
and p2 is its energy, the mass being taken equal to 2.

Wigner' showed that if the interaction inside the
scattering centre can be described by a self-adjoint operator,
the function R(w) has the following properties:

(a) R(w) 1is a meromorphic function of w = u+iv ;

(b) R(u) 1i= real;

(¢) All poles of R lie on the real axis;

(d) The imsginary part of R is positive in the up-
per half plane and negative in the lower half
plane.

According to & theorem of Harglotz2 one can conclude quite

generally from this that the following expansion is valid

2 2
— ’yn 7!1
R(w) = aw + B + 2{“{" [ (2)

where the constants «,8,y ,u, are real and « 2 0. The
poles u_ may approach infinity in both directions but can-
not accumulate in a finite point. Wigner and Eisenbud?

showed that actually

2
R(w) = > Zn_ : (3)
un—l

which amounts to adding one more property:
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() The sum 'Ztyi/un) converges and equals B, and a = 0

The question arises tuv what properties of S these
properties (a) - (e} of R correspond. From (|) in connection
with (a) and (b) follow immediately

{a‘} S(z) 1is a meromorphic function of 3z = x+iy ;

(b’) On the real axis is
S(x)~' = S(x)* = S(-x) . (4)

Schiitzer and Tiomno* showed that (d) implies

(c') The poles of S 1lie either on the positive

imaginary axis or in the lower half plane.

In a recent papar5 Wigner deduced some properties of S from
(a) — (d), but they were not yet sufficient to prove conwersely
the properties of R. On the other hand it has been shown®
that the so-called causality condition entails the following
additional properties of S:

(d’) In the first quadrant of the z-plane

Img o2t®® S{(z) € |

-

(5)

(e’) g2t" S(z) 1is bounded in 0 &£ Arg z < %‘- 5 .

It was also shown that (a’') - (e’') are sufficient to derive
(a) = (d).

In the present note we intend to demostrate firstly
that (a’) - (e’') also imply (e), and sescondly that (a) - (e)
imply (d') and (e’) The result can be stated in the follow-
ing theorem: The properties (a) - (e) for R are equivalent

A alnlil—

with the properties (a’) - (e’) for S. It can readily be
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verified that the properties that Wigner® deduced for S are

contained in (a’') - (e'}).

II, (a') - (e') imply (e)

With the abbreviation e2 " S(z) = S5,(z), (1) gives

S_(z)-1
S _(z) +I

R(2%) = (6)

It follows that R{w) on the imaginary axis tends to zero:

R(iv) = O(V-%) , (7)

w1/4)

unless S _(re tends to - for r -+ @, To exclude this

eventuality we shall suppose that a is chosen slightly
larger than the radivs of the smallest sphere in which the

scattering centre can be enclosed. Then we know that there

is a small ¢ such that ezi(‘-i)' S{z) = o= 21¢" S,(z) 1is

ﬂi/4

bounded, and therefore that certainly S _(re }) - 0. Hence.

for such a choice of & the validity of (7) is guaranteed.
Now consider the imaginary part of R{(iv) as given
by (2)

2
Ya

Img R(iv) AV + VI

2
un+?

Clearly Img R(iv)/v » a as v » ® go that from (7) follows
24 = 0. Next we have’
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As the left side converges owing to (7), the sum on the rignt

is bounded when M and N tend to infinity One may there-

fore write

un un—w

72 ')’2
R(w) = [ B - 2'“3-] ¢ 3 — ;

since both the left side and the last term on the right tend
to zero a8 w - i®  the constant term [ ] must be zero, so
that (3) is proved.

For this proof it was assumed that R(w) is defined
with a value of a which is slightly higher than the lowest
value for which (5) is true. That this cannot be avoided is

shown vy the example

j=-2
i+2

S{z) = .
Clearly this S satisfies (a‘’) - (e’) with a = Q. However
i1 one defines R by taking a =0 in (8), it becomes
identically |; this R satisfies (a) — (d) and is of the

form (2), but cannot Le written in the form (3).

III. (a) - (e) imply (d°’)

We first assume that R is given by an expression

(3) with a finite number of terms. Then both R and 5,

are raticrnal tunctions and as R(zﬁ) = 0(3'2) one has



lim S_(z) I for |lz| » o

From (4) one sees that

Sa(-—z*) = Sa(z)* :
and therefore that S_(z) is real on the imaginary axis.
Hence 1img S vanishes on the imaginary axis and at infinity
and satisfies (5) on the real axis; since it is a harmonic
function in the first quadrant its maximum must lie on the
boundary, so that (5) is indeed satisfies in the whole
quadrant. To make this proof rigorous, however, we have to
consider more carefully what happens in the neighbourhood of
the poles on the imaginary axis.

These poles are the points iy for which
yR("y2)+l=Or Y"O.

It follows from (d) and is obvious from (3) that R‘'{(u) > 0
and hence that in each of these points

d

2 - _ el -
-a—y-{yR(-?)+i} R(¥)+?dyR(y)
R NP O
v 2y i R{u)

is negative, Consequently the residue of S_(z) at each
pole i« 2 1is ~-ic with ¢, > 0 :

41
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where g(z) 1is regular in the neighbourhood and again real on
the imaginary axis. This shows that it is possible to draw a
small semicircle in the first quadrant about the pole, on
which Img S_(z) € 0. Hence the use of the maximum modulus
principle was indeed justified.

Now consider an R given by (3) with an infinite number
of terms. We can then firsi form a mutilated R by taking
only N terms of the series and the above proof shows that
(5) holds for the corresponding mutilated S . If then N » @
it is clear that (5) must also hold for the limiting S .

IV. (a) - (e) imply (e’)

_—Wﬂ“ﬁﬂ_ﬂm

We first estasblish the preliminary estimate

Sa{z) = o(|z|2) as |z} » ©®, o £ Arg z &

o #

-3 . (9)

According to Herglotz's theorem® one may express the values

of the function i~5_(z) in terms of a Poisson-Stieltjes

integral, taken along the boundary of the first gquadrant.
That gives

' 2 ) 2
Y 14
i“sa(z)=a'zz+ﬁ'+2{ 'na— ?}1-

2 [ 1+£%82 1-Img S,(&)
-l-'; f e et
0

£ df (10)
£2 g2 | s g

This equation is the analog of (2), but an integral now also
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appears on the right, owing to the fact that S _(z) is not
real on the positive realL axis. As there are no poles for

real 2z, all u; are negative, say u ] = - x:(xn > 0).

n
Comparison with (8) yields 7;2 = +2x ¢ . After some

manipulations (!10) becomes

Se(z) - Sa{0)} c +®
- . - + 22 2 — : —— T =a'z + ;!; I tmg S5,(6) d¢ .
kK (K _+2 £ (&-~3)

-

The right—hand side is a function that is regular in
the whole upper half plane and of order |z| as |z| » =,

The left side shows that on the real axis it is of order less
then |x|. According to the theorem of Phragmén and Lindelf®
it must therefore be of order less than |z|{ in the whole
upper half plane. From this follows (9), because the sum in
the second term on the left vanishes if 2 tends to infinity
in the angle between 0O and '% - & . It also follows that
a’ = 0.

Now consider the function

§° 1(b-
S, (z) = e " S(z) = &7 (b=s)s S, (z)

with b > a. Clearly 5,(z) satisfies (a’) - (c¢’), so that
Img S,(z) € | on the boundaries of the first quadrant. More-
over in the first quadrant it is not greater in absolute

value than 5, (z), so that

Sb(z) =O(|Z\2) » 0£Arg5€%“8 )

Hence one can apply Phragmén-Lindelof’s theorem to
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F(z) = exp i S, (z)
with the result that |{F(z)| € e and therefore

Img S, (z) < | (11)

in the whole quadrant.
One can now find a bound for |[§_(z)| from (1) by

choosing a suitable value for b, Let for a fixed =

B 1@
S, (z) = IS | e ,

so that (1}) becomes
e”2(*"%)7 |5 | sin{2(b-a)x + 8} < | . (12)
It is certainly possiole to choose a b 2> a such that
sin{2(b-a)x + &} = | , b-a < 7n/x .
With this choice (!2) becomes
S, (z)] < ezﬂ(r/x) ,
which proves (e’).

Appendix

Wigner and tisenbud® introduce the set of solutions

X, (r) of the Schrdodinger equation, satisfying X;(a) = 0,
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and expsanda an arbitrsry soiviion ¢{r) 1in the form

g(r) = Z & Xa(r) . (0 € ¢ < a)

For the proof of (3) it is essential that this expansion should
also hold for r = a, which is not obvious. However, it can

readily be proveda when the interaction is given by a potentisal
field V(r). Indeed, if V = 0 the validity follows from the
theory of Fourier series, and it is known that the presence of
8 potential tield does not infiuence the convergenceg. Actual
ly, in the case of a potential field, (3) can be proved more

directly by usirng the asymptotic exPresaiansg

p{p,r) ~ 8in pr/p , @'(p,r) =~ cos pr |,

for p » iw, which give

0 (%) ;

R(pz) ~ tan pa/p

according to the proof in section 1I this enteils (3).
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